Next Generation Height Reference Frame

Total Page:16

File Type:pdf, Size:1020Kb

Next Generation Height Reference Frame NEXT GENERATION HEIGHT REFERENCE FRAME PART 2/3: USER REQUIREMENTS Nicholas Brown, Geoscience Australia Nicholas Bollard, RMIT University Jack McCubbine, Geoscience Australia Will Featherstone, Curtin University 0 <Insert Report Title> Document Control Version Status & revision notes Author Date 0.1 Initial draft Nicholas Brown 31/1/2018 0.2 Update to make it clear that the scope of the project is to Nicholas Brown 16/3/2018 assess user requirements for a height reference frame to be available alongside AHD 1.0 Incorporate feedback from User Requirements study Nicholas Brown 8/11/2018 1.1 Incorporate feedback from Jack McCubbine Nicholas Brown 20/11/2018 2.0 Review and alignment with Technical Options document Nicholas Brown 23/11/2018 and Executive Summary 2.1 Minor adjustments following review by Jack McCubbine Nicholas Brown 3/12/2018 2.2 Minor adjustments following review by Nic Gowans, Mick Nicholas Brown 17/12/2018 Filmer and Jack McCubbine 3.0 Minor corrections following a review by Phil Collier Nicholas Brown 14/2/2019 1 Next Generation Height Reference Frame Contents 1. PURPOSE AND SCOPE ............................................................................................................ 3 2. INTRODUCTION .................................................................................................................... 3 2.1 Changing world of geospatial .......................................................................................... 3 2.2 Introduction to the AHD ................................................................................................. 3 2.3 Problems with the AHD ................................................................................................... 4 3. STAKEHOLDER SURVEY ......................................................................................................... 5 3.1 Analysis methodology ..................................................................................................... 5 3.2 Overview of respondents ................................................................................................ 5 3.3 User satisfaction with AHD .............................................................................................. 5 3.4 Access and efficiency of AHD .......................................................................................... 7 3.5 Accuracy of AHD ............................................................................................................ 8 3.6 Why respondents use AHD ............................................................................................. 9 3.7 Using an alternative height reference frame ................................................................... 10 3.8 Monuments or model .................................................................................................... 11 3.9 Summary ..................................................................................................................... 11 4. RECOMMENDATIONS ........................................................................................................... 14 4.1 Choice of reference frame ............................................................................................. 14 4.2 Name of reference frame .............................................................................................. 14 4.3 Communication and Education ...................................................................................... 14 4.4 Tools / Products ........................................................................................................... 14 4.5 Future Work................................................................................................................. 15 APPENDIX A: STAKEHOLDER SURVEY .......................................................................................... 16 2 Next Generation Height Reference Frame 1. Purpose and Scope The purpose of this study was to assess both the User Requirements (Part 2/3) for height determination and the Technical Options (Part 3/3) which could be implemented to meet the user requirements. The only other user requirements study of physical heights in Australia was undertaken in 1988 (Kearsley, 1988) which predates the widespread use of GNSS. Given the technological advances of the past two decades and the modern methods some now use to access physical heights, we felt it necessary to reach out to the user community to assess their needs for physical heights now and into the future. The results of the user requirements study should be reviewed in conjunction with the technical options report which reviews the height system and height datum options which could be implemented in Australia based on current and future data holdings. The objective is to identify what requirements users have for height datums in Australia and what can technically be developed to provide users with what they need. The Executive Summary (Part 1/3) brings the recommendations of both reports together to describe the preferred option to satisfy the needs of users for physical heights in Australia. 2. Introduction 2.1 Changing world of geospatial Within five years users will have the capacity to position themselves at the sub-decimetre level using mobile Global Navigation Satellite Systems (GNSS) technology, providing efficient and accurate positioning for industrial, environmental and scientific applications. The Geocentric Datum of Australia 2020 (GDA2020) was introduced in 2017 in recognition of the increasing reliance on and accuracy of positioning from GNSS. The new geocentric datum enables precise positioning relative to the ellipsoid, that is, coordinates computed in terms of geocentric Cartesian coordinates (XYZ) that are then converted to latitude, longitude and ellipsoidal height in terms of the Geodetic Reference System 1980 (GRS80) reference ellipsoid. Nonetheless, ellipsoidal heights do not take into account changes in gravitational potential and therefore cannot be used to predict the direction of fluid flow. For this reason we have a physical datum, known as the Australian Height Datum (AHD) and a model to convert ellipsoidal heights to AHD heights known as AUSGeoid. 2.2 Introduction to the AHD The Australian Height Datum (Roelse et al., 1971; AHD) is Australia’s first and only national height reference system. It was adopted by the National Mapping Council in 1971 based on a (staged) least squares adjustment of 97,320 km of ‘primary’ levelling (used in the original adjustment) and approximately 80,000 km of ‘supplementary’ levelling (included in a subsequent adjustment). Levelling observations ran between junction points (see Figure 1; Filmer et al., 2010) in the Australian National Levelling Network (ANLN), and were known as level sections. These level sections were created by combining levelling observations along level runs (usually following major roads). The interconnected network of level sections and junction points was fixed to mean sea level (MSL) observed for 1966-1968 at 30 mainland tide gauges, with MSL assigned a value of zero AHD at each gauge. The staged least squares adjustment propagated heights above 1966-1968 MSL (or defined AHD zero 3 Next Generation Height Reference Frame reference), across the ANLN. The ANLN contains systematic, gross and random errors which have propagated into the AHD as local and regional biases (e.g. Morgan 1992). Figure 1: The Australian National Levelling Network (ANLN). First order levelling sections are in yellow, second order sections in light green, third order in fine grey, fourth order in dark green, one way (third order) in red and two-way (order undefined; Steed 2006, pers. comm.) in blue. The junction points are the intersection points of the levelling loops. Lambert projection (figure and description from Filmer et al., 2010). The Australian Height Datum (Tasmania) 1983 (AHD–TAS83) zero reference is fixed to MSL observed for 1972 only at tides gauges in Hobart and Burnie. It was propagated throughout Tasmania using mostly third order differential levelling over 72 sections between 57 junction points and computed via least-squares adjustment on 17 October 1983. Because AHD (mainland) and AHD (Tas) are referenced to MSL observed at different times and locations, there is a vertical offset between the two datums, which has been estimated (from various methodologies and data) to be ~10 cm (Rizos et al. 1991), between 12 cm and 26 cm (Featherstone, 2000), and ~1 cm (Filmer and Featherstone, 2012). For the purposes of this document, AHD is used to refer to both the Australian Height Datum 1971 (AHD71; Australian mainland) and Australian Height Datum (Tasmania) 1983 (AHD–TAS83). 2.3 Problems with the AHD The AHD is known to have a number of biases and distortions. The primary bias is due to the manner in which AHD was realised. In the adjustment of the levelling data, the measured mean sea level of tide gauges around Australian coastline was fixed to zero AHD. Due to the effect of the ocean’s time-mean dynamic topography (MDT), AHD is about 0.5 m above the gravimetric geoid in north-east Australia and about 0.5 m below the 4 Next Generation Height Reference Frame gravimetric geoid in south-west Australia (e.g. Featherstone, 2004, 2006; Featherstone and Filmer, 2008). Secondary effects are uncorrected gross, random and systematic levelling errors in the ANLN (e.g., Roelse et al., 1975; Morgan, 1992; Filmer and Featherstone, 2009) and the use of the (truncated) Rapp (1961) normal- orthometric
Recommended publications
  • The Ausgeoid09 Model of the Australian Height Datum
    J Geod (2011) 85:133–150 DOI 10.1007/s00190-010-0422-2 ORIGINAL ARTICLE The AUSGeoid09 model of the Australian Height Datum W. E. Featherstone · J. F. Kirby · C. Hirt · M. S. Filmer · S. J. Claessens · N. J. Brown · G. Hu · G. M. Johnston Received: 7 June 2010 / Accepted: 15 October 2010 / Published online: 19 November 2010 © The Author(s) 2010. This article is published with open access at Springerlink.com Abstract AUSGeoid09 is the new Australia-wide gravi- Australia, it is necessary to provide GNSS users with metric quasigeoid model that has been a posteriori fitted effective means of recovering AHD heights. The gravi- to the Australian Height Datum (AHD) so as to provide a metric component of the quasigeoid model was computed product that is practically useful for the more direct deter- using a hybrid of the remove-compute-restore technique mination of AHD heights from Global Navigation Satel- with a degree-40 deterministically modified kernel over a lite Systems (GNSS). This approach is necessary because one-degree spherical cap, which is superior to the remove- the AHD is predominantly a third-order vertical datum that compute-restore technique alone in Australia (with or without contains a ∼1 m north-south tilt and ∼0.5 m regional distor- a cap). This is because the modified kernel and cap com- tions with respect to the quasigeoid, meaning that GNSS- bine to filter long-wavelength errors from the terrestrial gravimetric-quasigeoid and AHD heights are inconsistent. gravity anomalies. The zero-tide EGM2008 global gravi- Because the AHD remains the official vertical datum in tational model to degree 2,190 was used as the reference field.
    [Show full text]
  • Meyers Height 1
    University of Connecticut DigitalCommons@UConn Peer-reviewed Articles 12-1-2004 What Does Height Really Mean? Part I: Introduction Thomas H. Meyer University of Connecticut, [email protected] Daniel R. Roman National Geodetic Survey David B. Zilkoski National Geodetic Survey Follow this and additional works at: http://digitalcommons.uconn.edu/thmeyer_articles Recommended Citation Meyer, Thomas H.; Roman, Daniel R.; and Zilkoski, David B., "What Does Height Really Mean? Part I: Introduction" (2004). Peer- reviewed Articles. Paper 2. http://digitalcommons.uconn.edu/thmeyer_articles/2 This Article is brought to you for free and open access by DigitalCommons@UConn. It has been accepted for inclusion in Peer-reviewed Articles by an authorized administrator of DigitalCommons@UConn. For more information, please contact [email protected]. Land Information Science What does height really mean? Part I: Introduction Thomas H. Meyer, Daniel R. Roman, David B. Zilkoski ABSTRACT: This is the first paper in a four-part series considering the fundamental question, “what does the word height really mean?” National Geodetic Survey (NGS) is embarking on a height mod- ernization program in which, in the future, it will not be necessary for NGS to create new or maintain old orthometric height benchmarks. In their stead, NGS will publish measured ellipsoid heights and computed Helmert orthometric heights for survey markers. Consequently, practicing surveyors will soon be confronted with coping with these changes and the differences between these types of height. Indeed, although “height’” is a commonly used word, an exact definition of it can be difficult to find. These articles will explore the various meanings of height as used in surveying and geodesy and pres- ent a precise definition that is based on the physics of gravitational potential, along with current best practices for using survey-grade GPS equipment for height measurement.
    [Show full text]
  • Literacy and Numeracy in Northern Ireland and the Republic of Ireland in International Studies
    The Irish Journal of Education, 2015, xl, pp. 3-28. LITERACY AND NUMERACY IN NORTHERN IRELAND AND THE REPUBLIC OF IRELAND IN INTERNATIONAL STUDIES Gerry Shiel and Lorraine Gilleece Educational Research Centre St Patrick’s College, Dublin Recent international assessments of educational achievement at primary, post- primary, and adult levels allow for comparisons of performance in reading literacy and numeracy/mathematics between Northern Ireland and the Republic of Ireland. While students in grade 4 (Year 6) in Northern Ireland significantly outperformed students in the Republic in reading literacy and mathematics in the PIRLS and TIMSS studies in 2011, 15-year olds in the Republic outperformed students in Northern Ireland on reading and mathematical literacy in PISA 2006 and 2012. Performance on PISA reading literacy and mathematics declined significantly from performance in earlier cycles in Northern Ireland in 2006 and in the Republic of Ireland in 2009. However, while performance in the Republic improved in 2012, it has remained at about the same level since 2006 in Northern Ireland. Adults in both Northern Ireland and the Republic performed significantly below the international averages on literacy and numeracy in the 2012 PIAAC study. Results of the studies are discussed in the context of policy initiatives in 2011 to improve literacy and numeracy in both jurisdictions, including the implementation of literacy and numeracy strategies and the establishment of targets for improved performance at system and school levels. Both Northern
    [Show full text]
  • Is Mount Everest Higher Now Than 100 Years
    Is Mount Everest higher now than 155 years ago?' Giorgio Poretti All human works are subject to error, and it is only in the power of man to guard against its intrusion by care and attention. (George Everest) Dipartimento di Matematica e Informatica CER Telegeomatica - Università di Trieste Foreword One day in the Spring of 1852 at Dehra Dun, India, in the foot hills of the Himalayas, the door of the office of the Director General of the Survey of India opens. Enters Radanath Sikdar, the chief of the team of human computers who were processing the data of the triangulation measurements of the Himalayan peaks taken during the Winter. "Sir I have discovered the highest mountain of the world…….it is Peak n. XV". These words, reported by Col. Younghausband have become a legend in the measurement of Mt. Everest. Introduction The height of a mountain is determined by three main factors. The first is the sea level that would be under the mountain if the water could flow freely under the continents. The second depends on the accuracy of the elevations of the points in the valley from which the measurements are performed, and on the mareograph taken as a reference (height datum). The third factor depends on the amount of snow on the summit. This changes from season to season and from year to year with a variation that exceeds a metre between spring and autumn. Optical measurements from a long distance are also heavily influenced by the refraction of the atmosphere (due to the difference of pressure and temperature between the points of observation in the valley and the summit), and by the plumb-line deflections.
    [Show full text]
  • What Are Geodetic Survey Markers?
    Part I Introduction to Geodetic Survey Markers, and the NGS / USPS Recovery Program Stf/C Greg Shay, JN-ACN United States Power Squadrons / America’s Boating Club Sponsor: USPS Cooperative Charting Committee Revision 5 - 2020 Part I - Topics Outline 1. USPS Geodetic Marker Program 2. What are Geodetic Markers 3. Marker Recovery & Reporting Steps 4. Coast Survey, NGS, and NOAA 5. Geodetic Datums & Control Types 6. How did Markers get Placed 7. Surveying Methods Used 8. The National Spatial Reference System 9. CORS Modernization Program Do you enjoy - Finding lost treasure? - the excitement of the hunt? - performing a valuable public service? - participating in friendly competition? - or just doing a really fun off-water activity? If yes , then participation in the USPS Geodetic Marker Recovery Program may be just the thing for you! The USPS Triangle and Civic Service Activities USPS Cooperative Charting / Geodetic Programs The Cooperative Charting Program (Nautical) and the Geodetic Marker Recovery Program (Land Based) are administered by the USPS Cooperative Charting Committee. USPS Cooperative Charting / Geodetic Program An agreement first executed between USPS and NOAA in 1963 The USPS Geodetic Program is a separate program from Nautical and was/is not part of the former Cooperative Charting agreement with NOAA. What are Geodetic Survey Markers? Geodetic markers are highly accurate surveying reference points established on the surface of the earth by local, state, and national agencies – mainly by the National Geodetic Survey (NGS). NGS maintains a database of all markers meeting certain criteria. Common Synonyms Mark for “Survey Marker” Marker Marker Station Note: the words “Geodetic”, Benchmark* “Survey” or Station “Geodetic Survey” Station Mark may precede each synonym.
    [Show full text]
  • Three Viable Options for a New Australian Vertical Datum
    Journal of Spatial Science [submitted] THREE VIABLE OPTIONS FOR A NEW AUSTRALIAN VERTICAL DATUM M.S. Filmer W.E. Featherstone Mick Filmer (corresponding author) Western Australian Centre for Geodesy & The Institute for Geoscience Research, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia Telephone: +61-8-9266-2582 Fax: +61-8-9266-2703 Email: [email protected] Will Featherstone Western Australian Centre for Geodesy & The Institute for Geoscience Research, Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia Telephone: +61-8-9266-2734 Fax: +61-8-9266-2703 Email: [email protected] Journal of Spatial Science [submitted] ABSTRACT While the Intergovernmental Committee on Surveying and Mapping (ICSM) has stated that the Australian Height Datum (AHD) will remain Australia’s official vertical datum for the short to medium term, the AHD contains deficiencies that make it unsuitable in the longer term. We present and discuss three different options for defining a new Australian vertical datum (AVD), with a view to encouraging discussion into the development of a medium- to long-term replacement for the AHD. These options are a i) levelling-only, ii) combined, and iii) geoid-only vertical datum. All have advantages and disadvantages, but are dependent on availability of and improvements to the different data sets required. A levelling-only vertical datum is the traditional method, although we recommend the use of a sea surface topography (SSTop) model to allow the vertical datum to be constrained at multiple tide-gauges as an improvement over the AHD. This concept is extended in a combined vertical datum, where heights derived from GNSS ellipsoidal heights and a gravimetric quasi/geoid model (GNSS-geoid) at discrete points are also used to constrain the vertical datum over the continent, in addition to mean sea level and SSTop constraints at tide-gauges.
    [Show full text]
  • Understanding Ellipsoid Heights Vs AHD Heights
    DATUM MATTERS Understanding Ellipsoid Heights vs AHD Heights This information may assist in understanding ellipsoid heights from GNSS versus AHD heights in the context of GDA94 and GDA2020 when transforming a dataset from a current datum to GDA2020. AHD and ellipsoidal heights Heights in Australia are often referenced to the Australian Height Datum (AHD) because it gives a standard way of expressing heights above Mean Sea Level, which is important for issues such as drainage and flooding. However, Global Navigation Satellite Systems (GNSS) heights are measured relative to a purely mathematical surface known as the ellipsoid. It is therefore often necessary to convert ellipsoidal heights to AHD heights (or vice versa) using a so-called geoid model. The relationship between these various types of heights are shown in the Figure 1. Figure 1: Ellipsoid vs AHD Heights (H = AHD, h = ellipsoidal height and N = geoid ellipsoid separation) Which Geoid model? In Australia, the geoid model used to convert a GDA94 ellipsoidal height to an AHD height is AUSGeoid09. It is also important to note that GDA94 was established using the International Terrestrial Reference Frame 1992 (ITRF92). With the introduction of GDA2020, there are changes to the way ellipsoidal and AHD heights should be related. GDA2020 is based on a new version of the International Terrestrial Reference Frame, ITRF2014. Improvements in our knowledge of the centre of mass of the earth, between ITRF92 and Page | 1 ITRF2014, means that an ellipsoidal height based on GDA2020 is approximately 9cm lower than one based on GDA94 (Figure 2). GDA94 GDA2020 Figure 2: A difference between an ellipsoidal height based on GDA2020 and GDA94 is approximately 9 cm.
    [Show full text]
  • What Does Height Really Mean?
    Department of Natural Resources and the Environment Department of Natural Resources and the Environment Monographs University of Connecticut Year 2007 What Does Height Really Mean? Thomas H. Meyer∗ Daniel R. Romany David B. Zilkoskiz ∗University of Connecticut, [email protected] yNational Geodetic Survey zNational Geodetic Suvey This paper is posted at DigitalCommons@UConn. http://digitalcommons.uconn.edu/nrme monos/1 What does height really mean? Thomas Henry Meyer Department of Natural Resources Management and Engineering University of Connecticut Storrs, CT 06269-4087 Tel: (860) 486-2840 Fax: (860) 486-5480 E-mail: [email protected] Daniel R. Roman David B. Zilkoski National Geodetic Survey National Geodetic Survey 1315 East-West Highway 1315 East-West Highway Silver Springs, MD 20910 Silver Springs, MD 20910 E-mail: [email protected] E-mail: [email protected] June, 2007 ii The authors would like to acknowledge the careful and constructive reviews of this series by Dr. Dru Smith, Chief Geodesist of the National Geodetic Survey. Contents 1 Introduction 1 1.1Preamble.......................................... 1 1.2Preliminaries........................................ 2 1.2.1 TheSeries...................................... 3 1.3 Reference Ellipsoids . ................................... 3 1.3.1 Local Reference Ellipsoids . ........................... 3 1.3.2 Equipotential Ellipsoids . ........................... 5 1.3.3 Equipotential Ellipsoids as Vertical Datums ................... 6 1.4MeanSeaLevel....................................... 8 1.5U.S.NationalVerticalDatums.............................. 10 1.5.1 National Geodetic Vertical Datum of 1929 (NGVD 29) . ........... 10 1.5.2 North American Vertical Datum of 1988 (NAVD 88) . ........... 11 1.5.3 International Great Lakes Datum of 1985 (IGLD 85) . ........... 11 1.5.4 TidalDatums.................................... 12 1.6Summary.......................................... 14 2 Physics and Gravity 15 2.1Preamble.........................................
    [Show full text]
  • Refraction Correction in Precise Leveling Observations for National Leveling Network First Order
    Geodesy and Cartography ISSN 2029-6991 / eISSN 2029-7009 2020 Volume 46 Issue 4: 159–162 https://doi.org/10.3846/gac.2020.11555 UDC 528.375 REFRACTION CORRECTION IN PRECISE LEVELING OBSERVATIONS FOR NATIONAL LEVELING NETWORK FIRST ORDER Nikolay DIMITROV *, Ivan GEORGIEV, Petar DANCHEV National Institute of Geophysics, Geodesy and Geography, Bulgarian Academy of Sciences, Sofia, Bulgaria Received 18 November 2019; accepted 05 December 2020 Abstract. The paper deals with some problems when applying a correction to reduce the effect of vertical refraction in pre- cise leveling observation. An example for calculating the refraction correction for one first order leveling line with length of 109 km in Bulgaria is given. Comparison between the obtained errors before and after applying refraction correction has been made. The results show that is important to measure the temperatures simultaneously with the leveling by aspiration thermometer with an accuracy of ±0.1 °C. It is recommended to make experimental research and to adopt appropriate for Bulgaria model for taking into account the influence of vertical refraction. Keywords: precise leveling, atmospheric refraction, national leveling network, leveling line, refraction correction, air tem- perature gradient. Introduction 1. Theoretical background Atmospheric refraction is the deflection of light or other The refraction correction for geodetic leveling must be electromagnetic waves from the straight line due to the applied to each single set-up (Kukkamäki, 1939) and is change in air density as a function of the height above given by: 2 the ground. Refraction is due to a reduction in the speed R=−×2 10−6 AS( / 50) ∆ t∆ h, (1) of light as the air layer density increases.
    [Show full text]
  • Set Reading Benchmarks in South Africa
    SETTING READING BENCHMARKS IN SOUTH AFRICA October 2020 PHOTO: SCHOOL LIBRARY, CREDIT: PIXABAY Contract Number: 72067418D00001, Order Number: 72067419F00007 THIS PUBLICATION WAS PRODUCED AT THE REQUEST OF THE UNITED STATES AGENCY FOR INTERNATIONAL DEVELOPMENT. IT WAS PREPARED INDEPENDENTLY BY KHULISA MANAGEMENT SERVICES, (PTY) LTD. THE AUTHOR’S VIEWS EXPRESSED IN THIS PUBLICATION DO NOT NECESSARILY REFLECT THE VIEWS OF THE UNITED STATES AGENCY FOR INTERNATIONAL DEVELOPMENT OR THE UNITED STATES GOVERNMENT. ISBN: 978-1-4315-3411-1 All rights reserved. You may copy material from this publication for use in non-profit education programmes if you acknowledge the source. Contract Number: 72067418D00001, Order Number: 72067419F00007 SETTING READING BENCHMARKS IN SOUTH AFRICA October 2020 AUTHORS Matthew Jukes (Research Consultant) Elizabeth Pretorius (Reading Consultant) Maxine Schaefer (Reading Consultant) Katharine Tjasink (Project Manager, Senior) Margaret Roper (Deputy Director, Khulisa) Jennifer Bisgard (Director, Khulisa) Nokuthula Mabhena (Data Visualisation, Khulisa) CONTACT DETAILS Margaret Roper 26 7th Avenue Parktown North Johannesburg, 2196 Telephone: 011-447-6464 Email: [email protected] Web Address: www.khulisa.com CONTRACTUAL INFORMATION Khulisa Management Services Pty Ltd, (Khulisa) produced this Report for the United States Agency for International Development (USAID) under its Practical Education Research for Optimal Reading and Management: Analyze, Collaborate, Evaluate (PERFORMANCE) Indefinite Delivery Indefinite Quantity
    [Show full text]
  • A Re-Evaluation of the Offset in the Australian Height Datum Between
    Marine Geodesy [submitted] 1 A re-evaluation of the offset in the Australian Height 2 Datum between mainland Australia and Tasmania 3 4 M.S. FILMER AND W.E. FEATHERSTONE 5 6 Mick Filmer (corresponding author) 7 Western Australian Centre for Geodesy & The Institute for Geoscience Research, 8 Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia 9 Telephone: +61-8-9266-2218 10 Fax: +61-8-9266-2703 11 Email: [email protected] 12 13 Will Featherstone 14 Western Australian Centre for Geodesy & The Institute for Geoscience Research, 15 Curtin University of Technology, GPO Box U1987, Perth, WA 6845, Australia 16 Telephone: +61-8-9266-2734 17 Fax: +61-8-9266-2703 18 Email: [email protected] 19 20 1 Marine Geodesy [submitted] 21 The adoption of local mean sea level (MSL) at multiple tide-gauges as a zero reference level for the 22 Australian Height Datum (AHD) has resulted in a spatially variable offset between the geoid and the 23 AHD. This is caused primarily by sea surface topography (SSTop), which has also resulted in the 24 AHD on the mainland being offset vertically from the AHD on the island of Tasmania. Errors in MSL 25 observations at the 32 tide-gauges used in the AHD and the temporal bias caused by MSL 26 observations over different time epochs also contribute to the offset, which previous studies estimate 27 to be between ~+100 mm and ~+400 mm (AHD on the mainland above the AHD on Tasmania). This 28 study uses five SSTop models (SSTMs), as well as GNSS and two gravimetric quasigeoid models, at 29 tide-gauges/tide-gauge benchmarks to re-estimate the AHD offset, with the re-evaluated offset 30 between -61 mm and +48 mm.
    [Show full text]
  • Geospatial Positioning Accuracy Standards PART 4: Standards for Architecture, Engineering, Construction (A/E/C) and Facility Management
    FGDC-STD-007.4-2002 NSDI National Spatial Data Infrastructure Geospatial Positioning Accuracy Standards PART 4: Standards for Architecture, Engineering, Construction (A/E/C) and Facility Management Facilities Working Group Federal Geographic Data Committee Federal Geographic Data Committee Department of Agriculture · Department of Commerce · Department of Defense · Department of Energy Department of Housing and Urban Development · Department of the Interior · Department of State Department of Transportation · Environmental Protection Agency Federal Emergency Management Agency · Library of Congress National Aeronautics and Space Administration · National Archives and Records Administration Tennessee Valley Authority Federal Geographic Data Committee Established by Office of Management and Budget Circular A-16, the Federal Geographic Data Committee (FGDC) promotes the coordinated development, use, sharing, and dissemination of geographic data. The FGDC is composed of representatives from the Departments of Agriculture, Commerce, Defense, Energy, Housing and Urban Development, the Interior, State, and Transportation; the Environmental Protection Agency; the Federal Emergency Management Agency; the Library of Congress; the National Aeronautics and Space Administration; the National Archives and Records Administration; and the Tennessee Valley Authority. Additional Federal agencies participate on FGDC subcommittees and working groups. The Department of the Interior chairs the committee. FGDC subcommittees work on issues related to data categories coordinated under the circular. Subcommittees establish and implement standards for data content, quality, and transfer; encourage the exchange of information and the transfer of data; and organize the collection of geographic data to reduce duplication of effort. Working groups are established for issues that transcend data categories. For more information about the committee, or to be added to the committee's newsletter mailing list, please contact: Federal Geographic Data Committee Secretariat c/o U.S.
    [Show full text]