Identification and Quantification of Suspended Solids and Their Effects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genetic Control of Dry Matter, Starch and Sugar Content in Sweetpotato
Acta Agriculturae Scandinavica, Section B — Soil & Plant Science ISSN: 0906-4710 (Print) 1651-1913 (Online) Journal homepage: http://www.tandfonline.com/loi/sagb20 Genetic control of dry matter, starch and sugar content in sweetpotato Ernest Baafi, Vernon E. Gracen, Joe Manu-Aduening, Essie T. Blay, Kwadwo Ofori & Edward E. Carey To cite this article: Ernest Baafi, Vernon E. Gracen, Joe Manu-Aduening, Essie T. Blay, Kwadwo Ofori & Edward E. Carey (2016): Genetic control of dry matter, starch and sugar content in sweetpotato, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, DOI: 10.1080/09064710.2016.1225813 To link to this article: http://dx.doi.org/10.1080/09064710.2016.1225813 Published online: 01 Sep 2016. Submit your article to this journal Article views: 4 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=sagb20 Download by: [ERNEST BAAFI] Date: 08 September 2016, At: 13:18 ACTA AGRICULTURAE SCANDINAVICA, SECTION B — SOIL & PLANT SCIENCE, 2016 http://dx.doi.org/10.1080/09064710.2016.1225813 Genetic control of dry matter, starch and sugar content in sweetpotato Ernest Baafia, Vernon E. Gracenb, Joe Manu-Adueninga, Essie T. Blayb, Kwadwo Oforib and Edward E. Careyc aCSIR-Crops Research Institute, Kumasi, Ghana; bWest Africa Centre for Crop Improvement (WACCI), University of Ghana, Legon, Ghana; cInternational Potato Centre (CIP), Kumasi, Ghana ABSTRACT ARTICLE HISTORY Sweetpotato (Ipomoea batatas L. (Lam)) is a nutritious food security crop for most tropical Received 31 May 2016 households, but its utilisation is very low in Ghana compared to the other root and tuber Accepted 11 August 2016 crops due to lack of end-user-preferred cultivars. -
Feeding of Different Categories of Fish, Their Nutritional Requirements and Implication of Various Techniques in Fish Culture – a Review
Int.J.Curr.Microbiol.App.Sci (2020) 9(1): 2438-2448 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 9 Number 1 (2020) Journal homepage: http://www.ijcmas.com Review Article https://doi.org/10.20546/ijcmas.2020.901.278 Feeding of Different Categories of Fish, their Nutritional Requirements and Implication of Various Techniques in Fish Culture – A Review Prabhjot Kaur Sidhu* and Anant Simran Singh Khalsa College of Veterinary and Animal Sciences, Amritsar-143001, Punjab, India *Corresponding author ABSTRACT Aqua cultural production is a major industry in many countries, and it will continue to grow as the demand for fisheries products increases and the supply from natural sources decreases. Good nutrition in animal production K e yw or ds systems is essential to economical production of a healthy, high-quality Fish, product. In fish farming (aquaculture), nutrition is critical because feed Nanotechnology, typically represents approximately 50 percent of the variable production Feed cost. Fish nutrition has advanced dramatically in recent years with the Article Info development of new, balanced commercial diets that promote optimal fish Accepted: growth and health. The development of new species-specific diet 22 December 2019 formulations supports the aquaculture industry as it expands to satisfy Available Online: increasing demand for affordable, safe, high-quality fish and seafood 20 January 2020 products. Article provides a general overview of the wide variety of nano- materials and technologies in fish culture that offer significant promising role for water recovery. Introduction crore) was exported in 2016-17, of which frozen shrimp was top item to be exported. -
Canadian Aquaculture R&D Review 2019
AQUACULTURE ASSOCIATION OF CANADA SPECIAL PUBLICATION 26 2019 CANADIAN AQUACULTURE R&D REVIEW INSIDE Development of optimal diet for Rainbow Trout (Oncorhynchus mykiss) Acoustic monitoring of wild fish interactions with aquaculture sites Potential species as cleaner fish for sea lice on farmed salmon Piscine reovirus (PRV): characterization, susceptibility, prevalence, and transmission in Atlantic and Pacific Salmon Novel sensors for fish health and welfare Effect of climate change on the culture Blue Mussel (Mytilus edulis) Oyster aquaculture in an acidifying ocean Presence, extent, and impacts of microplastics on shellfish aquaculture Validation of a hydrodynamic model to support aquaculture in the West coast of Vancouver Island CANADIAN AQUACULTURE R&D REVIEW 2019 AAC Special Publication #26 ISBN: 978-0-9881415-9-9 © 2019 Aquaculture Association of Canada Cover Photo (Front): Cultivated sugar kelp (Saccharina latissima) on a culture line at an aquaculture site. (Photo: Isabelle Gendron-Lemieux, Merinov) First Photo Inside Cover (Front): Mussels. (DFO, Gulf Region) Second Photo inside Cover (Front): American Lobsters (Homarus americanus) in a holding tank. (Jean-François Laplante, Merinov) Cover Photo (Back): Atlantic Salmon sea cages in southern Newfoundland. (KÖBB Media/DFO) The Canadian Aquaculture R&D Review 2019 has been published with support provided by Fisheries and Oceans Canada's Aquaculture Collaborative Research and Development Program (ACRDP), and by the Aquaculture Association of Canada (AAC). Submitted materials may have been edited for length and writing style. Projects not included in this edition should be submitted before the deadline to be set for the next edition. Editors: Tricia Gheorghe, Véronique Boucher Lalonde, Emily Ryall and G. Jay Parsons Cited as: T Gheorghe, V Boucher Lalonde, E Ryall, and GJ Parsons (eds). -
International Standards for Responsible Tilapia Aquaculture
INTERNATIONAL STANDARDS FOR RESPONSIBLE TILAPIA AQUACULTURE Created by the Tilapia Aquaculture Dialogue International Standards for Responsible Tilapia Aquaculture 1 Copyright © 2009 WWF. All rights reserved by World Wildlife Fund, Inc. Published December 17, 2009 International Standards for Responsible Tilapia Aquaculture 2 TABLE OF CONTENTS INTRODUCTION..............................................................................................................5 UNDERSTANDING STANDARDS, ACCREDITATION AND CERTIFICATION ............................................................................................6 PURPOSE AND SCOPE OF THE INTERNATIONAL STANDARDS FOR RESPONSIBLE TILAPIA AQUACULTURE ........................................................6 Purpose of the Standards ..........................................................................................6 Scope of the Standards ..............................................................................................6 Issue areas of tilapia aquaculture to which the standards apply ..........................6 Supply or value-added chain of tilapia aquaculture to which the standards apply .............................................................................................6 Range of activities within aquaculture to which the standards apply ..................7 Geographic scope to which the standards apply ..................................................7 Unit of certification to which the standards apply ...............................................7 PROCESS -
Travis Waldemar Brown.Pdf
Intensive Culture of Channel Catfish Ictalurus punctatus and Hybrid Catfish Ictalurus punctatus x Ictalurus furcatus in a Commercial-Scale, In-pond Raceway System by Travis Waldemar Brown A dissertation submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Auburn, Alabama August 09, 2010 Key words: In-pond, raceway, system, catfish, production, economics Copyright 2010 by Travis Waldemar Brown Approved by Claude E. Boyd, Co-chair, Professor of Fisheries and Allied Aquacultures Jesse A. Chappell, Co-chair, Associate Professor of Fisheries and Allied Aquacultures Terrill R. Hanson, Associate Professor of Fisheries and Allied Aquacultures Yifen Wang, Associate Professor of Biosystems Engineering Abstract An experiment was conducted utilizing a highly intensive fish production system in the Black Belt region of western Alabama. Three main objectives were addressed in this study. The first was based primarily on channel and hybrid catfish production and performance capabilities. The second objective dealt with detailed water chemistry and nutrient budgeting, while the third and final objective involved an economic analysis to determine the feasibility and commercial possibilities of the system. The goal of this project was to improve the profitably of commercial catfish aquaculture by demonstrating methods to enhance feed efficiency and survivorship. A commercial size In-pond Raceway System (IPRS) was constructed in 2007 and installed in a 2.43-ha, traditional, earthen pond on a 170-ha catfish farm in Dallas County, Alabama. The IPRS consisted of six, individual raceways that share common walls. Each raceway has the capacity of water exchange every 4.9 minutes (≈12X/hr). -
Table 5. List of Feed Ingredients That Are Used Or Have the Potential to Be
Table 5. List of feed ingredients that are used or have the potential to be used as protein and/or energy supplements in milkfish feed (nutrient content as % dry matter) Primary use Gross Moisture Crude Inclusion Main nutritional Main nutritional Processing Feed ingredients Protein Energy energy Both DM (%) protein (% ) (% max) interest deficiencies restrictions supplement supplement (kJ/g) Air drying Animal Fishmeal Protein, essential amino Fat soluble 10 64 19 25 reduces protein orgin (local) acids, minerals vitamins and fat content Air drying Fishmeal Protein, essential amino Fat soluble 8 68 20 25 reduces protein (Peruvian) acids, minerals vitamins and fat content Air drying Fishmeal Protein, essential amino Fat soluble 9 65 20 25 reduces protein (tuna) acids, minerals vitamins and fat content Chemoattractants, Oven drying Shrimp meal Poor mineral 8 69 19 10 lysine, methionine, may damage (Acetes ) digestibility HUFA fatty acids Protein, essential amino Meat meal Anti-nutritional Cooking is 4 52 16 5–10 acids and fatty acids, (snail meat) factor in slime required xanthophyll Isoleucine, Hygienic Meat & bone 6 47 16 10–15 Protein, minerals methionine+cyst standard meal ine needed Protein, unsaturated Contains Heating Mussel meal 6 65 21 5 fatty acids, enzyme inhibitor destroys (green) chemoattractant thiaminase thiaminase Low digestibility Poultry by- Essential amino acids, due to keratin 8 61 22 35 product meal iron, zinc, choline and raw feathers Primary use Gross Moisture Crude Inclusion Main nutritional Main nutritional Processing -
Cheese, Nutrition & Health
11b Cheese, Nutrition Updated August 2016 & Health Generalities 1. What is cheese? What is cheese? 1. In France the term “cheese” is governed by a decree 2. What are the main types? (from November 2007 updated in November 2013). It is a product made exclusively from specific dairy ingre- Nutrient composition dients (milk; cream, fat, buttermilk) used alone or in 3. What are its nutritional benefits? a mixture and coagulated (in whole or in part). The 4. What about its proteins? coagulation of milk gives a solid phase (curds) and a 5. Its vitamins? liquid phase (whey). Coagulum – which will turn into 6. Its calcium? cheese – may be strained, molded, salted, fermented 7. Its other minerals and trace elements? and/or ripened for more or less time. Minimum dry matter 8. Its lipids? content of a cheese of 23 g/100 g**. 9. Its other constituents? In France alone, there are 1000 different cheeses clas- sified by types. Cheese & Health What is the connection between cheese and: It is worth noting that speciality cheeses, in the strict 10. Bone health and oral health? sense of the term do not fall under the “cheeses” 11. Cardiovascular diseases? category. They can contain raw materials from milk, 12. Intolerances and allergies? other than those used to make cheeses (such as serum 13. Other pathologies? proteins in high concentrations for example). Their mini- 14. What to conclude? mum dry matter content is 20 g/100 g of end product for ripened specialty cheeses and 10 g/100 g for unrip- Where does cheese stand in the ened cheeses. -
Effects of Blood Withdrawal and Angiotensin Lion Prolactin Release in the Tilapia, Oreochromis Mossambicus
Effects of Blood Withdrawal and Angiotensin lIon Prolactin Release in the Tilapia, Oreochromis mossambicus A THESIS SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN ANIMAL SCIENCE MAY 2005 By Thomas A. Leedom Thesis Committee: E. Gordon Grau, Chairman Tetsuya Hirano Douglas Vincent I dedicate this thesis to my family for their tireless support, encouragement, and occasional naggmg. 111 ACKNOWLEDGEMENTS I thank faculty staffand students ofthe fish endocrinology laboratory at the Hawaii Institute ofMarine Biology, especially Larry Riley and Andre Seale for their contributions and assistance throughout the production ofthis thesis. I would like to thank Dr. Hal Richman and Professor Milt Stetson for their valuable advice and encouragement which led to the maturation ofthis thesis work as well as my personal professional development. Finally, special gratitude goes out to Professor Tetsuya Hirano and my advisor, Professor E. Gordon Grau for teaching me the art ofscience, for their encouragement, and for their assistance in guiding me through the countless hurdles ofmy thesis research. I further thank Gordon and Tetsuya for allowing me to realize my potential and for the opportunity to have worked and learned under their guidance. IV TABLE OF CONTENTS Acknowledgments '" .iv List ofTables vi List ofFigures vii List ofAbbreviations viii Preface .ix Chapter 1: 1 General Introduction 2 Chapter II: Effect ofBlood Withdrawal and Angiotensin II on Prolactin Release in the Tilapia, Oreochromis mossambicus 19 Abstract. '" "" 20 Introduction 22 Materials and Methods 24 Results 28 Discussion 41 Chapter III 51 General Conclusions 52 References 54 v LIST OF TABLES 1. -
Nutritional Evaluation of Maize Plant Fodder Grown in Spring and Autumn Season in Punjab, Pakistan
Journal of Bioresource Management Volume 7 Issue 1 Article 9 Nutritional Evaluation of Maize Plant Fodder Grown in Spring and Autumn Season in Punjab, Pakistan Nafeesa Qudsia Hanif AgriPak Labs, Rawalpindi, Pakistan, [email protected] Nadeem Akhtar Institute of Natural and Management Sciences (INAM), Rawalpindi Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Agriculture Commons, and the Biology Commons Recommended Citation Hanif, N. Q., & Akhtar, N. (2020). Nutritional Evaluation of Maize Plant Fodder Grown in Spring and Autumn Season in Punjab, Pakistan, Journal of Bioresource Management, 7 (1). DOI: https://doi.org/10.35691/JBM.0202.0123 ISSN: 2309-3854 online This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. Nutritional Evaluation of Maize Plant Fodder Grown in Spring and Autumn Season in Punjab, Pakistan © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited. Journal of Bioresource Management does not grant you any other rights in relation to this website or the material on this website. In other words, all other rights are reserved. For the avoidance of doubt, you must not adapt, edit, change, transform, publish, republish, distribute, redistribute, broadcast, rebroadcast or show or play in public this website or the material on this website (in any form or media) without appropriately and conspicuously citing the original work and source or Journal of Bioresource Management’s prior written permission. -
Guidelines for Ecological Risk Assessment of Marine Fish Aquaculture
NOAA Technical Memorandum NMFS-NWFSC-71 Guidelines for Ecological Risk Assessment of Marine Fish Aquaculture December 2005 U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service NOAA Technical Memorandum NMFS Series The Northwest Fisheries Science Center of the National Marine Fisheries Service, NOAA, uses the NOAA Technical Memorandum NMFS series to issue infor- mal scientific and technical publications when com- plete formal review and editorial processing are not appropriate or feasible due to time constraints. Docu- ments published in this series may be referenced in the scientific and technical literature. The NMFS-NWFSC Technical Memorandum series of the Northwest Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest & Alaska Fisheries Science Center, which has since been split into the Northwest Fisheries Science Center and the Alaska Fisheries Science Center. The NMFS-AFSC Technical Memorandum series is now being used by the Alaska Fisheries Science Center. Reference throughout this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. This document should be cited as follows: Nash, C.E., P.R. Burbridge, and J.K. Volkman (editors). 2005. Guidelines for ecological risk assessment of marine fish aquaculture. U.S. Dept. Commer., NOAA Tech. Memo. NMFS-NWFSC-71, 90 p. NOAA Technical Memorandum NMFS-NWFSC-71 Guidelines for Ecological Risk Assessment of Marine Fish Aquaculture Prepared at the NOAA Fisheries Service Manchester Research Station International Workshop April 11-14, 2005 Edited by Colin E. Nash, Peter R. Burbridge1, and John K. Volkman2 From technical contributions by the editors and Kenneth M. -
Cont. Fisheries and Aquatic Science
Environmental friendly aquaculture key to sustainable fish farming development in Nigeria Item Type article Authors Akinrotimi, O.A.; Abu, O.M.G.; Aranyo, A.A. Download date 24/09/2021 16:25:27 Link to Item http://hdl.handle.net/1834/24296 Continental J. Fisheries and Aquatic Science 5 (2): 17 - 31, 2011 ISSN: 2141 - 4181 © Wilolud Journals, 2011 http://www.wiloludjournal.com ` Printed in Nigeria ENVIRONMENTAL FRIENDLY AQUACULTURE KEY TO SUSTAINABLE FISH FARMING DEVELOPMENT IN NIGERIA 1 Akinrotimi, O.A.; 2 Abu, O.M.G; 3Aranyo, A.A. 1, 3, African Regional Aquaculture Centre/Nigeria Institute for Oceanography and Marine Research, P.M.B. 5122, Port Harcourt, Rivers State. 2Department of Animal Science and Fisheries, Faculty of Agriculture, University of Port Harcourt, Port Harcourt, Rivers State, Nigeria. ABSTRACT Aquaculture production in Nigeria has increased tremendously in recent times; along with this increase is the rise in the level of waste outputs from aquaculture practices. The discharge of waste from aquaculture operations on continuous basis leads to eutrophication and destruction of natural ecosystem in receiving water body. Controlled wastes production strategies is necessary to maintain sustainable aquaculture growth into the future, as long-term sustainability of fish culture systems depends on their ability to reduce their waste outputs. The release of solid wastes is mainly a function of the digestibility of various dietary components while the release of dissolved wastes is mainly a function of the metabolism of nutrients by the fish. This paper critically reviews the impacts of aquaculture wastes on the environment and the strategies to mitigate the effect of these impacts. -
Executive Summary
Executive Summary Rose Canyon FISHERIES EXECUTIVE SUMMARY Rose Canyon Fisheries, Inc. (RCF) is a partnership between Hubbs-SeaWorld Research Institute (HSWRI), a 501(c)(3) research organization, and Cuna del Mar (CdM), a private equity fund dedicated to developing sustainable aquaculture. RCF will permit, establish and operate a commercial-scale fish farm off the San Diego, CA coast. This will be the first operation of its kind in federal waters of the United States. By combining the scientific and environmental expertise of HSWRI with the mission focus and direct open ocean aquaculture experience of Cuna del Mar, RCF will help pioneer environmentally and economically sustainable methods for providing healthy seafood to meet our Nation's growing demand for healthy seafood. CdM and HSWRI through RCF share a vision to feed future generations in harmony with the ocean. The RCF collaboration is dedicated to fulfilling a major void in our Nation's seafood industry- a reliable, sustainable source of healthy, premium fish, grown with care in a clean, natural and regulated environment. RCF is committed to improving the standards of the aquaculture industry through safe and sustainable innovation. As RCF continues to innovate and improve culture protocols, it hopes to provide locally produced seafood thereby greatly reducing the energy requirements of transporting fish to the US market, while creating and demonstrating a sustainable and domestic solution. Over the past five decades, HSWRI has provided global leadership in marine conservation research, including studies in marine aquaculture. HSWRI operates two marine fish hatcheries in southern California and several cage sites in California. HSWRI has expertise in fish nutrition, reproduction, health, genetics, and physiology, as well as site selection and permitting, systems engineering, and environmental monitoring.