Surveying and Levelling Instruments, Theoretically and Practically Described

Total Page:16

File Type:pdf, Size:1020Kb

Surveying and Levelling Instruments, Theoretically and Practically Described : . : ,;.:. >,;,-y : STANLEYS SURVEYING INSTRUMENTS * <^ SURVEYING AND LEVELLING INSTRUMENTS THEORETICALLY AND PRACTICALLY DESCRIBED FOR CONSTRUCTION, QUALITIES, SELECTION, PRESERVATION, ADJUSTMENTS, AND USES; WITH OTHER APPARATUS AND APPLIANCES USED BY CIVIL ENGINEERS AND SURVEYORS BY WILLIAM FORD STANLEY Optician, Manufacturer of Surveying and Drawing Instruments, Author of a Treatise on Drawing Instruments, Properties and Motions of Fluids, &c. LONDON: E. & F. N. SPON, 125 STRAND NEW YORK: 446 BROOME STREET AND OF THE AUTHOR, GREAT TURNSTILE, HOLBORN, LONDON, VV.C. 1890 PREFACE NOTES were taken for many years before the production of this work of queries that came before the author for reply relative to functional parts of surveying instru- ments. These bore most frequently reference to optical and magnetical subjects and to the qualities and action of spirit level tubes, also occasionally to graduation and the qualities of clamp and tangent motions. It was therefore thought that it would be useful to give notes upon these subjects in detail as far as possible in early chapters. As the work proceeded it was found that this plan saved much space, in avoiding the necessity for separate descriptions when complex instruments were afterwards described. To show the state of the art and render the work useful, it was necessary that the structure of surveying instruments should be given With sufficient detail to be worked out by the skilful manufacturer. Beyond this it was thought to be most important that the professional man, who must have limited experience of the qualities of workmanship, should be supplied with as many simple tests as possible for assuring the qualities of the instru- ments he might purchase or use, with details also of their adjustments. This matter is therefore carried into detail for one instrument at least of each class, as very little general information is to be found on the subject IV PREFACE. in our literature. In fact, large groups of instruments in extensive use, such as those for mining surveying, and subtense instruments, have remained heretofore nearly undescribed in our language. The technical principles followed in working out details in these pages are given by illustrations of such parts of important instruments as present any difficulty of observation from an exterior view of the engraving of the entire instrument. The plans of construction thought to be the best are selected for illustration. Certain constructions that are liable to failure are pointed out. Many recent improvements in instruments are recognized and some are suggested, but no attempt has been made to record the little differences of construction, often meritorious, which give only a certain amount of style to the work of each country and of each individual. Upon this point it must occur that the work done in any shop must vary from other work according to the skill and judgment of the master. It is intended, there- fore, that distinctly typical instruments only should be described, in a manner that details may be worked out therefrom. To make this matter as clear as possible, with few exceptions these pages were written in the presence of the instruments described, and the illus- trations, when not taken directly from the instruments, were taken from workshop drawings to a reduced scale. In practice it is found that instruments performing similar functions may be very much varied in construc- tion, bearing reference frequently to the conditions under which they are to be used. The same may be said of the functional parts of instruments. We may also PREFACE. V observe that English instruments differ in detail from foreign ones, and upon this point there is no doubt much may be learned by comparison of some details of English and foreign work, although our own is admitted to rank high. Comparisons are therefore freely made in the following pages, and suggestions offered after study abroad of foreign work and careful inspection of nearly the whole literature upon the subject, in which it is very observable that Continental books, treating of parts of the subject, are much in advance of our own. The surveying instruments described in these pages are nearly limited to those used in the field. Instru- ments for plan drawing and calculation of areas, which the surveyor uses in the office, have been described in the author's work on drawing instruments (sixth edition), to which this is intended to be the complement of the subject. To render the work as complete as possible it was thought to be necessary to give briefly the manner of using many instruments in practical surveying. This part of the subject, from the author's very limited ex- perience in the field, is largely taken from inspection of the best works on surveying. The author, however, is very pleased to acknowledge the kindness of many pro- fessional friends for assistance on this and many other points, and for historical notes. For the description of the 36 -inch theodolite, given in chapter VII., the author is indebted to the late Col. A. Strange, F.R.S., who gave every detail of his design and discussed many points. The author is also indebted to Mr. Thomas Gushing, F.R.A.S., Inspector of Scientific Instruments VI PREFACE. for India, who has given information and his opinions upon many subjects from his large practical experience. Also to Prof. George Fuller, C.E., who has kindly read proofs, examined formulae, and made some technical points to Mr. Inst. clearer. Also W. N. Bakewell, M. C. E. ; A. R.E. Major -General De Lisle, ; Right Hon. Lord Rayleigh, F.R.S., for assistance on several technical points. In this first edition, entirely from manuscript, there will no doubt be errors and omissions; therefore the author will feel obliged by the receipt of any notes that he may make use of for future corrections, should another edition be demanded. CONTENTS CHAPTER I. PAGE INTRODUCTION: Historical Sketch Classification of the Subject Purposes and Qualities of Instruments Workmanship Metals Framing Tools Axes of Instruments Soldering Finishing Bronzing Lacquering Graduating Engraving Glass - work Wood - work Lubrication Preservation of Instruments Packing ........ i CHAPTER II. THE TELESCOPE AS A PART OF A SURVEYING INSTRUMENT : General Description Qualities; Optical Principles Re- fraction of Glass Limit of Refraction Reflection Prisms Lenses, Convex and Concave Aberration Formation of Images Dispersion Achromatism Curvature of Lenses Telescopes Eye-pieces Powers Dynameter Construction of the Telescope, Diaphragm Webs Parallax Examination and Adjustment 24 CHAPTER III. THE MAGNETIC COMPASS AS A PART OF A SURVEYING INSTRU- MENT OR SEPARATELY: Broad and Edge -bar Needles Manufacture of the Needle Magnetization Suspension Dip and Adjustment Lifting Inclination Declination Variation Correction Compass-boxes Preservation of Magnetism Description of Compasses Ring Compasses Trough Compasses Prismatic Compasses Stand Survey- ing with Compass Pocket Compasses . '. 58 Vlll CONTENTS. CHAPTER IV. PAGE LEVELS : Methods of Ascertaining Level Tubes Manufacture Curvature Sensitiveness Testing Reading Surveyors' Levels Y-Level Parallel Plates Adjustments of Y-Levels Suggested Improvements Dumpy Level Tripod Stands Adjustment of Dumpy Collimator Improvements in Dumpy Level Tribrach Head Diaphragms Cushing's Level Cooke's Level Cheap Forms of Level ... 85 CHAPTER V. LEVELLING STAVES : Construction Various Readings Dis- cussed Sopwith's Field's --Strange's Stanley's New Metrical Simple Construction Mining Staff Papering Levelling Staves Preservation Packing Pads Staff Plate Staff Level Practice of Levelling Index of Bubble Lamp Curvature Corrections Station Pegs Refinement of Levelling Levelling Books Ink Bottle, etc. .139 CHAPTER VI. DIVISION OF THE CIRCLE AND METHODS EMPLOYED IN TAKING ANGLES : Dividing Engine Surfaces for Graduation Vernier Various Sections Reading Microscopes Shades Micrometers Clamp and Tangent Motions of Limbs of Axes Use and Wear Difference of Hypotenuse and Base 168 CHAPTER VII. THEODOLITES: 5-inch and 6-inch Transits Construction Additional Parts Plummet Striding Level Lamp Adjustment of Axis over a Point Burt's Solar Attachment 8-inch and Larger Instruments Everest's Tribrach Plain Theodolites French Instruments Everest's Theodo- lite Stanley's New Model Mechanical Tribrach Stage CONTENTS. IX PAGE Altazimuth Theodolite Great Indian Theodolite Simple Theodolite Mountain Theodolite Examination and Adjustments . 202 CHAPTER VIII. MINING SURVEY INSTRUMENTS : Circumferenters Plain Miner's Dial Sights Tripod Stand Adjustments Henderson's Dial Lean's Dial Adjustments Hedley's Dial Additional Telescope Improved Hedley Tribrach and Ball Adjust- ment Reflectors Continental Forms Theodolite Souterrain Tripod Tables Stanley's Mining Theodolite Pastorelli's, Hoffmann's, and Doering's Adjustable Tripod Heads Mining Transit Theodolites Stanley's Prismatic Mining Compass Hanging Dial Hanging Clinometer Semi- circumferenter Mining Lamps ...... 276 CHAPTER IX. INSTRUMENTS TO MEASURE SUBTENSE OR TANGENTIAL ANGLES TO ASCERTAIN DISTANCES : Historical Notes of the Method Principles Involved Stadia Measurements, Direct and by the Ordinary Telescope Corrections for Refraction of the Object-glass Anallatic Telescope of Porro The Cleps - Tacheometers Stadia Field-book Wagner - Fennel Tacheometer Co - ordinate Protractor Omnimeter Field - book Bakewell's Subtense Arrangement . 318 CHAPTER X. INSTRUMENTS OF REFLECTION : Octant or Quadrant Reflecting Circle Sextant Principle Parallax
Recommended publications
  • Articles Articles
    Articles Articles ALEXI BAKER “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Résumé Abstract On représente souvent les instruments scientifiques Early modern British “scientific” instruments, including du 18e siècle, y compris les chronomètres de précision, precision timekeepers, are often represented as static, comme des objets statiques, à l’état neuf et complets en pristine, and self-contained in 18th-century depictions eux-mêmes dans les descriptions des débuts de l’époque and in many modern museum displays. In reality, they moderne et dans de nombreuses expositions muséales were almost constantly in physical flux. Movement and d’aujourd’hui. En réalité, ces instruments se trouvaient changing and challenging environmental conditions presque constamment soumis à des courants physiques. frequently impaired their usage and maintenance, Le mouvement et les conditions environnementales especially at sea and on expeditions of “science” and difficiles et changeantes perturbaient souvent leur exploration. As a result, individuals’ experiences with utilisation et leur entretien, en particulier en mer et mending and adapting instruments greatly defined the lors d’expéditions scientifiques et d’exploration. Ce culture of technology and its use as well as later efforts sont donc les expériences individuelles de réparation at standardization. et d’adaptation des instruments qui ont grandement contribué à définir la culture de la technologie. In 1769, the astronomer John Bradley finally the calculation of the distance between the Earth reached the Lizard peninsula in Cornwall and the Sun. Bradley had not needed to travel with his men, instruments, and portable tent as far as many of his Transit counterparts, but observatory after a stressful journey.
    [Show full text]
  • Three Viable Options for a New Australian Vertical Datum
    Journal of Spatial Science [submitted] THREE VIABLE OPTIONS FOR A NEW AUSTRALIAN VERTICAL DATUM M.S. Filmer W.E. Featherstone Mick Filmer (corresponding author) Western Australian Centre for Geodesy & The Institute for Geoscience Research, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia Telephone: +61-8-9266-2582 Fax: +61-8-9266-2703 Email: [email protected] Will Featherstone Western Australian Centre for Geodesy & The Institute for Geoscience Research, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia Telephone: +61-8-9266-2734 Fax: +61-8-9266-2703 Email: [email protected] Journal of Spatial Science [submitted] ABSTRACT While the Intergovernmental Committee on Surveying and Mapping (ICSM) has stated that the Australian Height Datum (AHD) will remain Australia’s official vertical datum for the short to medium term, the AHD contains deficiencies that make it unsuitable in the longer term. We present and discuss three different options for defining a new Australian vertical datum (AVD), with a view to encouraging discussion into the development of a medium- to long-term replacement for the AHD. These options are a i) levelling-only, ii) combined, and iii) geoid-only vertical datum. All have advantages and disadvantages, but are dependent on availability of and improvements to the different data sets required. A levelling-only vertical datum is the traditional method, although we recommend the use of a sea surface topography (SSTop) model to allow the vertical datum to be constrained at multiple tide-gauges as an improvement over the AHD. This concept is extended in a combined vertical datum, where heights derived from GNSS ellipsoidal heights and a gravimetric quasi/geoid model (GNSS-geoid) at discrete points are also used to constrain the vertical datum over the continent, in addition to mean sea level and SSTop constraints at tide-gauges.
    [Show full text]
  • Refraction Correction in Precise Leveling Observations for National Leveling Network First Order
    Geodesy and Cartography ISSN 2029-6991 / eISSN 2029-7009 2020 Volume 46 Issue 4: 159–162 https://doi.org/10.3846/gac.2020.11555 UDC 528.375 REFRACTION CORRECTION IN PRECISE LEVELING OBSERVATIONS FOR NATIONAL LEVELING NETWORK FIRST ORDER Nikolay DIMITROV *, Ivan GEORGIEV, Petar DANCHEV National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria Received 18 November 2019; accepted 05 December 2020 Abstract. The paper deals with some problems when applying a correction to reduce the effect of vertical refraction in pre- cise leveling observation. An example for calculating the refraction correction for one first order leveling line with length of 109 km in Bulgaria is given. Comparison between the obtained errors before and after applying refraction correction has been made. The results show that is important to measure the temperatures simultaneously with the leveling by aspiration thermometer with an accuracy of ±0.1 °C. It is recommended to make experimental research and to adopt appropriate for Bulgaria model for taking into account the influence of vertical refraction. Keywords: precise leveling, atmospheric refraction, national leveling network, leveling line, refraction correction, air tem- perature gradient. Introduction 1. Theoretical background Atmospheric refraction is the deflection of light or other The refraction correction for geodetic leveling must be electromagnetic waves from the straight line due to the applied to each single set-up (Kukkamäki, 1939) and is change in air density as a function of the height above given by: 2 the ground. Refraction is due to a reduction in the speed R=−×2 10−6 AS( / 50) ∆ t∆ h, (1) of light as the air layer density increases.
    [Show full text]
  • “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18Th Century Alexi Baker
    Document generated on 09/29/2021 11:28 a.m. Material Culture Review “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century Alexi Baker Volume 74-75, 2012 Article abstract Early modern British “scientific” instruments, including precision timekeepers, URI: https://id.erudit.org/iderudit/mcr74_75art01 are often represented as static, pristine, and self-contained in 18th-century depictions and in many modern museum displays. In reality, they were almost See table of contents constantly in physical flux. Movement and changing and challenging environmental conditions frequently impaired their usage and maintenance, especially at sea and on expeditions of “science” and exploration. As a result, Publisher(s) individuals’ experiences with mending and adapting instruments greatly defined the culture of technology and its use as well as later efforts at standardization. National Museums of Canada ISSN 0316-1854 (print) 0000-0000 (digital) Explore this journal Cite this article Baker, A. (2012). “Precision,” “Perfection,” and the Reality of British Scientific Instruments on the Move During the 18th Century. Material Culture Review, 74-75, 14–29. All rights reserved © National Museums of Canada, 2011 This document is protected by copyright law. Use of the services of Érudit (including reproduction) is subject to its terms and conditions, which can be viewed online. https://apropos.erudit.org/en/users/policy-on-use/ This article is disseminated and preserved by Érudit. Érudit is a non-profit inter-university consortium of the Université de Montréal, Université Laval, and the Université du Québec à Montréal. Its mission is to promote and disseminate research.
    [Show full text]
  • Contrastive Analysis of English and Polish Surveying Terminology
    Contrastive Analysis of English and Polish Surveying Terminology Contrastive Analysis of English and Polish Surveying Terminology By Ewelina Kwiatek Contrastive Analysis of English and Polish Surveying Terminology, by Ewelina Kwiatek This book first published 2013 Cambridge Scholars Publishing 12 Back Chapman Street, Newcastle upon Tyne, NE6 2XX, UK British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library Copyright © 2013 by Ewelina Kwiatek All rights for this book reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior permission of the copyright owner. ISBN (10): 1-4438-4410-1, ISBN (13): 978-1-4438-4410-9 TABLE OF CONTENTS List of Illustrations ................................................................................... viii List of Tables............................................................................................... x Preface....................................................................................................... xii Introduction .............................................................................................. xiii Chapter One................................................................................................. 1 Creating a Termbase for Surveying Terminology 1.1 Theoretical backgrounds 1.1.1 The mainstream approach 1.1.2 Sociocognitive approach 1.1.3 FrameNet 1.1.4
    [Show full text]
  • Investigation of Refraction in the Low Atmosphere
    INVESTIGATION OF REFRACTION IN THE LOW ATMOSPHERE By K. HORV_,\.TH Department of Survey. Technical university. Budapest (Received Alay 29, 1969) Presented by Ass. Prof. Dr. F. SAHKOZY 1. Significance of the refraCtion in surveying Light crosses vacuum and media of con:3tant (homogeneous) physical state in a straight line, hut in the free atmo:3phere the propagation of light is perccptibly influenced by temperature. humidity. pressure and carbon dioxide content of the air. Exploration of the atmosphere became necessary for the theoretical and practical geodesy to achieve a higher precision. In the course of centuries, instruments and methods of surveying made a remarkable advance. Theoreti­ cal and technical conditions of a high precision seemed to he assured, but the a:3sumption made on thc ambieucy of measurements i. e., on the free atmo­ sphere, differed from reality. The atmosphere envelops the earth in strata of different densities. in first approximation in the form of concentric spherical shells. Optical propertip,. of the strata of air of different densities, and thereby refractive indexes are al"o different. According to the known optical law-, the light beam passing from a medium of a smaller refractive index to a medium of a greater one is dcflected towards the normal to the interfacc, and inversely. The free atmosphere is, however, not composed of spherical shells of different densities but the physical factors affecting the refractive index arc­ changing continuously and thus, the light beam follows a curvilinear path_ In geodesy, the path of propagation of the light is referred to as refraction curve, whilst the angle between the rectilinear propagation and the real path of light is called the angle of refraction; the ratio of the radius of earth assumed to be spherical to that of the refraction curve a:3snmed to be a circular arc.
    [Show full text]
  • United States National Museum
    ? Lat. Capitol, .58:.^,5, N. lEBBf/^ Lonl 0: 0. l/BEiF) ]E/iEP^ cnLVv ,Ei^tS^ "tnnB EEC^ ^^ferjtiBt^ GEOKGEnnnnDco\\T 3Er^t> ^«r;j]p prac^ iSlilEEBiR up 13 0BSERT^\TI0]VS explanatory of the 1. lHE-f>csitto,isJ,rthc ili/jrrent Jiflifirc.,, m„7/h- //i several S^uairs cr. 4rca., ofdi^eni shxfts. as tha, an htd ^ rlvun,. utrejirst detcniuned vn t/„ „„^t ,uh„„tar^,,,s ,;n;„u/, ^ m„mar.dn,r^ ,Ar „„^r r.vh„st,rfirasfjrrfs, and du letter s,ucrphH^ >fsuc/, nuf„-r,rn,n,Ts. a., nt/.rr ase or ,.r„a,„n,l ,„a>, /.nra,ln^- 11. L.INi:S or. irrnues rfdirrct ronn,n„ar„tw„ /.mr Orrn dn, b> co„nrrr thr .,.,,„rnte „ud .„os, d,.,fan, oh,rrt. ,n,/, d,e pnnrn, and y,„.nr //„„,/, ,/,, ,,/,./. a rrri^, rr,,,,,.;:.,„J,j f,^,,i, ^^'''f'r'; /'^s /rrn^uf fo d,r/,a^^,,>; ,fr/u^., f„,,/,,,,:_ y„,^,„^.. ,„^^ moMJarcrohh r^,r,o<d /,:,y.n.,^rf and rrarr,an,rr. M.JfojtrB and Aon,/, l.nrs .nUrseCrd In, rtUrs n..,„.a, due Eas, a„d fn.r., hare f.rn so co,nhu,ed a, A, ».rr, a, crrUa,, .pj„f,..n„s ,,,7/ ,(,,.„ ^nnyral. i.r„ar... ,,o a., to on //>r A).„er., f,r,„ '//rst drf'r,„u,rdr ,/, SmmrfS cr. /rras. Scale of Poles, 6i<c -Prirs. f)' Iiirbrs. ''^ idCrrfk S .-^^pf the CITY o£^ ( of Coliunbia, ) ) r. / r "^n tKe TprrifoF>' "^^^^ ceded hv the States of ^^-^ Virgi:n^ia and Maryla:nd I '-'-ft a , i&s Cfimti0 5^tat<8 OF x!i\\\ix\tiK\ aiK^ ,7^I'll l/icin endNi.ilirfl <i.> llie Seat <?/ then tir/e/- r/if '//^///' md6cc.
    [Show full text]
  • NOAA Technical Memorandum NOS NGS 34 CORRECTIONS APPLIED
    NOAA Technical Memorandum NOS NGS 34 CORRECTIONS APPLIED BY THE NATIONAL GEODETIC SURVEY TO PRECISE LEVELING OBSERVATIONS Rockville , Md. June 1982 U.S. DEPARTMENT OF National Oceanic and National Ocean COMMERCE Atmospheric Administration I Survey NOAA Technical Memorandum NOS NGS 34 CORRECTIONS APPLIED BY THE NATIONAL GEODETIC SURVEY TO PRECISE LEVELING OBSERVATIONS Emery I. Balazs Gary M. Young National Geodetic Survey Rockville , Md. June 1982 UNITED STATES Nat~onalOcean~c and Nal~onalOcean DEPARTMENT OF COMMERCE Atrnosphenc Adrn~n~stratmn Survey Malcolm Baldr~ge.Secretary John V Byrne Adrn~n~stralor Herbert R Llppold Jr D~rector CONTENTS Abstract ................................................................... 1 Introduction .............................................................. 1 Rod scale correction based on the calibration of several rod graduations ......................................................... 2 Rod scale correction based on the calibration of all rod graduations............................................................. 3 Rod temperature correction................................................ 3 Level collimation correction....................................... 4 Refraction correction.................................................. 5 Astronomic correction................................................. 6 Orthometric correction.................................................... 8 Height systems ............................................................ 9 Acknowledgments ..........................................................
    [Show full text]
  • Corrective Surface for GPS-Levelling in Moldova
    Corrective Surface for GPS-levelling in Moldova Uliana Danila Master’s of Science Thesis in Geodesy TRITA-GIT EX 06-001 Geodesy Report No. 3089 Royal Institute of Technology (KTH) School of Architecture and the Built Environment 100 44 Stockholm, Sweden January 2006 Acknowledgements I would like to express my sincerest gratitude to my supervisor Professor Lars E. Sjöberg, for his guidance throughout my thesis study. His encouragement and advice are greatly appreciated. I thank to Dr. Huaan Fan for introducing me to the subject of physical geodesy and Ph.D. Ramin Kiahmer is also acknowledged for answering various questions throughout my study. The Institute of Geodesy, Technical Research and Cadastre from Moldova is gratefully acknowledged for making the data available. My Master’s of Science studies at KTH have been financed by the Tempus project (nr: JEP-24243-2004) conducted jointly by KTH and Technical University of Moldova. This support is cordially acknowledged. ii Abstract The main objective of this thesis is the construction of a corrective surface in the Moldova area for further conversion of the geodetic heights into normal heights. For this purpose a detailed analysis of the optimal combination of heterogeneous height data is presented, with particular emphasis on (i) modeling systematic errors and datum inconsistencies, (ii) separation of random errors and estimation of variance components for each height type, and (iii) practical considerations for modernizing vertical control systems. Although the theoretical relationship between geodetic, normal heights and height anomalies is simple in nature, its practical implementation has proven to be quite challenging due to numerous factors that cause discrepancies among the combined height data.
    [Show full text]
  • Scientific American INVENTIONS and DISCOVERIES
    11164 Carlisle_ffirs.m.qxd 5/26/04 9:58 AM Page iii Scientific American INVENTIONS AND DISCOVERIES All the Milestones in Ingenuity— from the Discovery of Fire to the Invention of the Microwave Oven RODNEY CARLISLE John Wiley & Sons, Inc. 11164 Carlisle_ffirs.m.qxd 5/26/04 9:58 AM Page iii 11164 Carlisle_ffirs.m.qxd 5/26/04 9:58 AM Page i Scientific American INVENTIONS AND DISCOVERIES 11164 Carlisle_ffirs.m.qxd 5/26/04 9:58 AM Page ii 11164 Carlisle_ffirs.m.qxd 5/26/04 9:58 AM Page iii Scientific American INVENTIONS AND DISCOVERIES All the Milestones in Ingenuity— from the Discovery of Fire to the Invention of the Microwave Oven RODNEY CARLISLE John Wiley & Sons, Inc. 11164 Carlisle_ffirs.m.qxd 5/26/04 9:58 AM Page iv This book is printed on acid-free paper. ●∞ Copyright © 2004 by Rodney Carlisle. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.
    [Show full text]
  • Next Generation Height Reference Frame
    NEXT GENERATION HEIGHT REFERENCE FRAME PART 2/3: USER REQUIREMENTS Nicholas Brown, Geoscience Australia Nicholas Bollard, RMIT University Jack McCubbine, Geoscience Australia Will Featherstone, Curtin University 0 <Insert Report Title> Document Control Version Status & revision notes Author Date 0.1 Initial draft Nicholas Brown 31/1/2018 0.2 Update to make it clear that the scope of the project is to Nicholas Brown 16/3/2018 assess user requirements for a height reference frame to be available alongside AHD 1.0 Incorporate feedback from User Requirements study Nicholas Brown 8/11/2018 1.1 Incorporate feedback from Jack McCubbine Nicholas Brown 20/11/2018 2.0 Review and alignment with Technical Options document Nicholas Brown 23/11/2018 and Executive Summary 2.1 Minor adjustments following review by Jack McCubbine Nicholas Brown 3/12/2018 2.2 Minor adjustments following review by Nic Gowans, Mick Nicholas Brown 17/12/2018 Filmer and Jack McCubbine 3.0 Minor corrections following a review by Phil Collier Nicholas Brown 14/2/2019 1 Next Generation Height Reference Frame Contents 1. PURPOSE AND SCOPE ............................................................................................................ 3 2. INTRODUCTION .................................................................................................................... 3 2.1 Changing world of geospatial .......................................................................................... 3 2.2 Introduction to the AHD ................................................................................................
    [Show full text]
  • CPCCCA3023A Carry out Levelling Operations Student Learning
    CPCCCA3023A Carry out levelling operations Student Learning Resource Type Title Issue Version Ref Release date LR CPCCCA3023A 1 7 Carry out levelling operations 14/12/2017 Page 1 of 47 Contents Student Learning Resource 1 Student Information 3 UNIT DESCRIPTOR 4 Introduction 6 Different types of levelling procedures 7 Fundamental parts of a level 9 Setting up and using an automatic level 12 Principles of reading the staff 15 Levelling Calculations 18 General Description of a Surveyor’s Level 18 Level Reductions 19 TRAVERSING 22 There are two Methods of Levelling 24 A. Height of Collimation Method: 24 B. Rise and Fall Method: 24 Signal emitting levels (SEL) 28 Recording 31 Calculating the Rise and Fall 33 CALCULATING DISTANCES USING STADIA LINES 38 Sources of Errors in Stadia Work 39 Staff readings 40 BONING RODS 41 SPIRIT LEVEL AND STRAIGHT EDGE 41 Self Check Error! Bookmark not defined. Type Title Issue Version Ref Release date LR CPCCCA3023A 1 7 Carry out levelling operations 14/12/2017 Page 2 of 47 Student Information Purpose: The purpose of this learning package is to help you understand the technical and theoretical knowledge and associated skills of your selected trade area. This package contains a number of learning and associated documents for this unit of competency. Please read all parts of this package to ensure that you complete and manage the process correctly. This assessment tools address the mandatory requirements of the unit of competency including, evidence requirements, range statements and the required skills and knowledge to achieve the learning outcomes indicated in the document.
    [Show full text]