Biodiversity, Definition Of

Total Page:16

File Type:pdf, Size:1020Kb

Biodiversity, Definition Of BIODIVERSITY, DEFINITION OF Ian R. Swingland The Durrell Institute of Conservation and Ecology I. What Is Biodiversity? that is associated with a given habitat or ecosystem II. Definition of Biodiversity and that may increase awareness of the need for III. Genetic Diversity conservation action. IV. Species Diversity genetic diversity Genetic variety found within or V. Ecosystem Diversity among species; this diversity allows the population VI. Biodiversity: Meaning and Measurement or species to adapt and evolve in response to chang- VII. Biodiversity: Changes in Time and Space ing environments and natural selection pressures. VIII. Loss of Biodiversity and Causes keystone species Species that has a disproportionately IX. Maintaining Biodiversity greater effect on the ecological processes of an eco- X. Contextual Variations of the Definition system, and whose loss would result in significantly XI. Implications of Variations in the Definition greater consequences for other species and biotic in- teractions. organismal (species) diversity Number and relative GLOSSARY abundance of all species living in a given area. species richness Absolute number of species living in biodiversity/biological diversity Species, genetic, and a given area (also called alpha diversity), giving equal ecosystem diversity in an area, sometimes including weight to all resident species. associated abiotic components such as landscape fea- use values Values that are obtained by using a natural tures, drainage systems, and climate. resource, such as timber, fuelwood, water, and land- diversity indices Measures that describe the different scapes. These include direct, indirect, option, and components of biodiversity, such as species richness nonuse values. (alpha diversity), beta and gamma diversity, ende- micity, and higher taxon richness. ecosystem diversity Diversity of habitats, ecosystems, and the accompanying ecological processes that THE WORD BIODIVERSITY IS A MODERN CON- maintain them. TRACTION OF THE TERM BIOLOGICAL DIVERSITY. endemicity State of a species or other taxon being re- Diversity refers to the range of variation or variety or stricted to a given area, such as a specific habitat, differences among some set of attributes; biological di- region, or continent. versity thus refers to variety within the living world or flagship species Charismatic or well-known species among and between living organisms. Encyclopedia of Biodiversity, Volume 1 Copyright 2001 by Academic Press. All rights of reproduction in any form reserved. 377 378 BIODIVERSITY, DEFINITION OF I. WHAT IS BIODIVERSITY? authors), which has been defined as the number of species in an area and their relative abundance (Pie- The term ‘‘biodiversity’’ was first used in its long version lou, 1977). (biological diversity) by Lovejoy (1980) and is most DeLong (1996) offered a more comprehensive defi- commonly used to describe the number of species. Rec- nition: ognizing that conventional methods of determining, and separating, species were inadequate, others elabo- Biodiversity is an attribute of an area and spe- rated the definition by including the variety and vari- cifically refers to the variety within and among ability of living organisms. living organisms, assemblages of living organisms, These reduced and simple definitions, which em- biotic communities, and biotic processes, whether brace many different parameters, have been much elab- naturally occurring or modified by humans. Bio- orated and debated in the last three decades (see Section diversity can be measured in terms of genetic II); upon this definition hangs the outcome of important diversity and the identity and number of different scientific considerations, international agreements, types of species, assemblages of species, biotic conventions, conservation initiatives, political debates, communities, and biotic processes, and the and socio-economic issues. Indeed, while the word ‘‘bio- amount (e.g., abundance, biomass, cover, rate) diversity’’ has become synonymous with life on earth, and structure of each. It can be observed and the term is commonly used in the fields of politics measured at any spatial scale ranging from mi- and environmental technology in addition to various crosites and habitat patches to the entire bio- scientific disciplines (Ghilarov, 1996). The U.S. Strategy sphere. Conference on Biological Diversity (1981) and the Na- tional Forum on Biodiversity (1986) in Washington, This definition allows for modification according to D.C., were the critical debates in crafting a definition, the context in which it is used. and it was the proceedings from the latter, edited by Various authors have proposed specific and detailed E. O. Wilson, that ‘‘launched the word ‘biodiversity’ elaborations of this definition. Gaston and Spicer (1998) into general use’’ (Harper and Hawksworth, 1994). proposed a three-fold definition of ‘‘biodiversity’’— In measuring biodiversity, it is necessary to decon- ecological diversity, genetic diversity, and organismal struct some of the separate elements of which biodiver- diversity—while others conjoined the genetic and or- sity is composed. It has become widespread practice ganismal components, leaving genetic diversity and to define biodiversity in terms of genes, species, and ecological diversity as the principal components. These ecosystems, for example, ‘‘the abundance, variety, and latter two elements can be linked to the two major genetic constitution of native animals and plants’’ (Dod- ‘‘practical’’ value systems of direct use/genetics and indi- son et al., 1998). Biodiversity also encompasses all five rect use/ecological described by Gaston and Spicer living kingdoms, including fungi. However, biodiver- (1998). Other workers have emphasized a hierarchical sity does not have a universally agreed on definition approach or hierarchies of life systems. and it is often re-defined on each occasion according In contrast, some argue that biodiversity, according to the context and purpose of the author. to the definition of biological, does not include the diversity of abiotic components and processes, and that it is inaccurate to identify ecological processes, ecosys- tems, ecological complexes, and landscapes as compo- II. DEFINITION OF BIODIVERSITY nents of biodiversity. The term ecological, as used in the sense of ecological system (ecosystem), encom- ‘‘Biodiversity’’ is a relatively new compound word, but passes both biotic and abiotic components and pro- biological diversity (when referring to the number of cesses. Therefore, ecological diversity is a more appro- species) is not. Over the last decade its definition has priate term for definitions that include the diversity of taken a more reductionist turn. Possibly the simplest ecological processes and ecosystems. However, ecologi- definition for biodiversity, lacking in specificity or con- cal processes, it has been argued, should be included text, is merely the number of species. Yet many have in the definition of biodiversity, the reasoning being argued that biodiversity does not equate to the number that ‘‘although ecological processes are as much abiotic of species in an area. The term for this measure is as biotic, they are crucial to maintaining biodiversity.’’ species richness (Fiedler and Jain, 1992), which is only Similarly, a U.S. Bureau of Land Management advisory one component of biodiversity. Biodiversity is also more group included ecological processes in their definition than species diversity (simply called diversity by some of biodiversity in response to criticism that the Office BIODIVERSITY, DEFINITION OF 379 of Technology Assessment’s (1987) definition did not full scope of what the term means, not just what can consider ecosystem form and function. Other writers be measured and managed. In contrast, monitoring or point out that even though ecological processes are management objectives must be attainable to be effec- often cited as being crucial to maintaining biodiversity tive. Recognizing the distinction between a definition (Reid and Miller, 1989; Noss and Cooperrider, 1994; and management objectives should reduce the confu- Samson and Knopf, 1994), this does not warrant the sion between the meaning of biodiversity and the objec- inclusion of ecological processes into the meaning of tives for achieving biodiversity goals. biodiversity. For example, Reid and Miller (1989) and Biodiversity is a broad totality and often embraces Agarwal (1992) distinguished between biodiversity and elements beyond species diversity or numbers. For ex- the processes and ecological diversity that maintain it. ample, a major debate in biological sciences over many Nevertheless, the jargon word ‘‘biodiversity’’ is, by its decades has been that of pattern versus process, espe- very origin, fundamentally indefinable, being a populist cially in systematics and evolutionary studies. Molecu- word invented for convenience. Its invention has had lar biology and systematics have enabled ecologists to beneficial effects by fuelling research projects, mainly see that inferred history is important in framing appro- in ecology and systematics, and scientists have been priate questions, and this understanding has precipi- drawn into contributing to the debate by the need to tated a real integration of these twin hierarchies— show that biodiversity is useful to humans and neces- pattern (e.g., diversity) and process (e.g., evolution). sary for the proper functioning of ecosystems. Conser- Fundamental divisions remain, such as ‘‘straight’’ parsi- vation (i.e., management)
Recommended publications
  • Gamma Diversity: Derived from and a Determinant of Alpha Diversity and Beta Diversity
    Acta Zoologica Mexicana (n.s.) 90: 27-76 (2003) GAMMA DIVERSITY: DERIVED FROM AND A DETERMINANT OF ALPHA DIVERSITY AND BETA DIVERSITY. AN ANALYSIS OF THREE TROPICAL LANDSCAPES Lucrecia ARELLANO y Gonzalo HALFFTER Instituto de Ecología, A.C. Departamento de Ecología y Comportamiento Animal Apartado Postal 63, 91000 Xalapa, Veracruz, MÉXICO E-mail: [email protected] [email protected] RESUMEN Utilizando tres grupos taxonómicos en este trabajo examinamos como las diversidades alfa y beta influyen en la riqueza de especies de un paisaje (diversidad gamma), así como el fenómeno recíproco. Es decir, como la riqueza en especies de un paisaje (un fenómeno histórico-biogeográfico) contribuye a determinar los valores de la diversidad alfa por sitio, por comunidad, la riqueza acumulada de especies por comunidad y la intensidad del recambio entre comunidades. Los grupos utilizados son dos subfamilias de Scarabaeoidea: Scarabaeinae y Geotrupinae, y la familia Silphidae. En todos los análisis los tres grupos taxonómicos son manejados como un grupo indicador: los escarabajos copronecrófagos. De una manera lateral se incluye información sobre la subfamilia Aphodiinae (Scarabaeoidea), escarabajos coprófagos no incorporados al manejo del grupo indicador. Los paisajes estudiados son tres (tropical, de transición y de montaña), situados en un gradiente altitudinal en la parte central del estado de Veracruz. Partimos de las premisas siguientes. La diversidad alfa de un grupo indicador refleja el número de especies que utiliza un mismo ambiente o recurso en un lugar o comunidad. La diversidad beta espacial se relaciona con la respuesta de los organismos a la heterogeneidad del espacio. La diversidad gamma depende fundamentalmente de los procesos histórico-geográficos que actúan a nivel de mesoescala y está también condicionada por las diversidades alfa y beta.
    [Show full text]
  • Patterns of Alpha, Beta and Gamma Diversity of the Herpetofauna in Mexico’S Pacific Lowlands and Adjacent Interior Valleys A
    Animal Biodiversity and Conservation 30.2 (2007) 169 Patterns of alpha, beta and gamma diversity of the herpetofauna in Mexico’s Pacific lowlands and adjacent interior valleys A. García, H. Solano–Rodríguez & O. Flores–Villela García, A., Solano–Rodríguez, H. & Flores–Villela, O., 2007. Patterns of alpha, beta and gamma diversity of the herpetofauna in Mexico's Pacific lowlands and adjacent interior valleys. Animal Biodiversity and Conservation, 30.2: 169–177. Abstract Patterns of alpha, beta and gamma diversity of the herpetofauna in Mexico’s Pacific lowlands and adjacent interior valleys.— The latitudinal distribution patterns of alpha, beta and gamma diversity of reptiles, amphibians and herpetofauna were analyzed using individual binary models of potential distribution for 301 species predicted by ecological modelling for a grid of 9,932 quadrants of ~25 km2 each. We arranged quadrants in 312 latitudinal bands in which alpha, beta and gamma values were determined. Latitudinal trends of all scales of diversity were similar in all groups. Alpha and gamma responded inversely to latitude whereas beta showed a high latitudinal fluctuation due to the high number of endemic species. Alpha and gamma showed a strong correlation in all groups. Beta diversity is an important component of the herpetofauna distribution patterns as a continuous source of species diversity throughout the region. Key words: Latitudinal distribution pattern, Diversity scales, Herpetofauna, Western Mexico. Resumen Patrones de diversidad alfa, beta y gama de la herpetofauna de las tierras bajas y valles adyacentes del Pacífico de México.— Se analizaron los patrones de distribución latitudinales de la diversidad alfa, beta y gama de los reptiles, anfibios y herpetofauna utilizando modelos binarios individuales de distribución potencial de 301 especies predichas mediante un modelo ecológico para una cuadrícula de 9.932 cuadrantes de aproximadamente 25 km2 cada uno.
    [Show full text]
  • Use of Alpha, Beta, and Gamma Diversity Measures to Characterize Seed Dispersal by Animals
    The University of Chicago 8VHRI$OSKD%HWDDQG*DPPD'LYHUVLW\0HDVXUHVWR&KDUDFWHUL]H6HHG'LVSHUVDOE\$QLPDOV $XWKRU V 'RXJODV*6FRILHOG3HWHU(6PRXVH-RUGDQ.DUXELDQDQG9LFWRULD/6RUN 6RXUFH7KH$PHULFDQ1DWXUDOLVW9RO1R 'HFHPEHU SS 3XEOLVKHGE\The University of Chicago PressIRUThe American Society of Naturalists 6WDEOH85/http://www.jstor.org/stable/10.1086/668202 . $FFHVVHG Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded from 128.97.244.148 on Mon, 5 Aug 2013 10:15:52 AM All use subject to JSTOR Terms and Conditions vol. 180, no. 6 the american naturalist december 2012 Use of Alpha, Beta, and Gamma Diversity Measures to Characterize Seed Dispersal by Animals Douglas G. Scofield,1,2 Peter E. Smouse,3 Jordan Karubian,4 and Victoria L. Sork1,5,* 1. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095; 2. Umea˚ Plant Science Centre, Department of Plant Physiology, Umea˚ University, 901 87 Umea˚, Sweden; 3. Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901; 4.
    [Show full text]
  • Ecology: Biodiversity and Natural Resources Part 1
    CK-12 FOUNDATION Ecology: Biodiversity and Natural Resources Part 1 Akre CK-12 Foundation is a non-profit organization with a mission to reduce the cost of textbook materials for the K-12 market both in the U.S. and worldwide. Using an open-content, web-based collaborative model termed the “FlexBook,” CK-12 intends to pioneer the generation and distribution of high-quality educational content that will serve both as core text as well as provide an adaptive environment for learning. Copyright © 2010 CK-12 Foundation, www.ck12.org Except as otherwise noted, all CK-12 Content (including CK-12 Curriculum Material) is made available to Users in accordance with the Creative Commons Attribution/Non-Commercial/Share Alike 3.0 Un- ported (CC-by-NC-SA) License (http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended and updated by Creative Commons from time to time (the “CC License”), which is incorporated herein by this reference. Specific details can be found at http://about.ck12.org/terms. Printed: October 11, 2010 Author Barbara Akre Contributor Jean Battinieri i www.ck12.org Contents 1 Ecology: Biodiversity and Natural Resources Part 1 1 1.1 Lesson 18.1: The Biodiversity Crisis ............................... 1 1.2 Lesson 18.2: Natural Resources .................................. 32 2 Ecology: Biodiversity and Natural Resources Part I 49 2.1 Chapter 18: Ecology and Human Actions ............................ 49 2.2 Lesson 18.1: The Biodiversity Crisis ............................... 49 2.3 Lesson 18.2: Natural Resources .................................. 53 www.ck12.org ii Chapter 1 Ecology: Biodiversity and Natural Resources Part 1 1.1 Lesson 18.1: The Biodiversity Crisis Lesson Objectives • Compare humans to other species in terms of resource needs and use, and ecosystem service benefits and effects.
    [Show full text]
  • Scale Dependence of the Beta Diversity-Scale Relationship
    COMMUNITY ECOLOGY 16(1): 39-47, 2015 1585-8553/$ © AKADÉMIAI KIADÓ, BUDAPEST DOI: 10.1556/168.2015.16.1.5 Scale dependence of the beta diversity-scale relationship 1 1,4P 2 3 1 Y. ZhangP , K. MaP , M. AnandP , W. Ye and B. FuP 1 State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China 2 Global Ecological Change Laboratory, School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada 3 Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China 4 Corresponding author. Tel/Fax: 86-10-62849104, Email: [email protected] Keywords: Alpha diversity, Diversity partitioning, Gamma diversity, Power law, Scaling. Abstract: Alpha, beta, and gamma diversity are three fundamental biodiversity components in ecology, but most studies focus only on the scale issues of the alpha or gamma diversity component. The beta diversity component, which incorporates both alpha and gamma diversity components, is ideal for studying scale issues of diversity. We explore the scale dependency of beta diversity and scale relationship, both theoretically as well as by application to actual data sets. Our results showed that a power law exists for beta diversity-area (spatial grain or spatial extent) relationships, and that the parameters of the power law are dependent on the grain and extent for which the data are defined. Coarse grain size generates a steeper slope (scaling exponent z) with lower values of intercept (c), while a larger extent results in a reverse trend in both parameters.
    [Show full text]
  • A Biosphere Reserve? a Biosphere Reserve (BR) Is an International Designation by UNESCO in the Man and Biosphere (MAB) Program
    Appendix 1. The ES concept in the UNESCO Man and Biosphere (MAB) program What is a Biosphere Reserve? A biosphere reserve (BR) is an international designation by UNESCO in the Man And Biosphere (MAB) program. A BR includes one or several protected areas and their surrounding landscape to combine both biodiversity conservation and sustainable/wise use of natural resources. A BR is a place where local communities are involved in management through dialogue and concerted multi-stakeholder approaches. Through monitoring, research, education, and training, BRs aim to develop and demonstrate sound sustainable development practices and policies. In 2017, there are 669 BRs in 120 countries all over the world, connected through international, regional, and national networks promoting knowledge sharing and exchanges of experiences. How is the ES concept operationalized in Biosphere Reserves? Since 2013, the ES concept has been integrated in the requisite forms for BR creation or revision. Coordinators are requested to address the following: “- 12.1 If possible, identify the ecosystem services provided by each ecosystem of the biosphere reserve and the beneficiaries of these services. - 12.2 Specify whether indicators of ecosystem services are used to evaluate the three functions (conservation, development, and logistic) of biosphere reserves. If yes, which ones and give details. - 12.3 Describe biodiversity involved in the provision of ecosystems services in the biosphere reserve (e.g. species or groups of species involved). - 12.4 Specify whether any ecosystem services assessment has been done for the proposed biosphere reserve”. This requires inventory approaches, with objective ES assessments, rather than deliberations among people about ES management.
    [Show full text]
  • Biosphere Introduction the Biosphere in Education
    10/5/2016 Biosphere ­ Encyclopedia of Earth AUTHOR LOGIN EOE PAGES BROWSE THE EOE Home Article Tools: Titles (A­Z) About the EoE Authors Editorial Board Biosphere Topics International Advisory Board Topic Editors FAQs Lead Author: Erle Ellis (other articles) Content Partners EoE for Educators Article Topic: Geography Content Sources Contribute to the EoE This article has been reviewed and approved by the following Topic Editor: Leszek A. eBooks Bledzki (other articles) Support the EoE Classics Last Updated: January 8, 2009 Contact the EoE Collections Find Us Here RSS Reviews Table of Contents Awards and Honors Introduction 1 Introduction The biosphere is the biological component of earth systems, which 1.1 History of the Biosphere also include the lithosphere, hydrosphere, atmosphere and other Concept 2 The Biosphere in Education "spheres" (e.g. cryosphere, anthrosphere, etc.). The biosphere 3 Biosphere Research includes all living organisms on earth, together with the dead organic 4 The Future of the Biosphere matter produced by them. 5 More About the Biosphere 6 Further Reading The biosphere concept is common to many scientific disciplines including astronomy, SOLUTIONS JOURNAL geophysics, geology, hydrology, biogeography and evolution, and is a core concept in ecology, earth science and physical geography. A key component of earth systems, the biosphere interacts with and exchanges matter and energy with the other spheres, helping to drive the global biogeochemical cycling of carbon, nitrogen, phosphorus, sulfur and other elements. From an ecological point of view, the biosphere is the "global ecosystem", comprising the totality of biodiversity on earth and performing all manner of biological functions, including photosynthesis, respiration, decomposition, nitrogen fixation and denitrification.
    [Show full text]
  • Diversity Partitioning in Phanerozoic Benthic Marine Communities
    Diversity partitioning in Phanerozoic benthic marine communities Richard Hofmanna,1, Melanie Tietjea, and Martin Aberhana aMuseum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, 10115 Berlin, Germany Edited by Peter J. Wagner, University of Nebraska-Lincoln, Lincoln, NE, and accepted by Editorial Board Member Neil H. Shubin November 19, 2018 (received for review August 24, 2018) Biotic interactions such as competition, predation, and niche construc- formations harbor a pool of species that were principally able to tion are fundamental drivers of biodiversity at the local scale, yet their interact at the local and regional scale and thus can be regarded as long-term effect during earth history remains controversial. To test their the constituents of metacommunities in the geological record. role and explore potential limits to biodiversity, we determine within- Beta diversity among collections from the same formation is habitat (alpha), between-habitat (beta), and overall (gamma) diversity expected for two reasons, even though many benthic marine in- of benthic marine invertebrates for Phanerozoic geological formations. vertebrates have planktonic larval stages and thus high dispersal We show that an increase in gamma diversity is consistently generated capabilities. First, the distribution of species within a meta- by an increase in alpha diversity throughout the Phanerozoic. Beta community is predicted to be patchy (17). Even if the habitats diversity drives gamma diversity only at early stages of diversifica- represented by a formation were homogeneous, local differences tion but remains stationary once a certain gamma level is reached. This mode is prevalent during early- to mid-Paleozoic periods, in species distributions would result in compositional differences whereas coupling of beta and gamma diversity becomes increas- among sites.
    [Show full text]
  • Biological Resources and Biodiversity
    Environment at a Glance Indicators – Biological resources and biodiversity Environment at a Glance Indicators Biological resources and biodiversity Context Issues at stake Biodiversity and ecosystem services are integral elements of natural capital. Biodiversity, which encompasses species, ecosystems, and genetic diversity, provides invaluable ecosystem services (including raw materials for many sectors of the economy) and plays an essential role in maintaining life-support systems and quality of life. The loss of biodiversity is a key concern nationally and globally. Pressures on biodiversity include changes in land cover and sea use, over-exploitation of natural resources, pollution, climate change and invasive alien species. Policy challenges The main challenge is to ensure effective conservation and sustainable use of biodiversity. This implies strengthening the degree of protection of species, habitats and terrestrial, marine and other aquatic ecosystems. Strategies include eliminating illegal exploitation and trade of endangered species, putting in place ambitious policies (covering regulatory approaches, economic instruments, and other information and voluntary approaches); and integrating biodiversity concerns into economic and sectoral policies. Biodiversity protection also requires reforming and removing environmentally harmful subsidies and strengthening the role of biodiversity-relevant taxes, fees and charges, as well as other economic instruments such as payments for ecosystem services, biodiversity offsets and tradable permits
    [Show full text]
  • Protected Areas and Biodiversity Conservation I: Reserve Planning and Design
    Network of Conservation Educators & Practitioners Protected Areas and Biodiversity Conservation I: Reserve Planning and Design Author(s): Eugenia Naro-Maciel, Eleanor J. Stering, and Madhu Rao Source: Lessons in Conservation, Vol. 2, pp. 19-49 Published by: Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History Stable URL: ncep.amnh.org/linc/ This article is featured in Lessons in Conservation, the official journal of the Network of Conservation Educators and Practitioners (NCEP). NCEP is a collaborative project of the American Museum of Natural History’s Center for Biodiversity and Conservation (CBC) and a number of institutions and individuals around the world. Lessons in Conservation is designed to introduce NCEP teaching and learning resources (or “modules”) to a broad audience. NCEP modules are designed for undergraduate and professional level education. These modules—and many more on a variety of conservation topics—are available for free download at our website, ncep.amnh.org. To learn more about NCEP, visit our website: ncep.amnh.org. All reproduction or distribution must provide full citation of the original work and provide a copyright notice as follows: “Copyright 2008, by the authors of the material and the Center for Biodiversity and Conservation of the American Museum of Natural History. All rights reserved.” Illustrations obtained from the American Museum of Natural History’s library: images.library.amnh.org/digital/ SYNTHESIS 19 Protected Areas and Biodiversity Conservation I: Reserve Planning and Design Eugenia Naro-Maciel,* Eleanor J. Stering, † and Madhu Rao ‡ * The American Museum of Natural History, New York, NY, U.S.A., email [email protected] † The American Museum of Natural History, New York, NY, U.S.A., email [email protected] ‡ Wildlife Conservation Society, New York, NY, U.S.A., email [email protected] Source: K.
    [Show full text]
  • The Biodiversity–Ecosystem Function Debate in Ecology
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Handbook of The Philosophy of Science: Philosophy of Ecology. The copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research, and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From deLaplante Kevin, and Picasso Valentin, The Biodiversity-Ecosystem Function Debate in Ecology. In: Dov M. Gabbay, Paul Thagard and John Woods, editors, Handbook of The Philosophy of Science: Philosophy of Ecology. San Diego: North Holland, 2011, pp. 169-200. ISBN: 978-0-444-51673-2 © Copyright 2011 Elsevier B. V. North Holland. Author's personal copy THE BIODIVERSITY–ECOSYSTEM FUNCTION DEBATE IN ECOLOGY Kevin deLaplante and Valentin Picasso 1 INTRODUCTION Population/community ecology and ecosystem ecology present very different per- spectives on ecological phenomena. Over the course of the history of ecology there has been relatively little interaction between the two fields at a theoretical level, despite general acknowledgment that many ecosystem processes are both influ- enced by and constrain population- and community-level phenomena.
    [Show full text]
  • Climate Change and Biodiversity
    CBD 1 What is Biodiversity? Biodiversity = Biological + Diversity The diversity of living organisms •Within species •Between species •Within / between ecosystems CBD Well to begin, I think it is important that we define what Biodiversity is. Biodiversity is actually a shortened way of saying Biological Diversity. What do you think this means? Well, biological = biology, which means living organisms. Diversity is the variety, or the many differences among things. So biological diversity would mean the variety of living things! This diversity, or these differences between living things, happens at different levels. First we see this variety within a species. For example, what are these pictures of? That’s right, butterflies….but are they all the same? What’s different about them? Size, shape of the wings, color, habitats, life cycles etc. (Can then give another example: Look around the room at your classmates? What do you see? I see a whole bunch of people, one species, but everyone looks just a little bit different. What are the differences you see? Hair color, eye color, shape, height, weight etc.) Then we have variety, or diversity between species. That’s a really easy one….how many mammals can you guys think of? (children will start naming all sorts of animals) That’s right, see, just within the mammals you can see that there are all sorts of different species. Then the last type of diversity we see is within ecosystems? Does anyone here know what an ecosystem is? An ecosystem is a specific area where we see the biotic, the living parts, and the abiotic, nonliving parts of the environment interact with and depend on each other.
    [Show full text]