Constructing p, n-forms from p-forms via the Hodge star operator and the exterior derivative Jun-Jin Peng1,2∗ 1School of Physics and Electronic Science, Guizhou Normal University, Guiyang, Guizhou 550001, People’s Republic of China; 2Guizhou Provincial Key Laboratory of Radio Astronomy and Data Processing, Guizhou Normal University, Guiyang, Guizhou 550001, People’s Republic of China Abstract In this paper, we aim to explore the properties and applications on the operators consisting of the Hodge star operator together with the exterior derivative, whose action on an arbi- trary p-form field in n-dimensional spacetimes makes its form degree remain invariant. Such operations are able to generate a variety of p-forms with the even-order derivatives of the p- form. To do this, we first investigate the properties of the operators, such as the Laplace-de Rham operator, the codifferential and their combinations, as well as the applications of the arXiv:1909.09921v2 [gr-qc] 23 Mar 2020 operators in the construction of conserved currents. On basis of two general p-forms, then we construct a general n-form with higher-order derivatives. Finally, we propose that such an n-form could be applied to define a generalized Lagrangian with respect to a p-form field according to the fact that it incudes the ordinary Lagrangians for the p-form and scalar fields as special cases. Keywords: p-form; Hodge star; Laplace-de Rham operator; Lagrangian for p-form. ∗
[email protected] 1 1 Introduction Differential forms are a powerful tool developed to deal with the calculus in differential geom- etry and tensor analysis.