The Nobel Connection to the Space Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jul/Aug 2013
I NTERNATIONAL J OURNAL OF H IGH -E NERGY P HYSICS CERNCOURIER WELCOME V OLUME 5 3 N UMBER 6 J ULY /A UGUST 2 0 1 3 CERN Courier – digital edition Welcome to the digital edition of the July/August 2013 issue of CERN Courier. This “double issue” provides plenty to read during what is for many people the holiday season. The feature articles illustrate well the breadth of modern IceCube brings particle physics – from the Standard Model, which is still being tested in the analysis of data from Fermilab’s Tevatron, to the tantalizing hints of news from the deep extraterrestrial neutrinos from the IceCube Observatory at the South Pole. A connection of a different kind between space and particle physics emerges in the interview with the astronaut who started his postgraduate life at CERN, while connections between particle physics and everyday life come into focus in the application of particle detectors to the diagnosis of breast cancer. And if this is not enough, take a look at Summer Bookshelf, with its selection of suggestions for more relaxed reading. To sign up to the new issue alert, please visit: http://cerncourier.com/cws/sign-up. To subscribe to the magazine, the e-mail new-issue alert, please visit: http://cerncourier.com/cws/how-to-subscribe. ISOLDE OUTREACH TEVATRON From new magic LHC tourist trail to the rarest of gets off to a LEGACY EDITOR: CHRISTINE SUTTON, CERN elements great start Results continue DIGITAL EDITION CREATED BY JESSE KARJALAINEN/IOP PUBLISHING, UK p6 p43 to excite p17 CERNCOURIER www. -
The Cosmic X-Ray Background
The Cosmic X-Ray Background Steven M. Kahn Kavli Institute for Particle Astrophysics and Cosmology Stanford University 1 Outline of Lectures Lecture I: * Historical Introduction and General Characteristics of the CXB. * Contributions from Discrete Source Classes * Spectral Paradoxes Lecture II: * The CXB and Large Scale Structure * The Galactic Contributions to the CXB * The CXB and the Cosmic Web 2 I. Historical Introduction and General Characteristics of the CXB. 3 Historical Introduction * The “birth” of the field of X-ray astronomy is usually associated with the flight of a particular rocket experiment in 1962 that yielded the detection of the first non-solar cosmic X-ray source: Scorpius X-1. (Giacconi et al. 1962) * That same rocket experiment also yielded the discovery of an apparent diffuse component of X-radiation, the Cosmic X-ray Background (CXB). (N.B. This was well in advance of the discovery of the Cosmic Microwave Background by Pensias and Wilson!) * In the ensuing 40 some odd years, our understanding of the X-ray Universe has progressed considerably. X-rays have now been detected from virtually all classes of astronomical systems, ranging from normal stars to the most distant galaxies. * Nevertheless, the precise origin of the CXB remains puzzling. This has been one of the great mysteries of high energy astrophysics! 4 Historical Introduction 5 Historical Introduction * “The diffuse character of the observed background radiation does not permit a positive determination of its nature and origin. However, the apparent absorption coefficient in mica and the altitude dependence is consistent with radiation of about the same wavelength responsible for the peak. -
Chandra Was Launched Aboard Space Shuttle Columbia on July 23, 1999!!! Crew Lost During Re-Entry Modern X-Ray Telescopes and Detectors
Chandra was launched aboard Space Shuttle Columbia on July 23, 1999!!! Crew Lost During Re-Entry Modern X-ray Telescopes and Detectors •X-ray Telescopes •X-ray Instruments •Some early highlights •Observations •Data characteristics •Calibration •Analysis X-ray Telescope: The advantages • Achieve 2-D imaging – Separate sources – Study morphology of extended sources – Simultaneously measure both source and local background • Reduce the background Æ increase the source 1/2 detection sensitivity: S/N ~ Fs t/(Fst+ ASbt) –t –exposure time –Fs – source count flux –A –source detection area –Sb – background surface brightness: Detector + sky background • Facilitate high-resolution dispersive spectrometers X-ray Telescope: Focusing mechanism External reflection at small grazing angles - an analogy of skipping stones on water •Snell’s law: sinφr=sinφi/n, where the index of refraction n=1-δ+iβ • External reflection occurs with sinφr > 1 Æ 1/2 The critical grazing angle θ = π/2- φi ~ (2δ) 1/2 (δ ∝ ne /E << 1) Focusing mechanism (cont.) • The critical angle (effective collecting area) decreases with increasing photon energy • High Z materials allow for reflecting high energy photon with the same grazing angle X-ray Telescope: Hans Wolter Configuraions • A Paraboloid gives a perfect image for on-axis rays. But it gives a coma blur of equivalent image size proportional to the off-axis angle. • Wolter showed that two reflections were needed to eliminate the coma. • A Paraboloid-Hyperboloid combination proves to be the most useful in X-ray astronomy. X-ray Telescopes • First used to observe the Solar corona • Then transferred to general astronomy with HEAO-2 (Einstein Observatory), launched in 1978: – imaged X-rays in 0.5-4.0 keV. -
Luis Alvarez: the Ideas Man
CERN Courier March 2012 Commemoration Luis Alvarez: the ideas man The years from the early 1950s to the late 1980s came alive again during a symposium to commemorate the birth of one of the great scientists and inventors of the 20th century. Luis Alvarez – one of the greatest experimental physicists of the 20th century – combined the interests of a scientist, an inventor, a detective and an explorer. He left his mark on areas that ranged from radar through to cosmic rays, nuclear physics, particle accel- erators, detectors and large-scale data analysis, as well as particles and astrophysics. On 19 November, some 200 people gathered at Berkeley to commemorate the 100th anniversary of his birth. Alumni of the Alvarez group – among them physicists, engineers, programmers and bubble-chamber film scanners – were joined by his collaborators, family, present-day students and admirers, as well as scientists whose professional lineage traces back to him. Hosted by the Lawrence Berkeley National Laboratory (LBNL) and the University of California at Berkeley, the symposium reviewed his long career and lasting legacy. A recurring theme of the symposium was, as one speaker put it, a “Shakespeare-type dilemma”: how could one person have accom- plished all of that in one lifetime? Beyond his own initiatives, Alvarez created a culture around him that inspired others to, as George Smoot put it, “think big,” as well as to “think broadly and then deep” and to take risks. Combined with Alvarez’s strong scientific standards and great care in execut- ing them, these principles led directly to the awarding of two Nobel Luis Alvarez celebrating the announcement of his 1968 Nobel prizes in physics to scientists at Berkeley – George Smoot in 2006 prize. -
The Cosmic Microwave Background: the History of Its Experimental Investigation and Its Significance for Cosmology
REVIEW ARTICLE The Cosmic Microwave Background: The history of its experimental investigation and its significance for cosmology Ruth Durrer Universit´ede Gen`eve, D´epartement de Physique Th´eorique,1211 Gen`eve, Switzerland E-mail: [email protected] Abstract. This review describes the discovery of the cosmic microwave background radiation in 1965 and its impact on cosmology in the 50 years that followed. This discovery has established the Big Bang model of the Universe and the analysis of its fluctuations has confirmed the idea of inflation and led to the present era of precision cosmology. I discuss the evolution of cosmological perturbations and their imprint on the CMB as temperature fluctuations and polarization. I also show how a phase of inflationary expansion generates fluctuations in the spacetime curvature and primordial gravitational waves. In addition I present findings of CMB experiments, from the earliest to the most recent ones. The accuracy of these experiments has helped us to estimate the parameters of the cosmological model with unprecedented precision so that in the future we shall be able to test not only cosmological models but General Relativity itself on cosmological scales. Submitted to: Class. Quantum Grav. arXiv:1506.01907v1 [astro-ph.CO] 5 Jun 2015 The Cosmic Microwave Background 2 1. Historical Introduction The discovery of the Cosmic Microwave Background (CMB) by Penzias and Wilson, reported in Refs. [1, 2], has been a 'game changer' in cosmology. Before this discovery, despite the observation of the expansion of the Universe, see [3], the steady state model of cosmology still had a respectable group of followers. -
Highlights and Discoveries from the Chandra X-Ray Observatory1
Highlights and Discoveries from the Chandra X-ray Observatory1 H Tananbaum1, M C Weisskopf2, W Tucker1, B Wilkes1 and P Edmonds1 1Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138. 2 NASA/Marshall Space Flight Center, ZP12, 320 Sparkman Drive, Huntsville, AL 35805. Abstract. Within 40 years of the detection of the first extrasolar X-ray source in 1962, NASA’s Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond X-ray images with 100-200 eV energy resolution for energies in the range 0.08<E<10 keV, locating X-ray sources to high precision, detecting extremely faint sources, and obtaining high resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over time-scales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy. -
16Th HEAD Meeting Session Table of Contents
16th HEAD Meeting Sun Valley, Idaho – August, 2017 Meeting Abstracts Session Table of Contents 99 – Public Talk - Revealing the Hidden, High Energy Sun, 204 – Mid-Career Prize Talk - X-ray Winds from Black Rachel Osten Holes, Jon Miller 100 – Solar/Stellar Compact I 205 – ISM & Galaxies 101 – AGN in Dwarf Galaxies 206 – First Results from NICER: X-ray Astrophysics from 102 – High-Energy and Multiwavelength Polarimetry: the International Space Station Current Status and New Frontiers 300 – Black Holes Across the Mass Spectrum 103 – Missions & Instruments Poster Session 301 – The Future of Spectral-Timing of Compact Objects 104 – First Results from NICER: X-ray Astrophysics from 302 – Synergies with the Millihertz Gravitational Wave the International Space Station Poster Session Universe 105 – Galaxy Clusters and Cosmology Poster Session 303 – Dissertation Prize Talk - Stellar Death by Black 106 – AGN Poster Session Hole: How Tidal Disruption Events Unveil the High 107 – ISM & Galaxies Poster Session Energy Universe, Eric Coughlin 108 – Stellar Compact Poster Session 304 – Missions & Instruments 109 – Black Holes, Neutron Stars and ULX Sources Poster 305 – SNR/GRB/Gravitational Waves Session 306 – Cosmic Ray Feedback: From Supernova Remnants 110 – Supernovae and Particle Acceleration Poster Session to Galaxy Clusters 111 – Electromagnetic & Gravitational Transients Poster 307 – Diagnosing Astrophysics of Collisional Plasmas - A Session Joint HEAD/LAD Session 112 – Physics of Hot Plasmas Poster Session 400 – Solar/Stellar Compact II 113 -
Reversed out (White) Reversed
Berkeley rev.( white) Berkeley rev.( FALL 2014 reversed out (white) reversed IN THIS ISSUE Berkeley’s Space Sciences Laboratory Tabletop Physics Bringing More Women into Physics ALUMNI NEWS AND MORE! Cover: The MAVEN satellite mission uses instrumentation developed at UC Berkeley's Space Sciences Laboratory to explore the physics behind the loss of the Martian atmosphere. It’s a continuation of Berkeley astrophysicist Robert Lin’s pioneering work in solar physics. See p 7. photo credit: Lockheed Martin Physics at Berkeley 2014 Published annually by the Department of Physics Steven Boggs: Chair Anil More: Director of Administration Maria Hjelm: Director of Development, College of Letters and Science Devi Mathieu: Editor, Principal Writer Meg Coughlin: Design Additional assistance provided by Sarah Wittmer, Sylvie Mehner and Susan Houghton Department of Physics 366 LeConte Hall #7300 University of California, Berkeley Berkeley, CA 94720-7300 Copyright 2014 by The Regents of the University of California FEATURES 4 12 18 Berkeley’s Space Tabletop Physics Bringing More Women Sciences Laboratory BERKELEY THEORISTS INVENT into Physics NEW WAYS TO SEARCH FOR GOING ON SIX DECADES UC BERKELEY HOSTS THE 2014 NEW PHYSICS OF EDUCATION AND SPACE WEST COAST CONFERENCE EXPLORATION Berkeley theoretical physicists Ashvin FOR UNDERGRADUATE WOMEN Vishwanath and Surjeet Rajendran IN PHYSICS Since the Space Lab’s inception are developing new, small-scale in 1959, Berkeley physicists have Women physics students from low-energy approaches to questions played important roles in many California, Oregon, Washington, usually associated with large-scale of the nation’s space-based scientific Alaska, and Hawaii gathered on high-energy particle experiments. -
Eyes for Gamma Rays” Though the Major Peaks Suggest a Periodic- Whether These Are Truly Gamma-Ray Bursts for a Description of This System)
sion of regularity and slow evolution in the They suggested that examination of the Vela exe-atmospheric nuclear detonation. Surpris- universe persisted into the 1960s. data might disclose evidence of bursts of ingly, however, the survey soon revealed that The feeling that transient cosmic events gamma rays at times close to the appearance the gamma-ray instruments on widely sepa- were rare was certainly prevalent in 1959 of supernovae. Such searches were con- rated satellites had sometimes responded when summit meetings were being held be- ducted; however, no distinctive signals were almost identically. Some of these events were tween England, the United States, and found. attributable to solar flare activity. However, Russia to discuss a nuclear test-ban treaty. On the other hand, there was evidence of one particularly distinctive event was dis- One key issue was the ability to detect treaty variability that had been ignored. For exam- covered for which a solar origin seemed violations unambiguously. A leading ple, the earliest x-ray data from small rocket inconsistent. Fortunately, the characteristics proposal for the detection of exo-at- probes and from satellites were often found of this event did not at all resemble those of a mospheric nuclear explosions was the use of to disagree significantly. The quality of the nuclear detonation, and thus the event did satellites with instruments that included de- data, rather than actual variations in the not create concern of a possible test-ban tectors sensitive to the gamma rays emitted sources, was suspected as the reason for treaty violation. by the explosion as well as those emitted these discrepancies. -
Mysteries of the Universe
Mysteries of the Universe Harry Ringermacher, Ph.D. General Electric Research Center Schenectady, NY Elliott-Nowell-White Science Symposium Oct. 11, 2012 Overview • Astronomy 101 - Scales of distance, light measure • The “Big-Bang Universe” – how we see • What do we know about Dark Matter and Dark Energy ? • The search for Dark Matter “Astronomy 101” Andromeda galaxy photo by H. Ringermacher Milky Way scaled against our nearest neighbor galaxy, Andromeda 100,000 Ly 1 light year = distance light travels in 1 year 6,000,000,000,000 miles Time-line of the Universe Wilkinson Microwave Anisotropy Probe – WMAP (2001) Cosmic Background Explorer COBE – forerunner (1989) WMAP produced unprecedented images of the earliest light in the universe – the Cosmic Microwave Background (CMB) What did WMAP discover? • Universe is 13.7 billion years old , (± 1%) • First stars ignited 200 million years after the Big Bang . • Light in the WMAP picture is from 379,000 years after the Big Bang . • Content of the Universe: 4% Atoms, 23% Cold Dark Matter, 73% Dark Energy . • The Universe will expand forever (it is “flat”) and is accelerating . • The nature of the Dark Energy and Dark Matter is still a mystery . 2006 Nobel Prize in Physics Blackbody from and anisotropy of the Cosmic Microwave Background Radiation John Mather George Smoot NASA Goddard UC Berkeley The Accelerating Universe • How do we measure the speed of expansion? • Astronomers use “Standard Candles” • Astronomers use the brightest “candle” SUPERNOVA 2011 Nobel Prize in Physics Discovery of the accelerating expansion of the universe through observations of distant supernovae Brian Schmidt, Australian Nat’l U. -
NSF Sensational 60
Cover credits Background: © 2010 JupiterImages Corporation Inset credits (left to right): Courtesy Woods Hole Oceanographic Institution; Gemini Observatory; Nicolle Rager Fuller, National Science Foundation; Zee Evans, National Science Foundation; Nicolle Rager Fuller, National Science Foundation; Zina Deretsky, National Science Foundation, adapted from map by Chris Harrison, Human-Computer Interaction Institute, Carnegie Mellon University; Tobias Hertel, Insti- tute for Physical Chemistry, University of Würzburg Design by: Adrian Apodaca, National Science Foundation 1 Introduction The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. Congress passed legislation creating the NSF in 1950 and President Harry S. Truman signed that legislation on May 10, 1950, creating a government agency that funds research in the basic sciences, engineering, mathematics and technology. NSF is the federal agency responsible for nonmedical research in all fields of science, engineering, education and technology. NSF funding is approved through the federal budget process. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF has an independent governing body called the National Science Board (NSB) that oversees and helps direct NSF programs and activities. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. NSF is the funding source for approximately 20 percent of all federally supported basic research conducted by America’s colleges and universities. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly. NSF has a total workforce of about 1,700 at its Arlington, Va., headquarters, including approximately 1,200 career employees, 150 scientists from research institutions on temporary duty, 200 contract workers and the staff of the NSB office and the Office of the Inspector General. -
High Energy Properties of X-Ray Sources Observed with Bepposax
1 High energy properties of X–ray sources observed with BeppoSAX F. Fronteraa,b, D. Dal Fiumeb, G. Malagutib, L. Nicastrob, M. Orlandinib, E. Palazzib, E. Pianb, F. Favatac, A. Santangelod, a Dipartimento di Fisica, Universit`adi Ferrara, Via Paradiso 12, 44100 Ferrara, Italy b Istituto Tecnologie e Studio Radiazioni Extraterrestri (TeSRE), C.N.R., via Gobetti 101, 40129 Bologna, Italy c Astrophysics Division, Space Science Department of ESA, ESTEC Keplerlaan 1, 2200 AG Noordwijk, The Netherlands d Istituto Fisica Cosmica e Applicazioni all’Informatica (IFCAI), C.N.R., via La Malfa 153, 90146 Palermo, Italy We report on highlight results on celestial sources observed in the high energy band (> 20 keV) with BeppoSAX . In particular we review the spectral properties of sources that belong to different classes of objects, i.e., stellar coronae (Algol), supernova remnants (Cas A), low mass X–ray binaries (Cygnus X–2 and the X–ray burster GS1826–238), black hole candidates (Cygnus X–1) and Active Galactic Nuclei (Mkn 3). We detect, for the first 44 time, the broad-band spectrum of a stellar corona up to 100 keV; for Cas A we report upper limits to the Ti line intensities that are lower than those available to date; for Cyg X–2 we report the evidence of a high energy component; we report a clear detection of a broad Fe K line feature from Cyg X–1 in soft state and during its transition to hard state; Mkn 3 is one of several Seyfert 2 galaxies detected with BeppoSAX at high energies, for which Compton scattering process is important.