The Polarquest2018 Arctic Expedition a Geographical Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Strategia Del Governo Italiano Per L'artico
ITALY IN THE ARCTIC TOWARDS AN ITALIAN STRATEGY FOR THE ARCTIC NATIONAL GUIDELINES MINISTRY OF FOREIGN AFFAIRS AND INTERNATIONAL COOPERATION 2015 1 ITALY IN THE ARCTIC 1. ITALY IN THE ARCTIC: MORE THAN A CENTURY OF HISTORY The history of the Italian presence in the Arctic dates back to 1899, when Luigi Amedeo di Savoia, Duke of the Abruzzi, sailed from Archangelsk with his ship (christened Stella Polare) to use the Franz Joseph Land as a stepping stone. The plan was to reach the North Pole on sleds pulled by dogs. His expedition missed its target, though it reached previously unattained latitudes. In 1926 Umberto Nobile managed to cross for the first time the Arctic Sea from Europe to Alaska, taking off from Rome together with Roald Amundsen (Norway) and Lincoln Ellsworth (USA) on the Norge airship (designed and piloted by Nobile). They were the first to reach the North Pole, where they dropped the three national flags. 1 Two years later Nobile attempted a new feat on a new airship, called Italia. Operating from Kings Bay (Ny-Ålesund), Italia flew four times over the Pole, surveying unexplored areas for scientific purposes. On its way back, the airship crashed on the ice pack north of the Svalbard Islands and lost nearly half of its crew. 2 The accident was linked to adverse weather, including a high wind blowing from the northern side of the Svalbard Islands to the Franz Joseph Land: this wind stream, previously unknown, was nicknamed Italia, after the expedition that discovered it. 4 Nobile’s expeditions may be considered as the first Italian scientific missions in the Arctic region. -
Surface Magnetic Anomaly Study on the Eastern Part of the Forlandsundet Graben
Surface magnetic anomaly study on the eastern part of the Forlandsundet Graben A. A. KRASIL'ScIKOV*, A. P. KUBANSKIJ'* and Y. OHTA Krasil'Stikov, A. A,, Kubanskij, A. P. & Ohta, Y. 1995: Surface magnetic anomaly study on the eastern part of the Forlandsundet Graben. Polar Research 14(1), 55-68. A surface magnetic survey was carried out by use of a proton magnetometer over wide strandflats along the eastern coast of Forlandsundet, western Spitsbergen, to decipher subsurface structures and lithologies. Distinctive linear high-anomaly segments and zones were recognised on the magnetic anomaly maps. These zones coincide well with the eastern marginal fault of the Tertiary Forlandsundet Graben and associated faults north of St. Jonsfjorden, while they reflect bedrock lithologies in the south. The high-anomaly segments, which constitute the zones, are locally aligned in a left-stepping. en echelon arrangement within the zones, indicating a dextral transpressional stress regime on the eastern marginal fault of the graben during a certain time. Sudden termination and bends of the segments define a later transverse fault system. A. A. Kradftikou and A. P. Kubanskij, Polar Marine Geological Expedition, ul. Pobeda, 24, 189510 Lomonosou. Russia; Y. Ohta, Norwegian Polar Institute, P.O. Box 5072 Majorstua. N-0301 Oslo, Norway. Introduction Kleinspehn & Teyssier (1992), Gabrielsen et al. (1992) and Lepvrier (1992), and various esti- Pronounced coastal plains have developed on the mations of the subsurface geology have been pro- eastern coast of Forlandsundet, 1.5-6 km in posed. width, extending N-S for approximately 75 km The areas have complex structures resulting from Engelskbukta to the northern side of Isfjor- from Caledonian thrusting which was overprinted den (Fig. -
Handbok07.Pdf
- . - - - . -. � ..;/, AGE MILL.YEAR$ ;YE basalt �- OUATERNARY votcanoes CENOZOIC \....t TERTIARY ·· basalt/// 65 CRETACEOUS -� 145 MESOZOIC JURASSIC " 210 � TRIAS SIC 245 " PERMIAN 290 CARBONIFEROUS /I/ Å 360 \....t DEVONIAN � PALEOZOIC � 410 SILURIAN 440 /I/ ranite � ORDOVICIAN T 510 z CAM BRIAN � w :::;: 570 w UPPER (J) PROTEROZOIC � c( " 1000 Ill /// PRECAMBRIAN MIDDLE AND LOWER PROTEROZOIC I /// 2500 ARCHEAN /(/folding \....tfaulting x metamorphism '- subduction POLARHÅNDBOK NO. 7 AUDUN HJELLE GEOLOGY.OF SVALBARD OSLO 1993 Photographs contributed by the following: Dallmann, Winfried: Figs. 12, 21, 24, 25, 31, 33, 35, 48 Heintz, Natascha: Figs. 15, 59 Hisdal, Vidar: Figs. 40, 42, 47, 49 Hjelle, Audun: Figs. 3, 10, 11, 18 , 23, 28, 29, 30, 32, 36, 43, 45, 46, 50, 51, 52, 53, 54, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 71, 72, 75 Larsen, Geir B.: Fig. 70 Lytskjold, Bjørn: Fig. 38 Nøttvedt, Arvid: Fig. 34 Paleontologisk Museum, Oslo: Figs. 5, 9 Salvigsen, Otto: Figs. 13, 59 Skogen, Erik: Fig. 39 Store Norske Spitsbergen Kulkompani (SNSK): Fig. 26 © Norsk Polarinstitutt, Middelthuns gate 29, 0301 Oslo English translation: Richard Binns Editor of text and illustrations: Annemor Brekke Graphic design: Vidar Grimshei Omslagsfoto: Erik Skogen Graphic production: Grimshei Grafiske, Lørenskog ISBN 82-7666-057-6 Printed September 1993 CONTENTS PREFACE ............................................6 The Kongsfjorden area ....... ..........97 Smeerenburgfjorden - Magdalene- INTRODUCTION ..... .. .... ....... ........ ....6 fjorden - Liefdefjorden................ 109 Woodfjorden - Bockfjorden........ 116 THE GEOLOGICAL EXPLORATION OF SVALBARD .... ........... ....... .......... ..9 NORTHEASTERN SPITSBERGEN AND NORDAUSTLANDET ........... 123 SVALBARD, PART OF THE Ny Friesland and Olav V Land .. .123 NORTHERN POLAR REGION ...... ... 11 Nordaustlandet and the neigh- bouring islands........................... 126 WHA T TOOK PLACE IN SVALBARD - WHEN? .... -
Petroleum, Coal and Research Drilling Onshore Svalbard: a Historical Perspective
NORWEGIAN JOURNAL OF GEOLOGY Vol 99 Nr. 3 https://dx.doi.org/10.17850/njg99-3-1 Petroleum, coal and research drilling onshore Svalbard: a historical perspective Kim Senger1,2, Peter Brugmans3, Sten-Andreas Grundvåg2,4, Malte Jochmann1,5, Arvid Nøttvedt6, Snorre Olaussen1, Asbjørn Skotte7 & Aleksandra Smyrak-Sikora1,8 1Department of Arctic Geology, University Centre in Svalbard, P.O. Box 156, 9171 Longyearbyen, Norway. 2Research Centre for Arctic Petroleum Exploration (ARCEx), University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 3The Norwegian Directorate of Mining with the Commissioner of Mines at Svalbard, P.O. Box 520, 9171 Longyearbyen, Norway. 4Department of Geosciences, University of Tromsø – the Arctic University of Norway, P.O. Box 6050 Langnes, 9037 Tromsø, Norway. 5Store Norske Spitsbergen Kulkompani AS, P.O. Box 613, 9171 Longyearbyen, Norway. 6NORCE Norwegian Research Centre AS, Fantoftvegen 38, 5072 Bergen, Norway. 7Skotte & Co. AS, Hatlevegen 1, 6240 Ørskog, Norway. 8Department of Earth Science, University of Bergen, P.O. Box 7803, 5020 Bergen, Norway. E-mail corresponding author (Kim Senger): [email protected] The beginning of the Norwegian oil industry is often attributed to the first exploration drilling in the North Sea in 1966, the first discovery in 1967 and the discovery of the supergiant Ekofisk field in 1969. However, petroleum exploration already started onshore Svalbard in 1960 with three mapping groups from Caltex and exploration efforts by the Dutch company Bataaffse (Shell) and the Norwegian private company Norsk Polar Navigasjon AS (NPN). NPN was the first company to spud a well at Kvadehuken near Ny-Ålesund in 1961. -
Climate in Svalbard 2100
M-1242 | 2018 Climate in Svalbard 2100 – a knowledge base for climate adaptation NCCS report no. 1/2019 Photo: Ketil Isaksen, MET Norway Editors I.Hanssen-Bauer, E.J.Førland, H.Hisdal, S.Mayer, A.B.Sandø, A.Sorteberg CLIMATE IN SVALBARD 2100 CLIMATE IN SVALBARD 2100 Commissioned by Title: Date Climate in Svalbard 2100 January 2019 – a knowledge base for climate adaptation ISSN nr. Rapport nr. 2387-3027 1/2019 Authors Classification Editors: I.Hanssen-Bauer1,12, E.J.Førland1,12, H.Hisdal2,12, Free S.Mayer3,12,13, A.B.Sandø5,13, A.Sorteberg4,13 Clients Authors: M.Adakudlu3,13, J.Andresen2, J.Bakke4,13, S.Beldring2,12, R.Benestad1, W. Bilt4,13, J.Bogen2, C.Borstad6, Norwegian Environment Agency (Miljødirektoratet) K.Breili9, Ø.Breivik1,4, K.Y.Børsheim5,13, H.H.Christiansen6, A.Dobler1, R.Engeset2, R.Frauenfelder7, S.Gerland10, H.M.Gjelten1, J.Gundersen2, K.Isaksen1,12, C.Jaedicke7, H.Kierulf9, J.Kohler10, H.Li2,12, J.Lutz1,12, K.Melvold2,12, Client’s reference 1,12 4,6 2,12 5,8,13 A.Mezghani , F.Nilsen , I.B.Nilsen , J.E.Ø.Nilsen , http://www.miljodirektoratet.no/M1242 O. Pavlova10, O.Ravndal9, B.Risebrobakken3,13, T.Saloranta2, S.Sandven6,8,13, T.V.Schuler6,11, M.J.R.Simpson9, M.Skogen5,13, L.H.Smedsrud4,6,13, M.Sund2, D. Vikhamar-Schuler1,2,12, S.Westermann11, W.K.Wong2,12 Affiliations: See Acknowledgements! Abstract The Norwegian Centre for Climate Services (NCCS) is collaboration between the Norwegian Meteorological In- This report was commissioned by the Norwegian Environment Agency in order to provide basic information for use stitute, the Norwegian Water Resources and Energy Directorate, Norwegian Research Centre and the Bjerknes in climate change adaptation in Svalbard. -
Terrestrial Inputs Govern Spatial Distribution of Polychlorinated Biphenyls (Pcbs) and Hexachlorobenzene (HCB) in an Arctic Fjord System (Isfjorden, Svalbard)*
Environmental Pollution 281 (2021) 116963 Contents lists available at ScienceDirect Environmental Pollution journal homepage: www.elsevier.com/locate/envpol Terrestrial inputs govern spatial distribution of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) in an Arctic fjord system (Isfjorden, Svalbard)* * Sverre Johansen a, b, c, Amanda Poste a, Ian Allan c, Anita Evenset d, e, Pernilla Carlsson a, a Norwegian Institute for Water Research, Tromsø, Norway b Norwegian University of Life Sciences, Ås, Norway c Norwegian Institute for Water Research, Oslo, Norway d Akvaplan-niva, Tromsø, Norway e UiT, The Arctic University of Norway, Tromsø, Norway article info abstract Article history: Considerable amounts of previously deposited persistent organic pollutants (POPs) are stored in the Received 20 July 2020 Arctic cryosphere. Transport of freshwater and terrestrial material to the Arctic Ocean is increasing due to Received in revised form ongoing climate change and the impact this has on POPs in marine receiving systems is unknown This 11 March 2021 study has investigated how secondary sources of POPs from land influence the occurrence and fate of Accepted 13 March 2021 POPs in an Arctic coastal marine system. Available online 17 March 2021 Passive sampling of water and sampling of riverine suspended particulate matter (SPM) and marine sediments for analysis of polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) was carried out Keywords: Particle transport in rivers and their receiving fjords in Isfjorden system in Svalbard. Riverine SPM had low contaminant < S e Terrestrial runoff concentrations ( level of detection-28 pg/g dw PCB14,16 100 pg/g dw HCB) compared to outer marine Environmental contaminants sediments 630-880 pg/g dw SPCB14,530e770 pg/g dw HCB). -
Seasonal Dynamics of the Marine CO System in Adventfjorden, a West
RESEARCH ARTICLE Seasonal dynamics of the marine CO2 system in Adventfjorden, a west Spitsbergen fjord Ylva Ericson1,2, Melissa Chierici1,3, Eva Falck1,2, Agneta Fransson4, Elizabeth Jones3 & Svein Kristiansen5 1Department of Arctic Geophysics, University Centre in Svalbard, Longyearbyen, Norway; 2Geophysical Institute, University of Bergen, Bergen, Norway; 3Institute of Marine Research, Fram Centre, Tromsø, Norway; 4Norwegian Polar Institute, Fram Centre, Tromsø, Norway; 5Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway Abstract Keywords Marine carbonate system; aragonite; Time series of the marine CO2 system and related parameters at the IsA Sta- net community production; Arctic fjord tion, by Adventfjorden, Svalbard, were investigated between March 2015 biogeochemistry; Svalbard and November 2017. The physical and biogeochemical processes that govern changes in total alkalinity (TA), total dissolved inorganic carbon (DIC) and the Correspondence Ylva Ericson, Department of Arctic saturation state of the calcium carbonate mineral aragonite (ΩAr) were assessed on a monthly timescale. The major driver for TA and DIC was changes in salin- Geophysics, University Centre in Svalbard, ity, caused by river runoff, mixing and advection. This accounted for 77 and PO Box 156, NO-9171 Longyearbyen, Norway. E-mail: [email protected] 45%, respectively, of the overall variability. It contributed minimally to the variability in ΩAr (5%); instead, biological activity was responsible for 60% of Abbreviations the monthly variations. For DIC, the biological activity was also important, con- ArW: Arctic water; AW: Atlantic water; tributing 44%. The monthly effect of air–sea CO2 fluxes accounted for 11 and CC: coastal current; CTD: conductivity– temperature–depth instrument; DIC: 15% of the total changes in DIC and ΩAr, respectively. -
Enrico Fermi a Firenze. Le «Lezioni Di Meccanica Razionale» Al Biennio
I LIBRI DE «IL COLLE DI GALILEO» ISSN 2704-5609 (PRINT) | ISSN 2612-7989 (ONLINE) – 6 – I LIBRI DE «IL COLLE DI GALILEO» Direttore Daniele Dominici (Università di Firenze) Comitato scientifico Oscar Adriani (Università di Firenze; Sezione INFN Firenze, Direttore) Marco Benvenuti (Università di Firenze; Presidente del Sistema Museale d’Ateneo) Roberto Casalbuoni (Università di Firenze) Francesco Cataliotti (Università di Firenze) Stefania De Curtis (Sezione INFN Firenze) Paolo De Natale (Istituto Nazionale di Ottica, Direttore) Pier Andrea Mandò (Università di Firenze) Giuseppe Pelosi (Università di Firenze) Giacomo Poggi (Università di Firenze) Maria Sofia Randich Osservatorio( Astrofisico di Arcetri, Direttore) Enrico Fermi a Firenze Le «Lezioni di Meccanica Razionale» al biennio propedeutico agli studi di Ingegneria: 1924-1926 a cura di Roberto Casalbuoni Daniele Dominici, Giuseppe Pelosi FIRENZE UNIVERSITY PRESS 2019 Enrico Fermi a Firenze : le «Lezioni di Meccanica Razionale» al biennio propedeutico agli studi di Ingegneria: 1924-1926 / a cura di Roberto Casalbuoni, Daniele Dominici, Giuseppe Pelosi. – Firenze University Press, 2019. (I libri de «Il Colle di Galileo» ; 6) https://www.fupress.com/isbn/9788864539607 ISSN 2704-5609 (print) ISSN 2612-7989 (online) ISBN 978-88-6453-959-1 (print) ISBN 978-88-6453-960-7 (online PDF) Progetto grafico di Alberto Pizarro Fernández, Lettera Meccanica SRLs Immagine di copertina: elaborazione grafica della fotografia che ritrae da sinistra a destra Franco Rasetti, Rita Brunetti, Nello Carrara, Enrico Fermi all’Istituto di Fisica ad Arcetri [Archivio Amaldi, Dipartimento di Fisica, Università di Roma “La Sapienza”] Certificazione scientifica delle Opere Tutti i volumi pubblicati sono soggetti a un processo di referaggio esterno di cui sono responsabili il Consiglio editoriale della FUP e i Consigli scientifici delle singole collane. -
Aedes Press Release Snøhetta Arctic Nordic Alpine EN
Press Release Snøhetta Arctic Nordic Alpine – In Dialogue With Landscape In cooperation with Zumtobel and AW Architektur & Wohnen New Tungestølen Tourist Cabin in Luster, Norway © Jan M. Lillebø Exhibition: 4 July - 20 August 2020, no public opening ceremony Venue: Aedes Architecture Forum, Christinenstr. 18-19, 10119 Berlin Opening hours: Tue-Fri 11am-6.30pm, Sun-Mon 1-5pm and Sat, 4 July 2020, 1-5pm Arctic Nordic Alpine is dedicated to contemporary architecture in vulnerable landscapes, focussing on the influence interventions could have on regions with extreme climatic conditions. The exhibition presents pioneering projects by the internationally renowned architecture and design firm Snøhetta, including the energy-efficient Hotel Svart in Svartisen, the Arctic World Archive Visitor Center in Svalbard Island and the Museum Quarter in Bolzano. These buildings illustrate that architecture can make a significant contribution to the mitigation of climate change by promoting a more sustainable use of nature with innovative strategies and solutions – in dialogue with landscape. Conceived and designed by Snøhetta, also including proposals from students, the exhibition is shown at Aedes in cooperation with Zumtobel Lighting and AW Architektur & Wohnen magazine. On this occasion, Snøhetta is honoured with the prestigious AW Architect of the Year 2020 award. AW Architect of the Year 2020 for Snøhetta For the ninth time, AW Architektur & Wohnen is awarding the AW Architect of the Year. With this prize, the editorial staff honours offices that give new impetus to architecture through individual concepts and original design ideas. Previous winners include MVRDV, UNStudio, BIG and Dorte Mandrup. This year, the Norwegian firm Snøhetta “receives the award for its approach to thinking architecture in an interdisciplinary way, designing it as a special meeting place, understanding it as part of the surrounding landscape – and interpreting buildings themselves as landscape“, explains Jörn Kengelbach, editor-in-chief of AW Architektur & Wohnen. -
ESG Perspectives June 2019 Svalbard Sojourn an Arctic
June 2019 ESG Perspectives ™ SVALBARD SOJOURN: AN ARCTIC EXPERIENCE by Bob Smith, President & CIO islands are 60% glaciated with some of the world’s fastest-moving glaciers. The balance of the region is 30% barren ground, and 10% is covered with very low ground vegetation. In contrast to other Arctic regions, the Svalbard has no indigenous population and there is no historical evidence that the Vikings settled in the area during their time. In fact, it was the 1596 Dutch expedition of Willem Barents who discovered and drew maps of the region before his ship was crushed by freezing sea ice leading to his untimely death. However, the work of this expedition survived, and it led to the exploration of the region by other European countries over the Photo of Bob Smith in Kungsfjord, Svalbard centuries. This eventually gave rise to the exploitation It is said that what happens in the Arctic doesn’t stay of the natural resources of the region as a destination in the Arctic. That is because this region provides for whalers, fur trappers, and seal hunters, as well as essential global climate regulation and substantial other animal-based products. With the industrialization ecosystem benefits to humanity outside and beyond of Europe and the arrival of steel-hulled ships in the its boundaries. Indeed, the Arctic environment, and early 1900s, this region also eventually became a source human society and its economic activities are deeply for industrial minerals and, in particular, coal. connected to each other, representing a pivotal link in a complex adaptive global ecosystem. -
Representations of Antarctic Exploration by Lesser Known Heroic Era Photographers
Filtering ‘ways of seeing’ through their lenses: representations of Antarctic exploration by lesser known Heroic Era photographers. Patricia Margaret Millar B.A. (1972), B.Ed. (Hons) (1999), Ph.D. (Ed.) (2005), B.Ant.Stud. (Hons) (2009) Submitted in fulfilment of the requirements for the Degree of Master of Science – Social Sciences. University of Tasmania 2013 This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis, and to the best of my knowledge and belief no material previously published or written by another person except where due acknowledgement is made in the text of the thesis. ………………………………….. ………………….. Patricia Margaret Millar Date This thesis may be made available for loan and limited copying in accordance with the Copyright Act 1968. ………………………………….. ………………….. Patricia Margaret Millar Date ii Abstract Photographers made a major contribution to the recording of the Heroic Era of Antarctic exploration. By far the best known photographers were the professionals, Herbert Ponting and Frank Hurley, hired to photograph British and Australasian expeditions. But a great number of photographs were also taken on Belgian, German, Swedish, French, Norwegian and Japanese expeditions. These were taken by amateurs, sometimes designated official photographers, often scientists recording their research. Apart from a few Pole-reaching images from the Norwegian expedition, these lesser known expedition photographers and their work seldom feature in the scholarly literature on the Heroic Era, but they, too, have their importance. They played a vital role in the growing understanding and advancement of Antarctic science; they provided visual evidence of their nation’s determination to penetrate the polar unknown; and they played a formative role in public perceptions of Antarctic geopolitics. -
The “Coolest” and Northernmost FAQ Welcome to UNIS We Hope You Will
The “coolest” and northernmost FAQ Everything you might or might not want to know about your stay at UNIS Made by the UNIS Student Council autumn 2016 Welcome to UNIS We hope you will have a great time here ͺ Before arrival Important: Remember to apply for housing, and sign your contract before arriving, and check the dates. Your room will first be opened in the afternoon the day your contract starts, so if you arrive 3am you should make sure the contract starts the day before arrival. If your contract starts in the weekend your room will be opened at Friday afternoon (Samskipnaden opens your room and leaves the key inside, so you don’t need to worry about not being able to access your room) Rifles: If you want to borrow rifles (you need them when leaving town) during your stay please read the rifle part http://www.unis.no/studies/student-life/new-students/ Q: What do I need to pack? http://www.unis.no/wp-content/uploads/2014/08/PACKING-LIST.pdf - When it comes to equipment and how warm clothing you need it is up to what you plan to do and how easily you freeze - You should bring or buy a pair of thin liner gloves to wear under thicker mittens. During field work you will find that it is very hard to write with the thick scooter mittens, and that is awfully cold to do anything bare handed in -20 degrees celsius - Liner gloves can be very nice to have during the safety course, you will do part of it outside.