Exploration and Mapping with Mobile Robots

Total Page:16

File Type:pdf, Size:1020Kb

Exploration and Mapping with Mobile Robots Dissertation zur Erlangung des Doktorgrades der Fakultät für Angewandte Wissenschaften der Albert-Ludwigs-Universität Freiburg im Breisgau Exploration and Mapping with Mobile Robots Cyrill Stachniss April, 2006 Betreuer: Prof. Dr. Wolfram Burgard Dekan der Fakultät für Angewandte Wissenschaften: Prof. Dr. Jan G. Korvink 1. Gutachter: Prof. Dr. Wolfram Burgard, Universität Freiburg 2. Gutachter: Prof. Dr. Dieter Fox, University of Washington, WA Tag der Disputation: 26.04.2006 Zusammenfassung iele Anwendungen aus dem Bereich der mobilen Robotik setzten eine geeignete Repräsentation der Umgebung voraus. Aus diesem Grund ist das Lernen von Umgebungsmodellen eines der grundlegenden Probleme V für Roboter, dem schon seit mehreren Jahrzehnten Aufmerksamkeit ge- schenkt wird. Das selbständige Erstellen von Umgebungsmodellen ist eine der Grund- voraussetzungen für vollständig autonom agierende Systeme. Die vorliegende Arbeit beschäftigt sich mit verschiedenen Problemen, die beim selbstständigen Aufbau von Karten auftreten. Das Problem beim Erstellen von Karten besteht unter anderem in der Unsicherheit der Sensorinformationen. Sensoren wie beispielsweise Lasermesssysteme oder Sonar- sensoren messen die Distanz zum nächsten Hindernis. Allerdings liefern sie mitunter nur grobe Schätzwerte und keine exakten Daten. Auch die Bestimmung der Position des Roboters anhand der Radumdrehungen (Odometrie) ist mit erheblichen Fehlern behaftet, welche sich im Laufe der Zeit sogar akkumulieren. Ohne ein geeignetes Um- gebungsmodell, in dem sich der Roboter selbst lokalisieren kann, ist es sehr schwierig eine gute Positionsschätzung über längere Zeit aufrecht zu erhalten. Gleichzeitig benö- tigt ein Roboter aber eine gute Schätzung seiner Position, um aus seinen Sensordaten eine brauchbare Karte zu erzeugen. Auch ist es kein triviales Problem zu entscheiden, wohin sich ein autonomer Robo- ter bewegen soll, um seine Umgebung effizient zu explorieren. Es stellt sich die Frage, ob man eine Explorationsstrategie wählt durch die der Roboter seine Umgebung mög- lichst schnell abfährt, oder lieber ein Verfahren verwendet, das die Unsicherheit des Roboters über die Umgebung minimiert. Die Komplexität des Problems erhöht sich nochmals, wenn der Roboter neben seiner Unsicherheit in den Sensordaten auch die Unsicherheit in seiner Position berücksichtigen muss. Dabei stellt sich unmittelbar die Frage, ob es sinnvoller ist, zuerst die Unsicherheit des Roboters über seine Umgebung zu minimieren oder aber seine Position genauer zu ermitteln. Deutlich komplexer wird das Problem, wenn man nicht mehr nur rein statische Welten annimmt, sondern berücksichtigt, dass sich dynamische Objekte in der Umge- bung befinden können. Solche beweglichen Objekte können beispielsweise Personen, Autos oder auch Türen sein. Man muss sich dabei fragen, ob man solche dynamischen Objekte aus der Karte entfernen möchte oder einige der Informationen beim Karten- bau berücksichtigen sollte. So macht es beispielsweise Sinn, wenn ein Roboter, der sich auf einem großen Parkplatz bewegt, weiß, wo typischerweise Auto parken und wo nicht. Dieses Wissen kann er dann nutzen, um seine Position robuster zu schätzen. Zusätzlich stellt sich die Frage, wie man eine Gruppe von Robotern koordiniert, da- mit diese eine gemeinsame Aufgabe möglichst effizient lösen können. Exploriert man beispielsweise eine Umgebung mit einem Team von Robotern, kann man erwarten, dass sie diese Aufgabe schneller ausführen können als ein einzelner Roboter. Auf der anderen Seite muss berücksichtigt werden, dass sich die einzelnen Roboter auch ge- genseitig behindern können. So kann beispielsweise schnell ein Stau entstehen, wenn mehrere Roboter gleichzeitig einen engen Korridor oder eine Tür passieren wollen. Man kann die zentralen Fragestellungen beim Lernen von Umgebungsmodellen mit mobilen Robotern wie folgt zusammenfassen: • Wie geht man mit der Unsicherheit in den Sensorinformationen und wie mit den Fehlern in der Positionsmessung des Roboters um? • Wie modelliert man in adäquater Weise die Unsicherheit im Weltmodell des Roboters und wie geht man mit dieser um? • Wie generiert man geeignete Aktionen für einen autonom explorierenden Robo- ter und wie evaluiert man diese? • Wie koordiniert man eine Gruppe von Robotern, so dass sie ihre Aufgabe mög- lichst effizient ausführen können und doppelte Arbeit vermeiden? • Wie geht man mit nichtstatischen Objekten um? Die vorliegende Arbeit behandelt verschiedene Aspekte des Problems der Erstel- lung von Umgebungsmodellen. Dabei beschäftigen wir uns explizit mit den fünf oben aufgezählten Punkte. Ein zentraler Aspekt dieser Arbeit ist die Exploration unbekann- ter Umgebungen oder als Frage formuliert: „Wie sollte sich ein Roboter durch eine un- bekannte Umgebung bewegen, um aus den gewonnenen Sensordaten eine konsistente Karte zu erzeugen?“ Dabei konzentrieren wir uns in dieser Arbeit auf die Redukti- on der Unsicherheit im Umgebungsmodell des Roboters. Wir verfolgen einen Ansatz, der mögliche zukünftige Observationen und deren Auswirkungen auf das Modell des Roboters in die Zielpunktauswahl mit einbezieht. Im ersten Teil der Arbeit wird dabei die Position des Roboters als gegeben angenommen und nur die Unsicherheit in den Observationen und im Umgebungsmodell betrachtet. Des weiteren stellen wir einen Ansatz vor, der es erlaubt, ein Team von Robotern so zu koordinieren, dass diese ihre gemeinsame Explorationsaufgabe schneller lösen können. Die Annahme, dass die Positionsinformation als gegeben vorausgesetzt werden kann, ist in natürlichen Umgebungen nicht gegeben. Daher stellen wir im zweiten Teil dieser Arbeit einen Ansatz zur Lösung des Problems des simultanen Lokalisierens und Kartenlernens vor (engl. simultaneous localization and mapping, SLAM). Das proba- bilistische und auf Partikelfiltern basierende Verfahren ermöglicht es, eine gemeinsame Verteilung über die Trajektorie des Roboters und das Umgebungsmodell zu verwalten. Als Ergebnis erhalten wir ein System, das Karten von verhältnismäßig großen Umge- bungen in Echtzeit erstellen kann. Aufbauend auf diesem Verfahren adaptieren wir unsere Explorationstechnik so, dass diese die Eigenschaften des SLAM Verfahrens berücksichtigt. Wir ermöglichen es dabei dem Roboter Schleifen in der Umgebung zu erkennen und diese aktiv zu schließen. Im Endeffekt führt dies zu besser ausgerichteten Karten im Vergleich zu herkömmlichen Explorationsverfahren. Das bis dahin gewonnene Wissen wird anschließend in ein System integriert. Die- ses konzentriert sich gleichzeitig auf Exploration, Kartenbau und Lokalisierung. Bei der Auswahl der nächsten auszuführenden Aktion betrachtet das System mögliche Sequenzen von Observationen, die der Roboter beim Ausführen der Aktion erhalten könnte. Diese Observationen werden basierend auf der Verteilung über mögliche Um- gebungsmodelle simuliert und deren Auswirkung auf das Gesamtmodell geschätzt. Der Roboter ist dann in der Lage, die Aktion zu wählen, die zur größten erwarteten Minimierung der Unsicherheit über die Umgebung sowie über seine Position führt. Abschließend behandeln wir das Lokalisieren und Kartenbauen in nichtstatischen Umgebungen. Im Vergleich zu den meisten existierenden Ansätzen liegt unser Fokus nicht darauf, dynamische Aspekte aus dem Umgebungsmodell zu entfernen. Statt des- sen erlaubt es unser Verfahren, die möglichen Konfigurationen nichtstatischer Objekte zu bestimmen. Ein klassisches Beispiel stellen Türen dar. Diese sind typischweise ent- weder geschlossen oder offen. Ein Roboter, der sich solches Wissen aneignen kann, ist später in der Lage, sich besser zu lokalisieren als ein Roboter der nur ein statisches Modell seiner Welt besitzt. Der Beitrag dieser Arbeit besteht aus einer Menge von Techniken zum selbststän- digen Erstellen von Umgebungsmodellen. Zusammengefasst liefern unsere Verfahren Lösungen für die folgenden Probleme: • Koordination einer Gruppe von mobilen Robotern, so dass diese eine gemeinsa- me Explorationsaufgabe schneller bewältigen können. • Erzeugung hochauflösender Karten aus unsicheren Sensor- und Odometrieinfor- mationen. • Anpassung einer Explorationsstrategie an ein darunterliegendes Lokalisierungs- und Kartenbausystem, wodurch die resultierenden Umgebungsmodelle weniger Fehler enthalten. • Erzeugung und Beurteilung von Aktionen für einen explorierenden Roboter. Da- bei wird die beste erwartete Aktion unter dem Gesichtspunkt der Minimierung der Unsicherheit im Weltmodell des Roboters ausgewählt. • Erstellen von Karten in Umgebungen, die nichtstatische Objekte enthalten. Da- bei werden typische Zustände der nichtstatische Objekte im Raum modelliert. Dies wiederrum führt zu einer robusteren Positionsschätzung für mobile Robo- ter, die in solchen Umgebungen eingesetzt werden. Abstract odels of the environment are needed for a wide range of robotic applica- tions, from search and rescue to automated vacuum cleaning. Learning maps has therefore been a major research focus in the robotics commu- M nity over the last decades. Robots that are able to acquire an accurate model of their environment on their own are regarded as fulfilling a major precondition of truly autonomous agents. In order to solve the map learning problem, a robot has to address mapping, localization, and path planning at the same time. In general, these three tasks cannot be decoupled and solved independently and map learning is thus referred to as the simultaneous planning, localization, and mapping problem. Because of the coupling between these tasks, this problem is very complex. It can become even
Recommended publications
  • Mapping Why Mapping?
    Mapping Why Mapping? Learning maps is one of the fundamental problems in mobile robotics Maps allow robots to efficiently carry out their tasks, allow localization … Successful robot systems rely on maps for localization, path planning, activity planning etc. The General Problem of Mapping What does the environment look like? The General Problem of Mapping The problem of robotic mapping is that of acquiring a spatial model of a robot’s environment Formally, mapping involves, given the sensor data, d {u1, z1,u2 , z2 ,,un , zn} to calculate the most likely map m* arg max P(m | d) m Mapping Challenges A key challenge arises from the measurement errors, which are statistically dependent Errors accumulate over time They affect future measurement Other Challenges of Mapping The high dimensionality of the entities that are being mapped Mapping can be high dimensional Correspondence problem Determine if sensor measurements taken at different points in time correspond to the same physical object in the world Environment changes over time Slower changes: trees in different seasons Faster changes: people walking by Robots must choose their way during mapping Robotic exploration problem Factors that Influence Mapping Size: the larger the environment, the more difficult Perceptual ambiguity the more frequent different places look alike, the more difficult Cycles cycles make robots return via different paths, the accumulated odometric error can be huge The following discussion assumes mapping with known poses Mapping vs. Localization Learning maps is a “chicken-and-egg” problem First, there is a localization problem. Errors can be easily accumulated in odometry, making it less certain about where it is Methods exist to correct the error given a perfect map Second, there is a mapping problem.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,337,482 B2 Wood, Jr
    US008337482B2 (12) United States Patent (10) Patent No.: US 8,337,482 B2 Wood, Jr. (45) Date of Patent: *Dec. 25, 2012 (54) SYSTEM FOR PERFUSION MANAGEMENT (56) References Cited (75) Inventor: Lowell L. Wood, Jr., Livermore, CA U.S. PATENT DOCUMENTS (US) 3,391,697 A 7, 1968 Greatbatch 3,821,469 A 6, 1974 Whetstone et al. (73) Assignee: The Invention Science Fund I, LLC, 3,941,1273,837,339 A 3,9, 19761974 flagAisenb e tal. Bellevue, WA (US) 3,983.474. A 9/1976 Kuipers 4,054,881 A 10, 1977 Raab (*)c Notice:- r Subject to any disclaimer, the term of this 4,202,3494,119,900 A 10,5/1980 1978 JonesKremnitz patent is extended or adjusted under 35 4.262.306 A 4, 1981 Renner U.S.C. 154(b) by 1417 days. 4.267,831. A 5/1981 Aguilar This patent is Subject to a terminal dis- 2. A 3.18: R et al. claimer. 4,339.953 A 7, 1982 Iwasaki 4,367,741 A 1/1983 Michaels 4,396,885 A 8, 1983 Constant (21) Appl. No.: 10/827,576 4,403,321 A 9/1983 Kriger 4.418,422 A 11/1983 Richter et al. (22) Filed: Apr. 19, 2004 4,431,005 A 2f1984 McCormick 4,583, 190 A 4, 1986 Sab O O 4,585,652 A 4, 1986 Miller et al. (65) Prior Publication Data 4,628,928 A 12/1986 Lowell 4,638,798 A 1/1987 Shelden et al. US 2005/O234399 A1 Oct.
    [Show full text]
  • Simultaneous Localization and Mapping in Marine Environments
    Chapter 8 Simultaneous Localization and Mapping in Marine Environments Maurice F. Fallon∗, Hordur Johannsson, Michael Kaess, John Folkesson, Hunter McClelland, Brendan J. Englot, Franz S. Hover and John J. Leonard Abstract Accurate navigation is a fundamental requirement for robotic systems— marine and terrestrial. For an intelligent autonomous system to interact effectively and safely with its environment, it needs to accurately perceive its surroundings. While traditional dead-reckoning filtering can achieve extremely high performance, the localization accuracy decays monotonically with distance traveled. Other ap- proaches (such as external beacons) can help; nonetheless, the typical prerogative is to remain at a safe distance and to avoid engaging with the environment. In this chapter we discuss alternative approaches which utilize onboard sensors so that the robot can estimate the location of sensed objects and use these observations to improve its own navigation as well its perception of the environment. This approach allows for meaningful interaction and autonomy. Three motivating autonomous underwater vehicle (AUV) applications are outlined herein. The first fuses external range sensing with relative sonar measurements. The second application localizes relative to a prior map so as to revisit a specific feature, while the third builds an accurate model of an underwater structure which is consistent and complete. In particular we demonstrate that each approach can be abstracted to a core problem of incremental estimation within a sparse graph of the AUV’s trajectory and the locations of features of interest which can be updated and optimized in real time on board the AUV. Maurice F. Fallon · Hordur Johannsson · Michael Kaess · John Folkesson · Hunter McClelland · Brendan J.
    [Show full text]
  • 2012 IEEE International Conference on Robotics and Automation (ICRA 2012)
    2012 IEEE International Conference on Robotics and Automation (ICRA 2012) St. Paul, Minnesota, USA 14 – 18 May 2012 Pages 1-798 IEEE Catalog Number: CFP12RAA-PRT ISBN: 978-1-4673-1403-9 1/7 Content List of 2012 IEEE International Conference on Robotics and Automation Technical Program for Tuesday May 15, 2012 TuA01 Meeting Room 1 (Mini-sota) Estimation and Control for UAVs (Regular Session) Chair: Spletzer, John Lehigh Univ. Co-Chair: Robuffo Giordano, Paolo Max Planck Inst. for Biological Cybernetics 08:30-08:45 TuA01.1 State Estimation for Aggressive Flight in GPS-Denied Environments Using Onboard Sensing, pp. 1-8. Bry, Adam Massachusetts Inst. of Tech. Bachrach, Abraham Massachusetts Inst. of Tech. Roy, Nicholas Massachusetts Inst. of Tech. 08:45-09:00 TuA01.2 Autonomous Indoor 3D Exploration with a Micro-Aerial Vehicle, pp. 9-15. Shen, Shaojie Univ. of Pennsylvania Michael, Nathan Univ. of Pennsylvania Kumar, Vijay Univ. of Pennsylvania 09:00-09:15 TuA01.3 Wind Field Estimation for Autonomous Dynamic Soaring, pp. 16-22. Langelaan, Jack W. Penn State Univ. Spletzer, John Lehigh Univ. Montella, Corey Lehigh Univ. Grenestedt, Joachim Lehigh Univ. 09:15-09:30 TuA01.4 Decentralized Formation Control with Variable Shapes for Aerial Robots, pp. 23-30. Attachment Turpin, Matthew Univ. of Pennsylvania Michael, Nathan Univ. of Pennsylvania Kumar, Vijay Univ. of Pennsylvania 09:30-09:45 TuA01.5 Versatile Distributed Pose Estimation and Sensor Self-Calibration for an Autonomous MAV, pp. 31-38. Attachment Weiss, Stephan ETH Zurich Achtelik, Markus W. ETH Zurich, Autonomous Systems Lab. Chli, Margarita ETH Zurich Siegwart, Roland ETH Zurich 09:45-10:00 TuA01.6 Probabilistic Velocity Estimation for Autonomous Miniature Airships Using Thermal Air Flow Sensors, pp.
    [Show full text]
  • Distributed Robotic Mapping
    DISTRIBUTED COLLABORATIVE ROBOTIC MAPPING by DAVID BARNHARD (Under Direction the of Dr. Walter D. Potter) ABSTRACT The utilization of multiple robots to map an unknown environment is a challenging problem within Artificial Intelligence. This thesis first presents previous efforts to develop robotic platforms that have demonstrated incremental progress in coordination for mapping and target acquisition tasks. Next, we present a rewards based method that could increase the coordination ability of multiple robots in a distributed mapping task. The method that is presented is a reinforcement based emergent behavior approach that rewards individual robots for performing desired tasks. It is expected that the use of a reward and taxation system will result in individual robots effectively coordinating their efforts to complete a distributed mapping task. INDEX WORDS: Robotics, Artificial Intelligence, Distributed Processing, Collaborative Robotics DISTRIBUTED COLLABORATIVE ROBOTIC MAPPING by DAVID BARNHARD B.A. Cognitive Science, University of Georgia, 2001 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTERS OF SCIENCE ATHENS, GEORGIA 2005 © 2005 David Barnhard All Rights Reserved DISTRIBUTED COLLABORATIVE ROBOTIC MAPPING by DAVID BARNHARD Major Professor: Dr. Walter D. Potter Committee: Dr. Khaled Rasheed Dr. Suchendra Bhandarkar Electronic Version Approved: Maureen Grasso Dean of the Graduate School The University of Georgia August 2005 DEDICATION I dedicate this thesis to my lovely betrothed, Rachel. Everyday I wake to hope and wonder because of her. She is my strength and happiness every moment that I am alive. She has continually, but gently kept pushing me to get this project done, and I know without her careful insistence this never would have been completed.
    [Show full text]
  • Creativity in Humans, Robots, Humbots 23
    T. Lubart, D. Esposito, A. Gubenko, and C. Houssemand, Creativity in Humans, Robots, Humbots 23 Vol. 8, Issue 1, 2021 Theories – Research – Applications Creativity in Humans, Robots, Humbots Todd Lubart1, 2, Dario Esposito1, Alla Gubenko3, and Claude Houssemand3 1 LaPEA, Université de Paris and Univ. Gustav Eiffel, F-92100 Boulogne-Billancourt, France 2 HSE University, Moscow, Russia 3 Department of Education and Social Work, Institute for Lifelong Learning and Guidance, University of Luxembourg, Luxembourg ABSTRACT This paper examines three ways that robots can inter- KEYWORDS: face with creativity. In particular, social robots which are creation process, human-robot interaction, designed to interact with humans are examined. In the human-robot co-creativity, embodied creativity, first mode, human creativity can be supported by social social robots robots. In a second mode, social robots can be creative agents and humans serve to support robot’s produc- Note: The article was prepared in the framework of a research grant funded by the Ministry of Science and tions. In the third and final mode, there is complemen- Higher Education of the Russian Federation (grant ID: tary action in creative work, which may be collaborative 075-15-2020-928). co-creation or a division of labor in creative projects. Il- lustrative examples are provided and key issues for fur- ther discussion are raised. Article history: Corresponding author at: Received: June 20, 2021 Todd Lubart Received in revised from: July 9, 2021 E-MAIL: [email protected] Accepted: July 9, 2021 ISSN 2354-0036 DOI: 10.2478/ctra-2021-0003 24 Creativity. Theories – Research – Applications, 8(1) 2021 INtrODUctiON Robots are agents equipped with sensors, actuators and effectors which enable them to move and perform manipulative tasks (Russell & Norvig, 2010).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,092,549 B2 Hillis Et Al
    USO08092.549B2 (12) United States Patent (10) Patent No.: US 8,092,549 B2 Hillis et al. (45) Date of Patent: Jan. 10, 2012 (54) CILLATED STENT-LIKE-SYSTEM 4,054,881. A 10/1977 Raab 4,119,900 A 10, 1978 Kremnitz (75) Inventors: E.O O i. CA (US, 4,262,3064,202,349 A 4,5/1980 1981 JonesRenner uriel Y. Snkawa, L1Vermore, 4,314,251 A 2f1982 Raab (US); Clarence T. Tegreene, Bellevue, 4,317,078 A 2/1982 Weed et al. WA (US); Richa Wilson, San Francisco, 4,339.953 A 7, 1982 Iwasaki CA (US); Victoria Y. H. Wood 4,367,741 A 1/1983 Michaels Livermore,s CA (US); Lowell L.s Wood, 4,403,3214,396,885 A 9/19838, 1983 KrigerConstant Jr., Livermore, CA (US) 4.418,422 A 1 1/1983 Richter et al. 4,431,005 A 2f1984 McCormick (73) Assignee: The Invention Science Fund I, LLC, 4,583, 190 A 4, 1986 Sab Bellevue, WA (US) 4,585,652 A 4, 1986 Miller et al. 4,628,928 A 12/1986 Lowell (*)c Notice:- r Subject to any disclaimer, the term of this 4,642,7864,638,798 A 2f19871/1987 SheldenHansen et al. patent is extended or adjusted under 35 4,651,732 A 3, 1987 Frederick U.S.C. 154(b) by 210 days. 4,658,214. A 4, 1987 Petersen 4,714.460 A 12/1987 Calderon (21) Appl. No.: 10/949,186 4,717,381 A 1/1988 Papantonakos 4,733,661 A 3, 1988 Palestrant 1-1.
    [Show full text]
  • Semantic Maps for Domestic Robots Electrical and Computer Engineering
    Semantic Maps for Domestic Robots João Miguel Camisão Soares de Goyri O’Neill Thesis to obtain the Master of Science Degree in Electrical and Computer Engineering Supervisor(s): Prof. Rodrigo Martins de Matos Ventura Prof. Pedro Daniel dos Santos Miraldo Examination Committee Chairperson: Prof. João Fernando Cardoso Silva Sequeira Supervisor: Prof. Rodrigo Martins de Matos Ventura Member of the Committee: Prof. Plinio Moreno López October 2015 ii Resumo Dado o aumento de aplicac¸oes˜ de robosˆ e particularmente de robosˆ de servic¸o, tem surgido na comu- nidade da Inteligenciaˆ artificial a questao˜ de como gerar comportamento inteligente. Embora se tenha ate´ agora respondido a esta questao˜ com modelos muito completos e r´ıgidos do ambiente. Cada vez mais se aborda o problema com modelos mais simples e que podem aparentar ser incompletos mas que na verdade se controem a` medida que interagem com o ambiente tornando-se progressivamente mais eficientes. Neste trabalho sera´ apresentado um mapa semanticoˆ que tera´ o conhecimento funda- mental para completar a tarefa de determinar a localizac¸ao˜ de objectos no mundo. Esta tarefa utiliza o modulo´ de reconhecimento de objectos para experienciar sensorialmente o ambiente, um planeador de acc¸oes˜ e um mapa semanticoˆ que recebe informac¸ao˜ de baixo n´ıvel do reconhecedor e a converte em informac¸ao˜ de alto n´ıvel para o planeador. A sua architectura foi desenhada tendo em conta que e´ suposto que o mapa semanticoˆ seja utilizado por todos os modulos.´ Varios´ testes foram realizados em cenarios´ realistas e utilizando objectos do dia a dia. As experienciasˆ mostram que o uso do mapa semanticoˆ torna o processo mais eficiente a partir da primeira interac¸ao˜ com o ambiente.
    [Show full text]
  • Arxiv:1606.05830V4
    This paper has been accepted for publication in IEEE Transactions on Robotics. DOI: 10.1109/TRO.2016.2624754 IEEE Explore: http://ieeexplore.ieee.org/document/7747236/ Please cite the paper as: C. Cadena and L. Carlone and H. Carrillo and Y. Latif and D. Scaramuzza and J. Neira and I. Reid and J.J. Leonard, “Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age”, in IEEE Transactions on Robotics 32 (6) pp 1309-1332, 2016 bibtex: @articlefCadena16tro-SLAMfuture, title = fPast, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Ageg, author = fC. Cadena and L. Carlone and H. Carrillo and Y. Latif and D. Scaramuzza and J. Neira and I. Reid and J.J. Leonardg, journal = ffIEEE Transactions on Roboticsgg, year = f2016g, number = f6g, pages = f1309–1332g, volume = f32g g arXiv:1606.05830v4 [cs.RO] 30 Jan 2017 1 Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age Cesar Cadena, Luca Carlone, Henry Carrillo, Yasir Latif, Davide Scaramuzza, Jose´ Neira, Ian Reid, John J. Leonard Abstract—Simultaneous Localization And Mapping (SLAM) I. INTRODUCTION consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot LAM comprises the simultaneous estimation of the state moving within it. The SLAM community has made astonishing S of a robot equipped with on-board sensors, and the con- progress over the last 30 years, enabling large-scale real-world struction of a model (the map) of the environment that the applications, and witnessing a steady transition of this technology to industry.
    [Show full text]
  • Autonomous Navigation Framework for Intelligent Robots Based on a Semantic Environment Modeling
    Article Autonomous Navigation Framework for Intelligent Robots Based on a Semantic Environment Modeling Sung-Hyeon Joo 1,† , Sumaira Manzoor 1,† , Yuri Goncalves Rocha 1 , Sang-Hyeon Bae 1 , Kwang-Hee Lee 2 , Tae-Yong Kuc 1,* and Minsung Kim 3 1 Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Korea; [email protected] (S.-H.J.); [email protected] (S.M.); [email protected] (Y.G.R.); [email protected] (S.-H.B.) 2 Robot R&D Group, Korea Institute of Industrial Technology (KITECH), Ansan 15588, Korea; [email protected] 3 Department of Electronic and Electrical Engineering, Dongguk University-Seoul Campus, Seoul 04620, Korea; [email protected] * Correspondence: [email protected] † These authors contributed equally to this work. Received: 17 March 2020; Accepted: 27 April 2020; Published: 5 May 2020 Abstract: Humans have an innate ability of environment modeling, perception, and planning while simultaneously performing tasks. However, it is still a challenging problem in the study of robotic cognition. We address this issue by proposing a neuro-inspired cognitive navigation framework, which is composed of three major components: semantic modeling framework (SMF), semantic information processing (SIP) module, and semantic autonomous navigation (SAN) module to enable the robot to perform cognitive tasks. The SMF creates an environment database using Triplet Ontological Semantic Model (TOSM) and builds semantic models of the environment. The environment maps from these semantic models are generated in an on-demand database and downloaded in SIP and SAN modules when required to by the robot. The SIP module contains active environment perception components for recognition and localization.
    [Show full text]
  • A SLAM-Based Approach for Underwater Mapping Using Auvs with Poor Inertial Information
    A SLAM-based Approach for Underwater Mapping using AUVs with Poor Inertial Information Marcus Hammond and Stephen M. Rock Department of Aeronautics & Astronautics Stanford University Abstract—This paper presents a SLAM-based approach for creating maps of underwater terrain using AUVs with poor inertial information. The initial motivating application for this work was mapping in the non-inertial frame of a free-drifting Antarctic iceberg, but poor inertial information can also occur if low-cost, high drift inertial instrumentation is used in standard mapping tasks, or if DVL bottom lock is lost during the mission. This paper presents a SLAM-based approach in which features are extracted from concatenated multibeam data and descriptors are created, allowing these features to be compared against past terrain as the vehicle traverses the area. There have been a number of previous research efforts that used feature-based SLAM techniques for underwater mapping, but they have generally made assumptions or relied on sensors that are inconsistent with this paper’s motivating application, such as a flat bottom, the availability of visual imagery, or manmade fiducial markers. The method presented here uses natural terrain, is robust to water turbidity, and can be used in areas with vertical terrain like the walls of canyons and icebergs. Results are presented on data collected from Monterey Canyon using a vehicle with a high-grade IMU but that lost DVL bottom lock during the mapping run. I. INTRODUCTION The work presented in this paper aims to enable high- precision mapping of underwater surfaces using vehicles equipped with low-precision inertial sensors and without ex- Fig.
    [Show full text]
  • Autonomous Mapping Robot
    AUTONOMOUS MAPPING ROBOT A Major Qualifying Project Report: submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science by _____________________________ Jonathan Hayden _____________________________ Hiroshi Mita _____________________________ Jason Ogasian Date: April 21, 2009 Approved: _____________________________ R. James Duckworth, Major Advisor _____________________________ David Cyganski, Co-Advisor I Abstract The purpose of this Major Qualifying Project was to design and build a prototype of an autonomous mapping robot capable of producing a floor plan of the interior of a building. In order to accomplish this, several technologies were combined including, a laser rangefinder, ultrasonic sensors, optical encoders, an inertial sensor, and wireless networking to make a small, self-contained autonomous robot controlled by an ARM9 processor running embedded Linux. This robot was designed with future expansion in mind. I Acknowledgements There are many people who deserve thanks for their help with this project. First we would like to thank our advisors for this project: professors Duckworth and Cyganski, without whom this project would not have been possible at all. We would also like to thank Tom Angelotti in the ECE shop for all of his help, as well as the many other members of Worcester Polytechnic Institute’s Department of Electrical and Computer Engineering who provided assistance along the way. Finally we would like to thank the Department of Electrical
    [Show full text]