An Introduction to the Theory of Field Extensions

Total Page:16

File Type:pdf, Size:1020Kb

An Introduction to the Theory of Field Extensions AN INTRODUCTION TO THE THEORY OF FIELD EXTENSIONS SAMUEL MOY Abstract. Assuming some basic knowledge of groups, rings, and fields, the following investigation will introduce the reader to the theory of rings before proceeding to elaborate, in greater depth, on the theory of field extensions. Finally, a few consequences of the subject will be examined by solving classical straightedge and compass problems in a manner that effectively utilizes the material. Contents 1. The Basics 1 2. Ring Theory 1 3. Fields and Field Extensions 4 4. Algebraic Field Extensions 9 5. Classical Straightedege and Compass Constructions 12 6. Acknowledgements 15 7. References 15 1. The Basics Definition 1.1. :A ring R is a set together with two binary operations + and × (addition and multiplication, respectively) satisyfing the following axioms: (i) (R, +) is an abelian group, (ii) × is associative: (a × b) × c = a × (b × c) for all a; b; c 2 R, (iii) the distributive laws hold in R for all a; b; c 2 R: (a + b) × c = (a × c) + (b × c) and a × (b + c) = (a × b) + (a × c): Definition 1.2. The ring R is commutative if multiplication is commutative. Definition 1.3. The ring R is said to have an identity (or contain a 1) if there is an element 1 2 R with 1 × a = a × 1 = a for all a 2 R Definition 1.4. A ring R with identity 1, where 1 6= 0, is called a division ring (or skew field) if 8 nonzero element a 2 R, 9 b 2 R such that ab = ba = 1. Definition 1.5. A commutative division ring is called a field. Example 1.6. Z is a commutative ring with 1(identity). Q, R, C, and Z/pZ (the integers modulo p, where p is prime) are all fields. 1 2 SAMUEL MOY 2. Ring Theory Before beginning further study of fields, additional knowledge pertaining to rings is necessary. Most notably, the topics of ideals, ring homomorphisms and isomor- phisms, and quotient rings must first be approached. Definition 2.1. A subring of the ring R is a subgroup of R that is closed under multiplication (i.e. A subset S of a ring R is a subring if the operations of addition and multiplication in R when restricted to S give S the structure of a ring). Definition 2.2. Let R and S be rings. (1) A ring homomorphism is a map ' : R ! S satisfying (a) '(a + b) = '(a) + '(b) for all a; b 2 R, and (b) '(ab) = '(a)'(b) for all a; b 2 R. (2) The kernel of the ring homomorphism ', denoted ker', is the set of ele- ments of R that map to 0 in S. (3) A bijective ring homomorphism is called an isomorphism. Definition 2.3. Let R be a ring, let I be a subset of R and let r 2 R. (1) rI = fra j a 2 Ig and Ir = far j a 2 Ig. (2) A subset I of R is a left ideal (respectively right ideal) of R if (a) I is a subring of R, and (b) I is closed under left multiplication (respectively right multiplication) by elements from R. (3) A subset I that is both a left ideal and a right ideal is called an ideal (or, a two-sided ideal) of R. Definition 2.4. Let R be a ring and I an ideal of R. Then the quotient ring of R by I, denoted R=I is the ring defined by the following binary operations: (r + I) + (s + I) = (r + s) + I and (r + I) × (s + I) = (rs + I) 8r; s 2 R: Theorem 2.5. (The First Isomorphism Theorem for Rings) (1) If ' : R ! S is a homomorphism of rings, then the kernel of ' is an ideal of R, the image of ' is a subring of S and R/ker' is isomorphic as a ring to '(R). (2) If I is any ideal of R, then the map R ! R=I defined by r 7! r + I is a surjective ring homomorphism with kernel I (this homomorphism is called the natural projection of R onto R/I). Thus, every ideal is the kernel of a ring homomorphism and vice versa. Proof. Let I be the kernel of '. Then the cosets under addition of I are exactly the fibers of ' (the sets of elements of R that map to a single element of S). In particular, the cosets r+I; s+I, and rs+I are the fibers of ' over '(r);'(s);'(rs), respectively. Since ' is a ring homomorphism, '(r)'(s) = '(rs), hence (r + I)(s + I) = rs + I. Multiplication of cosets is well defined and so I is an ideal and R=I is a ring. The correspondance r + I 7! '(r) is a bijection between the rings R=I and '(R) which respects addition and multiplication. Hence, it is a ring isomorphism. If I is any ideal, then R=I is a ring (in particular is an abelian group) and the AN INTRODUCTION TO THE THEORY OF FIELD EXTENSIONS 3 map π : r 7! r + I is a group homomorphism with kernel I (natural projection for groups). It remains to check that π is a ring homomorphism. This is immediate from the definition of multiplication in R=I: π : rs 7! rs + I = (r + I)(s + I) = π(r)π(s) Theorem 2.6 (The Lattice Isomorphism Theorem for Rings). Let R be a ring and let I be an ideal of R. The correspondance A $ A=I is an inclusion preserving bijection between the set of subrings A of R that contain I and the set of subrings of R=I. Furthermore, A (a subring containing I) is an ideal of R if and only if A=I is an ideal of R=I. The proof for this theorem will not be provided. However, it follows almost immediately from the Lattice Isomorphism Theorem for Groups. (In addition, rather than considering subgroups, we must consider ideals). Definition 2.7. Let I and J be ideals of R. (1) Define the sum of I and J by I + J = fa + b j a 2 I; b 2 Jg. (2) Define the product of I and J, denoted by IJ, to be the set of all finite sums of elements of the form ab with a 2 I and b 2 J. Definition 2.8. Let A be any subset of the ring R. Let (A) denote the smallest ideal of R containing A, called the ideal generated by A, \ (A) = I: I⊇A Definition 2.9. An ideal M in an arbitrary ring R is called a maximal ideal if M 6= R and the only ideals containing M are M and R. Definition 2.10. Assume R is a commutative ring. An ideal P is called a prime ideal if P 6= R and whenever the product ab of two elements a; b 2 R is an element of P , then at least one of a and b is an element of P . The following two propositions will be useful for later theorems regarding fields. Only Proposition 2.12 will be proved now (Proposition 2.11 will appear as a Lemma for a later theorem and will be proved then). Proposition 2.11. Assume R is a commutative ring. Then R is a field if and only if its only ideals are 0 and R. Proposition 2.12. Assume R is a commutative ring. The ideal M is a maximal ideal if and only if the quotient ring R=M is a field. Proof. This follows from the Lattice Isomorphism Theorem for Rings along with Proposition 2.11. The ideal M is maximal if and only if there are no ideals I with M ⊂ I ⊂ R. By the Lattice Isomorphism Theorem the ideals of R containing M correspond bijectively with the ideals of R=M, so M is maximal if and only if the ideals of R=M are 0 and R=M. By Proposition 2.11 we see that M is a maximal ideal if and only if R=M is a field. 4 SAMUEL MOY Example 2.13. To assist in the understanding of what an ideal is, we will consider ideals in the commutative ring with 1, Z. An example of an ideal in this ring is (2) = f2a j a 2 Zg = multiples of 2 (the ideal generated by the element 2 2 Z). Now, it should not be difficult to see that the only prime ideals in Z are those generated by prime numbers: Suppose we have the ideal (n), n composite (and positive) (i.e. n = ab, 0 < a; b 6= 1). WLOG, assume a < b < n. Clearly a · n 2 (n) ) a · a · b = a2 · b 2 (n). However, 0 < a2 < n and 0 < b < n ) neither a2 nor b 2 (n). Therefore, (n) is not a prime ideal. Now take the ideal (p), p prime. Suppose ab 2 (p). Then p j ab ) p j a or p j b (in other words, a = n · p, n 2 N or b = n · p, n 2 N) ) a 2 (p) or b 2 (p) ) (p) must be a prime ideal. In addition, we see that the only maximal ideals in Z generated by a single element are, again, those generated by prime numbers. To see why this is true, choose some ideal (p), p prime. The only ideals that contain the element p 2 Z are (1) and (p). But (1) = Z! Thus, (p) must then be a maximal ideal.
Recommended publications
  • Subset Semirings
    University of New Mexico UNM Digital Repository Faculty and Staff Publications Mathematics 2013 Subset Semirings Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy [email protected] Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebraic Geometry Commons, Analysis Commons, and the Other Mathematics Commons Recommended Citation W.B. Vasantha Kandasamy & F. Smarandache. Subset Semirings. Ohio: Educational Publishing, 2013. This Book is brought to you for free and open access by the Mathematics at UNM Digital Repository. It has been accepted for inclusion in Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Subset Semirings W. B. Vasantha Kandasamy Florentin Smarandache Educational Publisher Inc. Ohio 2013 This book can be ordered from: Education Publisher Inc. 1313 Chesapeake Ave. Columbus, Ohio 43212, USA Toll Free: 1-866-880-5373 Copyright 2013 by Educational Publisher Inc. and the Authors Peer reviewers: Marius Coman, researcher, Bucharest, Romania. Dr. Arsham Borumand Saeid, University of Kerman, Iran. Said Broumi, University of Hassan II Mohammedia, Casablanca, Morocco. Dr. Stefan Vladutescu, University of Craiova, Romania. Many books can be downloaded from the following Digital Library of Science: http://www.gallup.unm.edu/eBooks-otherformats.htm ISBN-13: 978-1-59973-234-3 EAN: 9781599732343 Printed in the United States of America 2 CONTENTS Preface 5 Chapter One INTRODUCTION 7 Chapter Two SUBSET SEMIRINGS OF TYPE I 9 Chapter Three SUBSET SEMIRINGS OF TYPE II 107 Chapter Four NEW SUBSET SPECIAL TYPE OF TOPOLOGICAL SPACES 189 3 FURTHER READING 255 INDEX 258 ABOUT THE AUTHORS 260 4 PREFACE In this book authors study the new notion of the algebraic structure of the subset semirings using the subsets of rings or semirings.
    [Show full text]
  • Exercises and Solutions in Groups Rings and Fields
    EXERCISES AND SOLUTIONS IN GROUPS RINGS AND FIELDS Mahmut Kuzucuo˘glu Middle East Technical University [email protected] Ankara, TURKEY April 18, 2012 ii iii TABLE OF CONTENTS CHAPTERS 0. PREFACE . v 1. SETS, INTEGERS, FUNCTIONS . 1 2. GROUPS . 4 3. RINGS . .55 4. FIELDS . 77 5. INDEX . 100 iv v Preface These notes are prepared in 1991 when we gave the abstract al- gebra course. Our intention was to help the students by giving them some exercises and get them familiar with some solutions. Some of the solutions here are very short and in the form of a hint. I would like to thank B¨ulent B¨uy¨ukbozkırlı for his help during the preparation of these notes. I would like to thank also Prof. Ismail_ S¸. G¨ulo˘glufor checking some of the solutions. Of course the remaining errors belongs to me. If you find any errors, I should be grateful to hear from you. Finally I would like to thank Aynur Bora and G¨uldaneG¨um¨u¸sfor their typing the manuscript in LATEX. Mahmut Kuzucuo˘glu I would like to thank our graduate students Tu˘gbaAslan, B¨u¸sra C¸ınar, Fuat Erdem and Irfan_ Kadık¨oyl¨ufor reading the old version and pointing out some misprints. With their encouragement I have made the changes in the shape, namely I put the answers right after the questions. 20, December 2011 vi M. Kuzucuo˘glu 1. SETS, INTEGERS, FUNCTIONS 1.1. If A is a finite set having n elements, prove that A has exactly 2n distinct subsets.
    [Show full text]
  • Section V.1. Field Extensions
    V.1. Field Extensions 1 Section V.1. Field Extensions Note. In this section, we define extension fields, algebraic extensions, and tran- scendental extensions. We treat an extension field F as a vector space over the subfield K. This requires a brief review of the material in Sections IV.1 and IV.2 (though if time is limited, we may try to skip these sections). We start with the definition of vector space from Section IV.1. Definition IV.1.1. Let R be a ring. A (left) R-module is an additive abelian group A together with a function mapping R A A (the image of (r, a) being × → denoted ra) such that for all r, a R and a,b A: ∈ ∈ (i) r(a + b)= ra + rb; (ii) (r + s)a = ra + sa; (iii) r(sa)=(rs)a. If R has an identity 1R and (iv) 1Ra = a for all a A, ∈ then A is a unitary R-module. If R is a division ring, then a unitary R-module is called a (left) vector space. Note. A right R-module and vector space is similarly defined using a function mapping A R A. × → Definition V.1.1. A field F is an extension field of field K provided that K is a subfield of F . V.1. Field Extensions 2 Note. With R = K (the ring [or field] of “scalars”) and A = F (the additive abelian group of “vectors”), we see that F is a vector space over K. Definition. Let field F be an extension field of field K.
    [Show full text]
  • Introduction to the P-Adic Space
    Introduction to the p-adic Space Joel P. Abraham October 25, 2017 1 Introduction From a young age, students learn fundamental operations with the real numbers: addition, subtraction, multiplication, division, etc. We intuitively understand that distance under the reals as the absolute value function, even though we never have had a fundamental introduction to set theory or number theory. As such, I found this topic to be extremely captivating, since it almost entirely reverses the intuitive notion of distance in the reals. Such a small modification to the definition of distance gives rise to a completely different set of numbers under which the typical axioms are false. Furthermore, this is particularly interesting since the p-adic system commonly appears in natural phenomena. Due to the versatility of this metric space, and its interesting uniqueness, I find the p-adic space a truly fascinating development in algebraic number theory, and thus chose to explore it further. 2 The p-adic Metric Space 2.1 p-adic Norm Definition 2.1. A metric space is a set with a distance function or metric, d(p, q) defined over the elements of the set and mapping them to a real number, satisfying: arXiv:1710.08835v1 [math.HO] 22 Oct 2017 (a) d(p, q) > 0 if p = q 6 (b) d(p,p)=0 (c) d(p, q)= d(q,p) (d) d(p, q) d(p, r)+ d(r, q) ≤ The real numbers clearly form a metric space with the absolute value function as the norm such that for p, q R ∈ d(p, q)= p q .
    [Show full text]
  • Algorithmic Factorization of Polynomials Over Number Fields
    Rose-Hulman Institute of Technology Rose-Hulman Scholar Mathematical Sciences Technical Reports (MSTR) Mathematics 5-18-2017 Algorithmic Factorization of Polynomials over Number Fields Christian Schulz Rose-Hulman Institute of Technology Follow this and additional works at: https://scholar.rose-hulman.edu/math_mstr Part of the Number Theory Commons, and the Theory and Algorithms Commons Recommended Citation Schulz, Christian, "Algorithmic Factorization of Polynomials over Number Fields" (2017). Mathematical Sciences Technical Reports (MSTR). 163. https://scholar.rose-hulman.edu/math_mstr/163 This Dissertation is brought to you for free and open access by the Mathematics at Rose-Hulman Scholar. It has been accepted for inclusion in Mathematical Sciences Technical Reports (MSTR) by an authorized administrator of Rose-Hulman Scholar. For more information, please contact [email protected]. Algorithmic Factorization of Polynomials over Number Fields Christian Schulz May 18, 2017 Abstract The problem of exact polynomial factorization, in other words expressing a poly- nomial as a product of irreducible polynomials over some field, has applications in algebraic number theory. Although some algorithms for factorization over algebraic number fields are known, few are taught such general algorithms, as their use is mainly as part of the code of various computer algebra systems. This thesis provides a summary of one such algorithm, which the author has also fully implemented at https://github.com/Whirligig231/number-field-factorization, along with an analysis of the runtime of this algorithm. Let k be the product of the degrees of the adjoined elements used to form the algebraic number field in question, let s be the sum of the squares of these degrees, and let d be the degree of the polynomial to be factored; then the runtime of this algorithm is found to be O(d4sk2 + 2dd3).
    [Show full text]
  • Discriminants and the Monoid of Quadratic Rings
    DISCRIMINANTS AND THE MONOID OF QUADRATIC RINGS JOHN VOIGHT Abstract. We consider the natural monoid structure on the set of quadratic rings over an arbitrary base scheme and characterize this monoid in terms of discriminants. Quadratic field extensions K of Q are characterized by their discriminants. Indeed, there is a bijection 8Separable quadratic9 < = ∼ × ×2 algebras over Q −! Q =Q : up to isomorphism ; p 2 ×2 Q[ d] = Q[x]=(x − d) 7! dQ wherep a separable quadratic algebra over Q is either a quadratic field extension or the algebra Q[ 1] ' Q × Q of discriminant 1. In particular, the set of isomorphism classes of separable quadratic extensions of Q can be given the structure of an elementary abelian 2-group, with identity element the class of Q × Q: we have simply p p p Q[ d1] ∗ Q[ d2] = Q[ d1d2] p × ×2 up to isomorphism. If d1; d2; dp1d2 2pQ n Q then Q( d1d2) sits as the third quadratic subfield of the compositum Q( d1; d2): p p Q( d1; d2) p p p Q( d1) Q( d1d2) Q( d2) Q p Indeed, ifpσ1 isp the nontrivial elementp of Gal(Q( d1)=Q), then therep is a unique extension of σ1 to Q( d1; d2) leaving Q( d2) fixed, similarly with σ2, and Q( d1d2) is the fixed field of the composition σ1σ2 = σ2σ1. This characterization of quadratic extensions works over any base field F with char F 6= 2 and is summarized concisely in the Kummer theory isomorphism H1(Gal(F =F ); {±1g) = Hom(Gal(F =F ); {±1g) ' F ×=F ×2: On the other hand, over a field F with char F = 2, all separable quadratic extensions have trivial discriminant and instead they are classified by the (additive) Artin-Schreier group F=}(F ) where }(F ) = fr + r2 : r 2 F g Date: January 17, 2021.
    [Show full text]
  • January 10, 2010 CHAPTER SIX IRREDUCIBILITY and FACTORIZATION §1. BASIC DIVISIBILITY THEORY the Set of Polynomials Over a Field
    January 10, 2010 CHAPTER SIX IRREDUCIBILITY AND FACTORIZATION §1. BASIC DIVISIBILITY THEORY The set of polynomials over a field F is a ring, whose structure shares with the ring of integers many characteristics. A polynomials is irreducible iff it cannot be factored as a product of polynomials of strictly lower degree. Otherwise, the polynomial is reducible. Every linear polynomial is irreducible, and, when F = C, these are the only ones. When F = R, then the only other irreducibles are quadratics with negative discriminants. However, when F = Q, there are irreducible polynomials of arbitrary degree. As for the integers, we have a division algorithm, which in this case takes the form that, if f(x) and g(x) are two polynomials, then there is a quotient q(x) and a remainder r(x) whose degree is less than that of g(x) for which f(x) = q(x)g(x) + r(x) . The greatest common divisor of two polynomials f(x) and g(x) is a polynomial of maximum degree that divides both f(x) and g(x). It is determined up to multiplication by a constant, and every common divisor divides the greatest common divisor. These correspond to similar results for the integers and can be established in the same way. One can determine a greatest common divisor by the Euclidean algorithm, and by going through the equations in the algorithm backward arrive at the result that there are polynomials u(x) and v(x) for which gcd (f(x), g(x)) = u(x)f(x) + v(x)g(x) .
    [Show full text]
  • 2.4 Algebra of Polynomials ([1], P.136-142) in This Section We Will Give a Brief Introduction to the Algebraic Properties of the Polynomial Algebra C[T]
    2.4 Algebra of polynomials ([1], p.136-142) In this section we will give a brief introduction to the algebraic properties of the polynomial algebra C[t]. In particular, we will see that C[t] admits many similarities to the algebraic properties of the set of integers Z. Remark 2.4.1. Let us first recall some of the algebraic properties of the set of integers Z. - division algorithm: given two integers w, z 2 Z, with jwj ≤ jzj, there exist a, r 2 Z, with 0 ≤ r < jwj such that z = aw + r. Moreover, the `long division' process allows us to determine a, r. Here r is the `remainder'. - prime factorisation: for any z 2 Z we can write a1 a2 as z = ±p1 p2 ··· ps , where pi are prime numbers. Moreover, this expression is essentially unique - it is unique up to ordering of the primes appearing. - Euclidean algorithm: given integers w, z 2 Z there exists a, b 2 Z such that aw + bz = gcd(w, z), where gcd(w, z) is the `greatest common divisor' of w and z. In particular, if w, z share no common prime factors then we can write aw + bz = 1. The Euclidean algorithm is a process by which we can determine a, b. We will now introduce the polynomial algebra in one variable. This is simply the set of all polynomials with complex coefficients and where we make explicit the C-vector space structure and the multiplicative structure that this set naturally exhibits. Definition 2.4.2. - The C-algebra of polynomials in one variable, is the quadruple (C[t], α, σ, µ)43 where (C[t], α, σ) is the C-vector space of polynomials in t with C-coefficients defined in Example 1.2.6, and µ : C[t] × C[t] ! C[t];(f , g) 7! µ(f , g), is the `multiplication' function.
    [Show full text]
  • Calculus Terminology
    AP Calculus BC Calculus Terminology Absolute Convergence Asymptote Continued Sum Absolute Maximum Average Rate of Change Continuous Function Absolute Minimum Average Value of a Function Continuously Differentiable Function Absolutely Convergent Axis of Rotation Converge Acceleration Boundary Value Problem Converge Absolutely Alternating Series Bounded Function Converge Conditionally Alternating Series Remainder Bounded Sequence Convergence Tests Alternating Series Test Bounds of Integration Convergent Sequence Analytic Methods Calculus Convergent Series Annulus Cartesian Form Critical Number Antiderivative of a Function Cavalieri’s Principle Critical Point Approximation by Differentials Center of Mass Formula Critical Value Arc Length of a Curve Centroid Curly d Area below a Curve Chain Rule Curve Area between Curves Comparison Test Curve Sketching Area of an Ellipse Concave Cusp Area of a Parabolic Segment Concave Down Cylindrical Shell Method Area under a Curve Concave Up Decreasing Function Area Using Parametric Equations Conditional Convergence Definite Integral Area Using Polar Coordinates Constant Term Definite Integral Rules Degenerate Divergent Series Function Operations Del Operator e Fundamental Theorem of Calculus Deleted Neighborhood Ellipsoid GLB Derivative End Behavior Global Maximum Derivative of a Power Series Essential Discontinuity Global Minimum Derivative Rules Explicit Differentiation Golden Spiral Difference Quotient Explicit Function Graphic Methods Differentiable Exponential Decay Greatest Lower Bound Differential
    [Show full text]
  • Finding Equations of Polynomial Functions with Given Zeros
    Finding Equations of Polynomial Functions with Given Zeros 푛 푛−1 2 Polynomials are functions of general form 푃(푥) = 푎푛푥 + 푎푛−1 푥 + ⋯ + 푎2푥 + 푎1푥 + 푎0 ′ (푛 ∈ 푤ℎ표푙푒 # 푠) Polynomials can also be written in factored form 푃(푥) = 푎(푥 − 푧1)(푥 − 푧2) … (푥 − 푧푖) (푎 ∈ ℝ) Given a list of “zeros”, it is possible to find a polynomial function that has these specific zeros. In fact, there are multiple polynomials that will work. In order to determine an exact polynomial, the “zeros” and a point on the polynomial must be provided. Examples: Practice finding polynomial equations in general form with the given zeros. Find an* equation of a polynomial with the Find the equation of a polynomial with the following two zeros: 푥 = −2, 푥 = 4 following zeroes: 푥 = 0, −√2, √2 that goes through the point (−2, 1). Denote the given zeros as 푧1 푎푛푑 푧2 Denote the given zeros as 푧1, 푧2푎푛푑 푧3 Step 1: Start with the factored form of a polynomial. Step 1: Start with the factored form of a polynomial. 푃(푥) = 푎(푥 − 푧1)(푥 − 푧2) 푃(푥) = 푎(푥 − 푧1)(푥 − 푧2)(푥 − 푧3) Step 2: Insert the given zeros and simplify. Step 2: Insert the given zeros and simplify. 푃(푥) = 푎(푥 − (−2))(푥 − 4) 푃(푥) = 푎(푥 − 0)(푥 − (−√2))(푥 − √2) 푃(푥) = 푎(푥 + 2)(푥 − 4) 푃(푥) = 푎푥(푥 + √2)(푥 − √2) Step 3: Multiply the factored terms together. Step 3: Multiply the factored terms together 푃(푥) = 푎(푥2 − 2푥 − 8) 푃(푥) = 푎(푥3 − 2푥) Step 4: The answer can be left with the generic “푎”, or a value for “푎”can be chosen, Step 4: Insert the given point (−2, 1) to inserted, and distributed.
    [Show full text]
  • Section X.51. Separable Extensions
    X.51 Separable Extensions 1 Section X.51. Separable Extensions Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of E as a vector space over F . For example, [Q(√2, √3) : Q] = 4 since a basis for Q(√2, √3) over Q is 1, √2, √3, √6 . Recall that the number of isomorphisms of { } E onto a subfield of F leaving F fixed is the index of E over F , denoted E : F . { } We are interested in when [E : F ]= E : F . When this equality holds (again, for { } finite extensions) E is called a separable extension of F . Definition 51.1. Let f(x) F [x]. An element α of F such that f(α) = 0 is a zero ∈ of f(x) of multiplicity ν if ν is the greatest integer such that (x α)ν is a factor of − f(x) in F [x]. Note. I find the following result unintuitive and surprising! The backbone of the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism Extension Theorem. Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have the same multiplicity. Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo- rem 51.2. X.51 Separable Extensions 2 Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in F [x] of the form ν a Y(x αi) , i − where the αi are the distinct zeros of f(x) in F and a F .
    [Show full text]
  • Arxiv:1709.01693V2 [Math.AC] 14 May 2018 Togypiaymnis Rl Ood,C-Monoids
    PUISEUX MONOIDS AND TRANSFER HOMOMORPHISMS FELIX GOTTI Abstract. There are several families of atomic monoids whose arithmetical invari- ants have received a great deal of attention during the last two decades. The factoriza- tion theory of finitely generated monoids, strongly primary monoids, Krull monoids, and C-monoids are among the most systematically studied. Puiseux monoids, which are additive submonoids of Q≥0 consisting of nonnegative rational numbers, have only been studied recently. In this paper, we provide evidence that this family com- prises plenty of monoids with a basically unexplored atomic structure. We do this by showing that the arithmetical invariants of the well-studied atomic monoids men- tioned earlier cannot be transferred to most Puiseux monoids via homomorphisms that preserve atomic configurations, i.e., transfer homomorphisms. Specifically, we show that transfer homomorphisms from a non-finitely generated atomic Puiseux monoid to a finitely generated monoid do not exist. We also find a large family of Puiseux monoids that fail to be strongly primary. In addition, we prove that the only nontrivial Puiseux monoid that accepts a transfer homomorphism to a Krull monoid is N0. Finally, we classify the Puiseux monoids that happen to be C-monoids. 1. Introduction The study of the phenomenon of non-unique factorizations in the ring of integers OK of an algebraic number field K was initiated by L. Carlitz in the 1950’s, and it was later carried out on more general integral domains. As a result, many techniques to measure the non-uniqueness of factorizations in several families of integral domains were sys- tematically developed during the second half of the last century (see [2] and references therein).
    [Show full text]