Faculty: Science Department: Chemistry Course: B.Sc. Sem.: II (All Four Sections) Topic: Thermodynamics) Unit IV Teacher: Dr

Total Page:16

File Type:pdf, Size:1020Kb

Faculty: Science Department: Chemistry Course: B.Sc. Sem.: II (All Four Sections) Topic: Thermodynamics) Unit IV Teacher: Dr Faculty: Science Department: Chemistry Course: B.Sc. Sem.: II (All four sections) Topic: Thermodynamics) Unit IV Teacher: Dr. V. Mushran Dr. S. Sahai Dr. K.K. Tungala State function and Path function The state function and path function are two ways of expressing different thermodynamic properties of systems. The key difference between state function and path function is that state functions do not depend on the path or process whereas path functions depend on path or process. State function is a thermodynamic term that is used to name a property whose value does not depend on the path taken to reach that specific value. State functions are also known as point functions. A state function only depends on the current state of the thermodynamic system and its initial state (independent from the path). The state function of a thermodynamic system describes the equilibrium state of that system irrespective of how the system arrived at that state. Examples of State Functions: Mass, Energy – enthalpy, internal energy, Gibbs free energy, etc., Entropy, Pressure, Temperature, Volume, Chemical composition and Altitude. A state function depends on three things: the property, initial value and final value. Enthalpy is a state function. It can be given as a mathematical expression as given below. In which, t1 is the final state, t0 is the initial state and h is the enthalpy of the system. Path Function Path function is a thermodynamic term that is used to name a property whose value depends on the path taken to reach that specific value. In other words, a path function depends on the path taken to reach a final state from an initial state. Path function is also called a process function. A path function gives different values for different paths. Hence path functions have variable values depending on the route. Therefore, when expressing the path function mathematically, multiple integrals and limits are required to integrate the path function. Examples of Path Functions: Mechanical work, Heat, Arc length, etc. The internal energy is given by the following equation: ∆U = q + w In which ∆U is the change in internal energy, q is the heat and w is the mechanical work. The internal energy is a state function, but heat and work are path functions. Note: Here, work is equal to the area under the curve. More area under the curve= More work done. Difference between State Function and Path Function State Function Path Function State function is a thermodynamic term that is Path function is a thermodynamic term that is used to name a property whose value does not used to name a property whose value depends depend on the path taken to reach that specific on the path taken to reach that specific value. value. State functions are also called point functions. Path functions are also called process functions. State functions do not depend on the path or Path functions are also called process process. functions. State functions do not depend on the path or Path functions depend on the path or process. process. State function can be integrated using the Path function requires multiple integrals and initial and final values of the thermodynamic limits of integration to integrate the property. property of the system. The value of state function remains the same The value of path function of a single step regardless of the number of steps. process is different from a multiple step process. State functions include entropy, enthalpy, Path functions include heat and mechanical mass, volume, temperature, etc. work. Exact and Inexact differentials The internal energy U is a state function, like V, because it depends only on the state of the system. The integral of the differential of a state function along any arbitrary path is simply the difference between values of the function at two limits. For example, if a system goes from state a to state b , we can write 푏 ∫ 푑푈 = 푈푏 − 푈푎 = ∆푈 푎 Since the integral is path independent, the differential of a state function is called an exact differential. The quantities q and w are not state functions. The integrals of their differentials in going from state a to state b depend on path chosen. Therefore, their differentials are called inexact differentials. We use δ instead of d to indicate inexact differentials. In going from state a to state b the work done is represented by 푏 ∫ 휹풘 = 푤 푎 Note that the result of the integration is not written as wb-wa., because the amount of work done depends on the particular path that is followed between state a and state b. If an infinitesimal quantity of heat δq is absorbed by a system, and an infinitesimal amount of work δw is done on the system, the infinitesimal change in the internal energy is given by dU = δq + δw Exact differential represent, the given function is independent of path. The properties such as temperature, pressure, density, mass, volume, enthalpy, entropy and internal energy are exact differentials. They depend upon their initial and final states, and therefore they are called state or point functions. On the other hand, inexact differential represents the given function is dependent on path and hence called path function. Examples heat, work, etc. In Figure 1, there are two points S1 and S2. These points represent the initial and final states. From the Figure 1, one can not calculate the work done because there is no path. There could be any path from state S1 and S2. In Figure 2, 3 and 4, the shaded area under the curve is the work done. For the same initial and final states, different path can have different shaded area and hence different work done. Therefore quantities like heat and work are path functions since they depend upon path and they are inexact differential. Test for Exactness For an exact differential By the identity of mixed partial differentials, This is called Euler reciprocal relation. Thus du does not depend on path as the mixed partial derivatives are equal. ‘u’ can be any thermodynamic function like H, U and G; and x and y may be thermodynamic variables p, V, and T. Example: Note: Change in V is independent of path but the work done is dependent. dV = Mdp +ndT with, M = R/P and N = − RT/p2 Thus, dw is not an exact differential. .
Recommended publications
  • Thermodynamic Potentials and Natural Variables
    Revista Brasileira de Ensino de Física, vol. 42, e20190127 (2020) Articles www.scielo.br/rbef cb DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0127 Licença Creative Commons Thermodynamic Potentials and Natural Variables M. Amaku1,2, F. A. B. Coutinho*1, L. N. Oliveira3 1Universidade de São Paulo, Faculdade de Medicina, São Paulo, SP, Brasil 2Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, São Paulo, SP, Brasil 3Universidade de São Paulo, Instituto de Física de São Carlos, São Carlos, SP, Brasil Received on May 30, 2019. Revised on September 13, 2018. Accepted on October 4, 2019. Most books on Thermodynamics explain what thermodynamic potentials are and how conveniently they describe the properties of physical systems. Certain books add that, to be useful, the thermodynamic potentials must be expressed in their “natural variables”. Here we show that, given a set of physical variables, an appropriate thermodynamic potential can always be defined, which contains all the thermodynamic information about the system. We adopt various perspectives to discuss this point, which to the best of our knowledge has not been clearly presented in the literature. Keywords: Thermodynamic Potentials, natural variables, Legendre transforms. 1. Introduction same statement cannot be applied to the temperature. In real fluids, even in simple ones, the proportionality Basic concepts are most easily understood when we dis- to T is washed out, and the Internal Energy is more cuss simple systems. Consider an ideal gas in a cylinder. conveniently expressed as a function of the entropy and The cylinder is closed, its walls are conducting, and a volume: U = U(S, V ).
    [Show full text]
  • Lecture 2 the First Law of Thermodynamics (Ch.1)
    Lecture 2 The First Law of Thermodynamics (Ch.1) Outline: 1. Internal Energy, Work, Heating 2. Energy Conservation – the First Law 3. Quasi-static processes 4. Enthalpy 5. Heat Capacity Internal Energy The internal energy of a system of particles, U, is the sum of the kinetic energy in the reference frame in which the center of mass is at rest and the potential energy arising from the forces of the particles on each other. system Difference between the total energy and the internal energy? boundary system U = kinetic + potential “environment” B The internal energy is a state function – it depends only on P the values of macroparameters (the state of a system), not on the method of preparation of this state (the “path” in the V macroparameter space is irrelevant). T A In equilibrium [ f (P,V,T)=0 ] : U = U (V, T) U depends on the kinetic energy of particles in a system and an average inter-particle distance (~ V-1/3) – interactions. For an ideal gas (no interactions) : U = U (T) - “pure” kinetic Internal Energy of an Ideal Gas f The internal energy of an ideal gas U = Nk T with f degrees of freedom: 2 B f ⇒ 3 (monatomic), 5 (diatomic), 6 (polyatomic) (here we consider only trans.+rotat. degrees of freedom, and neglect the vibrational ones that can be excited at very high temperatures) How does the internal energy of air in this (not-air-tight) room change with T if the external P = const? f ⎡ PV ⎤ f U =Nin room k= T Bin⎢ N room = ⎥ = PV 2 ⎣ kB T⎦ 2 - does not change at all, an increase of the kinetic energy of individual molecules with T is compensated by a decrease of their number.
    [Show full text]
  • Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2017 Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft Hayder Hasan Jaafar Al-sarraf Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Mechanical Engineering Commons Repository Citation Al-sarraf, Hayder Hasan Jaafar, "Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft" (2017). Browse all Theses and Dissertations. 1831. https://corescholar.libraries.wright.edu/etd_all/1831 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. MODELING TWO PHASE FLOW HEAT EXCHANGERS FOR NEXT GENERATION AIRCRAFT A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering By HAYDER HASAN JAAFAR AL-SARRAF B.Sc. Mechanical Engineering, Kufa University, 2005 2017 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL July 3, 2017 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Hayder Hasan Jaafar Al-sarraf Entitled Modeling Two Phase Flow Heat Exchangers for Next Generation Aircraft BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Mechanical Engineering. ________________________________ Rory Roberts, Ph.D. Thesis Director ________________________________ Joseph C. Slater, Ph.D., P.E. Department Chair Committee on Final Examination ______________________________ Rory Roberts, Ph.D. ______________________________ James Menart, Ph.D. ______________________________ Mitch Wolff, Ph.D.
    [Show full text]
  • Math Background for Thermodynamics ∑
    MATH BACKGROUND FOR THERMODYNAMICS A. Partial Derivatives and Total Differentials Partial Derivatives Given a function f(x1,x2,...,xm) of m independent variables, the partial derivative ∂ f of f with respect to x , holding the other m-1 independent variables constant, , is defined by i ∂ xi xj≠i ∂ f fx( , x ,..., x+ ∆ x ,..., x )− fx ( , x ,..., x ,..., x ) = 12ii m 12 i m ∂ lim ∆ xi x →∆ 0 xi xj≠i i nRT Example: If p(n,V,T) = , V ∂ p RT ∂ p nRT ∂ p nR = = − = ∂ n V ∂V 2 ∂T V VT,, nTV nV , Total Differentials Given a function f(x1,x2,...,xm) of m independent variables, the total differential of f, df, is defined by m ∂ f df = ∑ dx ∂ i i=1 xi xji≠ ∂ f ∂ f ∂ f = dx + dx + ... + dx , ∂ 1 ∂ 2 ∂ m x1 x2 xm xx2131,...,mm xxx , ,..., xx ,..., m-1 where dxi is an infinitesimally small but arbitrary change in the variable xi. nRT Example: For p(n,V,T) = , V ∂ p ∂ p ∂ p dp = dn + dV + dT ∂ n ∂ V ∂ T VT,,, nT nV RT nRT nR = dn − dV + dT V V 2 V B. Some Useful Properties of Partial Derivatives 1. The order of differentiation in mixed second derivatives is immaterial; e.g., for a function f(x,y), ∂ ∂ f ∂ ∂ f ∂ 22f ∂ f = or = ∂ y ∂ xx ∂ ∂ y ∂∂yx ∂∂xy y x x y 2 in the commonly used short-hand notation. (This relation can be shown to follow from the definition of partial derivatives.) 2. Given a function f(x,y): ∂ y 1 a. = etc. ∂ f ∂ f x ∂ y x ∂ f ∂ y ∂ x b.
    [Show full text]
  • 6CCP3212 Statistical Mechanics Homework 1
    6CCP3212 Statistical Mechanics Homework 1 Lecturer: Dr. Eugene A. Lim 2018-19 Year 3 Semester 1 https://nms.kcl.ac.uk/eugene.lim/teach/statmech/sm.html 1) (i) For the following differentials with α and β non-zero real constants, which are exact and which are inexact? Integrate the equation if it is exact. (a) x dG = αdx + β dy (1) y (b) α dG = dx + βdy (2) x (c) x2 dG = (x + y)dx + dy (3) 2 (ii) Show that the work done on the system at pressure P d¯W = −P dV (4) where dV is the change in volume is an inexact differential by showing that there exists no possible function of state for W (P; V ). (iii) Consider the differential dF = (x2 − y)dx + xdy : (5) (a) Show that this is not an exact differential. And hence integrate this equation in two different straight paths from (1; 1) ! (2; 2) and from (1; 1) ! (1; 2) ! (2; 2), where (x; y) indicates the locations. Compare the results { are they identical? (b) Define a new differential with dF y 1 dG ≡ = 1 − dx + dy : (6) x2 x2 x Show that dG is exact, and find G(x; y). 2) This problem asks you to derive some derivative identities of a system with three variables x, y and z, with a single constraint x(y; z). This kind of system is central to thermodynamics as we often use three state variables P , V and T , with an equation of state P (V; T ) (i.e. the constraint) to describe a system.
    [Show full text]
  • 3 More Applications of Derivatives
    3 More applications of derivatives 3.1 Exact & inexact di®erentials in thermodynamics So far we have been discussing total or \exact" di®erentials µ ¶ µ ¶ @u @u du = dx + dy; (1) @x y @y x but we could imagine a more general situation du = M(x; y)dx + N(x; y)dy: (2) ¡ ¢ ³ ´ If the di®erential is exact, M = @u and N = @u . By the identity of mixed @x y @y x partial derivatives, we have µ ¶ µ ¶ µ ¶ @M @2u @N = = (3) @y x @x@y @x y Ex: Ideal gas pV = RT (for 1 mole), take V = V (T; p), so µ ¶ µ ¶ @V @V R RT dV = dT + dp = dT ¡ 2 dp (4) @T p @p T p p Now the work done in changing the volume of a gas is RT dW = pdV = RdT ¡ dp: (5) p Let's calculate the total change in volume and work done in changing the system between two points A and C in p; T space, along paths AC or ABC. 1. Path AC: dT T ¡ T ¢T ¢T = 2 1 ´ so dT = dp (6) dp p2 ¡ p1 ¢p ¢p T ¡ T1 ¢T ¢T & = ) T ¡ T1 = (p ¡ p1) (7) p ¡ p1 ¢p ¢p so (8) R ¢T R ¢T R ¢T dV = dp ¡ [T + (p ¡ p )]dp = ¡ (T ¡ p )dp (9) p ¢p p2 1 ¢p 1 p2 1 ¢p 1 R ¢T dW = ¡ (T ¡ p )dp (10) p 1 ¢p 1 1 T (p ,T ) 2 2 C (p,T) (p1,T1) A B p Figure 1: Path in p; T plane for thermodynamic process.
    [Show full text]
  • Thermodynamics
    ME346A Introduction to Statistical Mechanics { Wei Cai { Stanford University { Win 2011 Handout 6. Thermodynamics January 26, 2011 Contents 1 Laws of thermodynamics 2 1.1 The zeroth law . .3 1.2 The first law . .4 1.3 The second law . .5 1.3.1 Efficiency of Carnot engine . .5 1.3.2 Alternative statements of the second law . .7 1.4 The third law . .8 2 Mathematics of thermodynamics 9 2.1 Equation of state . .9 2.2 Gibbs-Duhem relation . 11 2.2.1 Homogeneous function . 11 2.2.2 Virial theorem / Euler theorem . 12 2.3 Maxwell relations . 13 2.4 Legendre transform . 15 2.5 Thermodynamic potentials . 16 3 Worked examples 21 3.1 Thermodynamic potentials and Maxwell's relation . 21 3.2 Properties of ideal gas . 24 3.3 Gas expansion . 28 4 Irreversible processes 32 4.1 Entropy and irreversibility . 32 4.2 Variational statement of second law . 32 1 In the 1st lecture, we will discuss the concepts of thermodynamics, namely its 4 laws. The most important concepts are the second law and the notion of Entropy. (reading assignment: Reif x 3.10, 3.11) In the 2nd lecture, We will discuss the mathematics of thermodynamics, i.e. the machinery to make quantitative predictions. We will deal with partial derivatives and Legendre transforms. (reading assignment: Reif x 4.1-4.7, 5.1-5.12) 1 Laws of thermodynamics Thermodynamics is a branch of science connected with the nature of heat and its conver- sion to mechanical, electrical and chemical energy. (The Webster pocket dictionary defines, Thermodynamics: physics of heat.) Historically, it grew out of efforts to construct more efficient heat engines | devices for ex- tracting useful work from expanding hot gases (http://www.answers.com/thermodynamics).
    [Show full text]
  • Thermodynamic Stability: Free Energy and Chemical Equilibrium ©David Ronis Mcgill University
    Chemistry 223: Thermodynamic Stability: Free Energy and Chemical Equilibrium ©David Ronis McGill University 1. Spontaneity and Stability Under Various Conditions All the criteria for thermodynamic stability stem from the Clausius inequality,cf. Eq. (8.7.3). In particular,weshowed that for anypossible infinitesimal spontaneous change in nature, d− Q dS ≥ .(1) T Conversely,if d− Q dS < (2) T for every allowed change in state, then the system cannot spontaneously leave the current state NO MATTER WHAT;hence the system is in what is called stable equilibrium. The stability criterion becomes particularly simple if the system is adiabatically insulated from the surroundings. In this case, if all allowed variations lead to a decrease in entropy, then nothing will happen. The system will remain where it is. Said another way,the entropyofan adiabatically insulated stable equilibrium system is a maximum. Notice that the term allowed plays an important role. Forexample, if the system is in a constant volume container,changes in state or variations which lead to a change in the volume need not be considered eveniftheylead to an increase in the entropy. What if the system is not adiabatically insulated from the surroundings? Is there a more convenient test than Eq. (2)? The answer is yes. To see howitcomes about, note we can rewrite the criterion for stable equilibrium by using the first lawas − d Q = dE + Pop dV − µop dN > TdS,(3) which implies that dE + Pop dV − µop dN − TdS >0 (4) for all allowed variations if the system is in equilibrium. Equation (4) is the key stability result.
    [Show full text]
  • Vector Calculus and Differential Forms with Applications To
    Vector Calculus and Differential Forms with Applications to Electromagnetism Sean Roberson May 7, 2015 PREFACE This paper is written as a final project for a course in vector analysis, taught at Texas A&M University - San Antonio in the spring of 2015 as an independent study course. Students in mathematics, physics, engineering, and the sciences usually go through a sequence of three calculus courses before go- ing on to differential equations, real analysis, and linear algebra. In the third course, traditionally reserved for multivariable calculus, stu- dents usually learn how to differentiate functions of several variable and integrate over general domains in space. Very rarely, as was my case, will professors have time to cover the important integral theo- rems using vector functions: Green’s Theorem, Stokes’ Theorem, etc. In some universities, such as UCSD and Cornell, honors students are able to take an accelerated calculus sequence using the text Vector Cal- culus, Linear Algebra, and Differential Forms by John Hamal Hubbard and Barbara Burke Hubbard. Here, students learn multivariable cal- culus using linear algebra and real analysis, and then they generalize familiar integral theorems using the language of differential forms. This paper was written over the course of one semester, where the majority of the book was covered. Some details, such as orientation of manifolds, topology, and the foundation of the integral were skipped to save length. The paper should still be readable by a student with at least three semesters of calculus, one course in linear algebra, and one course in real analysis - all at the undergraduate level.
    [Show full text]
  • Physical Chemistry II “The Mistress of the World and Her Shadow” Chemistry 402
    Physical Chemistry II “The mistress of the world and her shadow” Chemistry 402 L. G. Sobotka Department of Chemistry Washington University, St Louis, MO, 63130 January 3, 2012 Contents IIntroduction 7 1 Physical Chemistry II - 402 -Thermodynamics (mostly) 8 1.1Who,when,where.............................................. 8 1.2CourseContent/Logistics.......................................... 8 1.3Grading.................................................... 8 1.3.1 Exams................................................. 8 1.3.2 Quizzes................................................ 8 1.3.3 ProblemSets............................................. 8 1.3.4 Grading................................................ 8 2Constants 9 3 The Structure of Physical Science 10 3.1ClassicalMechanics.............................................. 10 3.2QuantumMechanics............................................. 11 3.3StatisticalMechanics............................................. 11 3.4Thermodynamics............................................... 12 3.5Kinetics.................................................... 13 4RequisiteMath 15 4.1 Exact differentials.............................................. 15 4.2Euler’sReciprocityrelation......................................... 15 4.2.1 Example................................................ 16 4.3Euler’sCyclicrelation............................................ 16 4.3.1 Example................................................ 16 4.4Integratingfactors.............................................. 17 4.5LegendreTransformations.........................................
    [Show full text]
  • Exact and Inexact Differentials in the Early Development of Mechanics
    Revista Brasileira de Ensino de Física, vol. 42, e20190192 (2020) Articles www.scielo.br/rbef cb DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2019-0192 Licença Creative Commons Exact and inexact differentials in the early development of mechanics and thermodynamics Mário J. de Oliveira*1 1Universidade de São Paulo, Instituto de Física, São Paulo, SP, Brasil Received on July 31, 2019. Revised on October 8, 2019. Accepted on October 13, 2019. We give an account and a critical analysis of the use of exact and inexact differentials in the early development of mechanics and thermodynamics, and the emergence of differential calculus and how it was applied to solve some mechanical problems, such as those related to the cycloidal pendulum. The Lagrange equations of motions are presented in the form they were originally obtained in terms of differentials from the principle of virtual work. The derivation of the conservation of energy in differential form as obtained originally by Clausius from the equivalence of heat and work is also examined. Keywords: differential, differential calculus, analytical mechanics, thermodynamics. 1. Introduction variable x. If another variable y depends on the indepen- dent variable x, then the resulting increment dy of y is It is usual to formulate the basic equations of thermo- its differential. The quotient of these two differentials, dynamics in terms of differentials. The conservation of dy/dx, was interpreted geometrically by Leibniz as the energy is written as ratio of the ordinate y of a point on a curve and the length of the subtangent associated to this point.
    [Show full text]
  • Thermodynamic Temperature
    Thermodynamic temperature Thermodynamic temperature is the absolute measure 1 Overview of temperature and is one of the principal parameters of thermodynamics. Temperature is a measure of the random submicroscopic Thermodynamic temperature is defined by the third law motions and vibrations of the particle constituents of of thermodynamics in which the theoretically lowest tem- matter. These motions comprise the internal energy of perature is the null or zero point. At this point, absolute a substance. More specifically, the thermodynamic tem- zero, the particle constituents of matter have minimal perature of any bulk quantity of matter is the measure motion and can become no colder.[1][2] In the quantum- of the average kinetic energy per classical (i.e., non- mechanical description, matter at absolute zero is in its quantum) degree of freedom of its constituent particles. ground state, which is its state of lowest energy. Thermo- “Translational motions” are almost always in the classical dynamic temperature is often also called absolute tem- regime. Translational motions are ordinary, whole-body perature, for two reasons: one, proposed by Kelvin, that movements in three-dimensional space in which particles it does not depend on the properties of a particular mate- move about and exchange energy in collisions. Figure 1 rial; two that it refers to an absolute zero according to the below shows translational motion in gases; Figure 4 be- properties of the ideal gas. low shows translational motion in solids. Thermodynamic temperature’s null point, absolute zero, is the temperature The International System of Units specifies a particular at which the particle constituents of matter are as close as scale for thermodynamic temperature.
    [Show full text]