Laboratory Safety Manual

Total Page:16

File Type:pdf, Size:1020Kb

Laboratory Safety Manual LABORATORY SAFETY MANUAL 2018 LABORATORY SAFETY MANUAL WINTER 2018 OFFICE OF ENVIRONMENTAL, HELATH SAFETY AND RISK MANAGEMENT | 205 East 42nd StreEt, NEw York, NY 10017 LABORATORY SAFETY MANUAL PUBLIC SAFETY AND 911 IN ANY EMERGENCY THAT REQUIRES IMMEDIATE POLICE, FIRE, OR MEDICAL RESPONSE TO PRESERVE A LIFE. LABORATORY SAFETY MANUAL 1 PURPOSE OF THIS MANUAL ThE OfficE of EnvironmEntal, HEalth, SafEty and Risk ManagEmEnt, in partnErship with thE EnvironmEntal, HEalth and SafEty OfficEr Council and thE CUNY OfficE of REsEarch, has dEvElopEd this Laboratory SafEty Manual to minimiZE thE risks associatEd with laboratory activity and EnsurE that CUNY rEmains in compliancE with the Occupational Safety and HEalth Administration (OSHA) rEgulation 29 CFR 1910.1450, "Occupational ExposurE to Hazardous 1 2 ChEmicals in LaboratoriEs,” or what is commonly rEfErrEd to as thE “Laboratory Standard.”0F ,1F ThE Laboratory Standard rEquirEs the developmEnt of a Chemical Hygiene Plan (CHP) for each laboratory workplacE that protEcts EmployEEs from hEalth haZards associatEd with haZardous chEmicals in thE laboratory and maintains ExposurEs bElow OSHA PErmissiblE ExposurE Limits. In addition to addrEssing thosE rEgulations that arE mandatory, this manual also offers somE best managEmEnt practicEs supportEd by lEading standards sEtting organiZations and rEsEarch institutions. Throughout this documEnt, rEgulatory rEquirEmEnts will bE clEarly idEntifiEd using words such as “must,” “rEquirEd,” and “shall.” CollEgEs, dEpartments, othEr units, and individual laboratoriEs arE frEE to adopt other non-mandatory guidElinEs found within this document as applicablE for thEir units or laboratoriEs. To takE advantagE of the IntErnet, this documEnt is formattEd to be a “front door” to other resourcEs, including usEful wEb links in thE notEs sEction. For thosE intErnal hypErlinks, including thE Table of ContEnts, you can navigatE through thE documEnt by clicking on thE “Back” and “Forward” hypErlink arrow buttons. This Laboratory SafEty Manual is not intEndEd to rEplacE or supErsEdE any spEcific opErational rulEs or procEdures that havE bEEn adoptEd by thE UnivErsity to comply with EnvironmEntal, health, and safEty rEgulations or policiEs. It is a dynamic documEnt and will bE rEviEwEd periodically and updatEd basEd on the commEnts and suggEstions of rEaders, laboratory usErs, and thE broadEr CUNY sciEntific community. 1 CUNY EHSRM gratEfully acknowlEdgEs thE gEnErosity of CornEll UnivErsity’s OfficE of EnvironmEntal HEalth and SafEty for allowing CUNY to usE its own Laboratory SafEty ManuEl as thE basE for this documEnt. 2 29 CFR 1910.1450. AccEssiblE on-linE. https://www.osha.gov/pls/oshawEb/owadisp.show_documEnt?p_id=10106&p_tablE=STANDARDS LABORATORY SAFETY MANUAL 2 TABLE OF CONTENTS 1.0 INTRODUCTION ............................................................................................................................. 11 1.1 CHEMICAL HYGIENE PLAN (CHP) ACCESSIBILITY ..................................................................................... 12 1.2 LABORATORY SAFETY RESPONSIBILITIES ................................................................................................ 13 1.2.1 NEW YORK CITY LABORATORY REQUIREMENTS ..................................................................................... 13 1.3 ROLES AT CUNY ............................................................................................................................... 15 2.0 ENGINEERING CONTROLS .............................................................................................................. 17 2.1 CHEMICAL FUME HOODS ................................................................................................................... 17 2.1.1 PERCHLORIC ACID USE .................................................................................................................... 18 2.1.2 RADIOACTIVE MATERIAL USE ............................................................................................................ 18 2.1.3 FUME HOOD INSPECTION AND TESTING PROGRAM ................................................................................ 18 2.1.4 INSTALLATION OF NEW FUME HOODS ................................................................................................. 19 2.1.5 REMOVAL OF EXISTING FUME HOODS ................................................................................................. 19 2.2 OTHER CAPTURE OR CONTAINMENT DEVICES ......................................................................................... 19 2.2.1 GLOVE BOXES ................................................................................................................................ 20 2.3 WATER PROTECTION IN LABS .............................................................................................................. 21 3.0 PERSONAL PROTECTIVE EQUIPMENT ............................................................................................. 21 3.1 LABORATORY PERSONNEL RESPONSIBILITIES .......................................................................................... 22 3.2 TRAINING FOR PERSONAL PROTECTIVE EQUIPMENT................................................................................. 23 3.3 EYE PROTECTION .............................................................................................................................. 23 3.3.1 EYE PROTECTION SELECTION ............................................................................................................. 23 3.4 HAND PROTECTION ........................................................................................................................... 25 3.4.1 SELECTING THE PROPER GLOVES ........................................................................................................ 25 3.4.2 DOUBLE GLOVING .......................................................................................................................... 26 3.4.3 TYPES OF GLOVES ........................................................................................................................... 27 3.5 PROTECTIVE CLOTHING ...................................................................................................................... 28 3.6 RESPIRATORS ................................................................................................................................... 29 3.7 HEARING PROTECTION ....................................................................................................................... 30 3.8 FOOT PROTECTION............................................................................................................................ 31 4.0 ADMINISTRATIVE CONTROLS ......................................................................................................... 31 4.1 STANDARD OPERATING PROCEDURES ................................................................................................... 32 4.2 PROCEDURAL CONTROLS .................................................................................................................... 33 4.3 HOUSEKEEPING ................................................................................................................................ 33 LABORATORY SAFETY MANUAL 3 4.4 PERSONAL HYGIENE .......................................................................................................................... 34 4.5 EATING, DRINKING, AND APPLYING COSMETICS IN THE LABORATORY ......................................................... 35 4.6 WORKING ALONE ............................................................................................................................. 35 4.6.1 WORKING ALONE - RESPONSIBILITIES ................................................................................................. 37 4.6.2 BUDDY SYSTEM AND WORKING ALONE ............................................................................................... 37 4.6.3 C-14 REQUIREMENTS FOR THE WRITTEN EXAM .................................................................................... 38 4.6.4 RENEWAL GUIDELINES FOR CERTIFICATE OF FITNESS .............................................................................. 39 4.7 SUPERVISION IN THE LABORATORIES - DEFINED ...................................................................................... 39 4.8 PHONE ACCESS ................................................................................................................................ 40 4.9 UNATTENDED OPERATIONS ................................................................................................................ 40 4.10 ACCESS TO LABORATORIES ................................................................................................................ 41 4.10.1 GENERAL VISITORS ....................................................................................................................... 41 4.10.2 VISITING SCIENTISTS AND OTHER SIMILAR USERS ................................................................................ 41 4.10.3 PETS IN LABS ............................................................................................................................... 41 4.11 PURCHASING CHEMICALS ................................................................................................................. 41 4.12 ORDERING NEW EQUIPMENT ...........................................................................................................
Recommended publications
  • Chemical Threat Agents Call Poison Control 24/7 for Treatment Information 1.800.222.1222 Blood Nerve Blister Pulmonary Metals Toxins
    CHEMICAL THREAT AGENTS CALL POISON CONTROL 24/7 FOR TREATMENT INFORMATION 1.800.222.1222 BLOOD NERVE BLISTER PULMONARY METALS TOXINS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS SYMPTOMS • Vertigo • Diarrhea, diaphoresis • Itching • Upper respiratory tract • Cough • Shock • Tachycardia • Urination • Erythema irritation • Metallic taste • Organ failure • Tachypnea • Miosis • Yellowish blisters • Rhinitis • CNS effects • Cyanosis • Bradycardia, bronchospasm • Flu-like symptoms • Coughing • Shortness of breath • Flu-like symptoms • Emesis • Delayed eye irritation • Choking • Flu-like symptoms • Nonspecific neurological • Lacrimation • Delayed pulmonary edema • Visual disturbances symptoms • Salivation, sweating INDICATIVE LAB TESTS INDICATIVE LAB TESTS INDICATIVE LAB TEST INDICATIVE LAB TESTS INDICATIVE LAB TESTS INDICATIVE LAB TESTS • Increased anion gap • Decreased cholinesterase • Thiodiglycol present in urine • Decreased pO2 • Proteinuria None Available • Metabolic acidosis • Increased anion gap • Decreased pCO2 • Renal assessment • Narrow pO2 difference • Metabolic acidosis • Arterial blood gas between arterial and venous • Chest radiography samples DEFINITIVE TEST DEFINITIVE TEST DEFINITIVE TEST DEFINITIVE TESTS DEFINITIVE TESTS • Blood cyanide levels • Urine nerve agent • Urine blister agent No definitive tests available • Blood metals panel • Urine ricinine metabolites metabolites • Urine metals panel • Urine abrine POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS POTENTIAL AGENTS • Hydrogen Cyanide
    [Show full text]
  • Nanomaterial Safety
    Nanomaterial Safety What are Nanomaterials? Nanomaterials or nanoparticles are human engineered particles with at least one dimension in the range of one to one hundred nanometers. They can be composed of many different base materials (carbon, silicon, and various metals). Research involving nanomaterials ranges from nano-particle synthesis to antineoplastic drug implants to cell culture work. Material Scientists, Chemists, Biologists, Biochemists, Physicists, Microbiologists, Medical-related disciplines and many engineering disciplines (Mechanical, Chemical, Biological and Environmental, etc.) perform research using nanomaterials. Naturally created particles of this size range are normally called ultra-fine particles. Examples are welding fumes, volcanic ash, motor vehicle exhaust, and combustion products. Nanomaterials come in many different shapes and dimensions, such as: • 0-dimensional: quantum dots • 1-dimensional: nanowires, nanotubes, • 2-dimensional: nanoplates, nanoclays • 3-dimensional: Buckyballs, Fullerenes, nanoropes, crystalline structures Nanoparticles exhibit very different properties than their respective bulk materials, including greater strength, conductivity, fluorescence and surface reactivity. Health Effects Results from studies on rodents and in cell cultures exposed to ultrafine and nanoparticles have shown that these particles are more toxic than larger ones on a mass-for-mass basis. Animal studies indicate that nanoparticles cause more pulmonary inflammation, tissue damage, and lung tumors than larger particles Solubility, shape, surface area and surface chemistry are all determinants of nanoparticle toxicity There is uncertainty as to the levels above which these particles become toxic and whether the concentrations found in the workplace are hazardous Respiratory Hazards: • Nanoparticles are deposited in the lungs to a greater extent than larger particles • Based on animal studies, nanoparticles may enter the bloodstream from the lungs and translocate to other organs and they are able to cross the blood brain barrier.
    [Show full text]
  • Safety in the Chemistry Lab
    Safety in the Chemistry Lab Working in the chemistry laboratory is an inter- 12. Never touch any substance in the lab un- esting and rewarding experience. During your less specifically instructed to do so by your labs, you will be actively involved from beginning teacher. to end—from setting some change in motion to 13. Never put your face near the mouth of a drawing some conclusion. In the laboratory, you container that is holding chemicals. will be working with equipment and materials that 14. Never smell any chemicals unless in- can cause injury if they are not handled properly. structed to do so by your teacher. When testing for However, the laboratory is a safe place to work if odors, use a wafting motion to direct the odors to you are careful. Accidents do not just happen, they your nose. are caused—by carelessness, haste, and disregard 15. Any activity involving poisonous vapors of safety rules and practices. Safety rules to be should be conducted in the fume hood. followed in the laboratory are listed below. Before 16. Dispose of waste materials as instructed beginning any lab work, read these rules, learn by your teacher. them, and follow them carefully. 17. Clean up all spills immediately. 18. Clean and wipe dry all work surfaces at General the end of class. Wash your hands thoroughly. 19. Know the location of emergency equip- 1. Be prepared to work when you arrive at ment (first aid kit, fire extinguisher, fire shower, the laboratory. Familiarize yourself with the lab fire blanket, etc.) and how to use them.
    [Show full text]
  • Francis (Bud) J. Offermann III PE, CIH
    Francis (Bud) J. Offermann III PE, CIH Indoor Environmental Engineering 1448 Pine Street, Suite 103, San Francisco, CA 94109 Phone: 415-567-7700 Email: [email protected] http://www.iee-sf.com Education M.S. Mechanical Engineering (1985) Stanford University, Stanford, CA. Graduate Studies in Air Pollution Monitoring and Control (1980) University of California, Berkeley, CA. B.S. in Mechanical Engineering (1976) Rensselaer Polytechnic Institute, Troy, N.Y. Professional Experience President: Indoor Environmental Engineering, San Francisco, CA. December, 1981 - present. Direct team of environmental scientists, chemists, and mechanical engineers in conducting State and Federal research regarding indoor air quality instrumentation development, building air quality field studies, and ventilation and air cleaning performance measurements. Direct work of IAQ Diagnostic and Mitigation team of industrial hygienists, mechanical engineers, and building inspectors and abatement planners addressing the concerns of building developers, owners, operators, managers, tenants, architects, and ventilation engineers regarding indoor air quality and appropriate and cost effective mitigation measures where required. Manage the Mobile Response Group, a group of hygienists and engineers trained to provide timely and cost effective building inspections and abatement plans nationwide. Provide design side input to architects regarding selection of building materials and ventilation system components to ensure a superior indoor environment. Developed tracer gas techniques used to evaluate the in situ performance of mechanical ventilation systems. Developed a dynamic headspace analytical technique to quantify the in situ emission rates of contaminants from building materials, furnishings, and equipment. Developed ground flux measurement techniques for assessing the potential impact on indoor air quality of ground contaminants (e.g.
    [Show full text]
  • Permit Review Report Permit ID: 3-3926-00729/00054 Renewal Number: 2 Modification Number: 3 01/18/2019
    New York State Department of Environmental Conservation Permit Review Report Permit ID: 3-3926-00729/00054 Renewal Number: 2 Modification Number: 3 01/18/2019 Facility Identification Data Name: PAR PHARMACEUTICAL INC Address: 1 RAM RIDGE RD CHESTNUT RIDGE, NY 10977 Owner/Firm Name: PAR PHARMACEUTICAL INC Address: 1 RAM RIDGE RD CHESTNUT RIDGE, NY 10977, USA Owner Classification: Corporation/Partnership Permit Contacts Division of Environmental Permits: Name: CHRISTOPHER LANG Address: NYSDEC - REGION 3 21 S PUTT CORNERS RD NEW PALTZ, NY 12561-5401 Phone: Division of Air Resources: Name: ALYSSA CARBONE Address: NYSDEC - REGION 3 21 S Putt Corners Rd New Paltz, NY 12561-1620 Phone:8452563058 Air Permitting Contact: Name: TODD ARNOLD Address: 1 RAM RIDGE RD CHESTNUT RIDGE, NY 10977 Phone:8453644868 Permit Description Introduction The Title V operating air permit is intended to be a document containing only enforceable terms and conditions as well as any additional information, such as the identification of emission units, emission points, emission sources and processes, that makes the terms meaningful. 40 CFR Part 70.7(a)(5) requires that each Title V permit have an accompanying "...statement that sets forth the legal and factual basis for the draft permit conditions". The purpose for this permit review report is to satisfy the above requirement by providing pertinent details regarding the permit/application data and permit conditions in a more easily understandable format. This report will also include background narrative and explanations of regulatory decisions made by the reviewer. It should be emphasized that this permit review report, while based on information contained in the permit, is a separate document and is not itself an enforceable term and condition of the permit.
    [Show full text]
  • Nerve Agent - Lntellipedia Page 1 Of9 Doc ID : 6637155 (U) Nerve Agent
    This document is made available through the declassification efforts and research of John Greenewald, Jr., creator of: The Black Vault The Black Vault is the largest online Freedom of Information Act (FOIA) document clearinghouse in the world. The research efforts here are responsible for the declassification of MILLIONS of pages released by the U.S. Government & Military. Discover the Truth at: http://www.theblackvault.com Nerve Agent - lntellipedia Page 1 of9 Doc ID : 6637155 (U) Nerve Agent UNCLASSIFIED From lntellipedia Nerve Agents (also known as nerve gases, though these chemicals are liquid at room temperature) are a class of phosphorus-containing organic chemicals (organophosphates) that disrupt the mechanism by which nerves transfer messages to organs. The disruption is caused by blocking acetylcholinesterase, an enzyme that normally relaxes the activity of acetylcholine, a neurotransmitter. ...--------- --- -·---- - --- -·-- --- --- Contents • 1 Overview • 2 Biological Effects • 2.1 Mechanism of Action • 2.2 Antidotes • 3 Classes • 3.1 G-Series • 3.2 V-Series • 3.3 Novichok Agents • 3.4 Insecticides • 4 History • 4.1 The Discovery ofNerve Agents • 4.2 The Nazi Mass Production ofTabun • 4.3 Nerve Agents in Nazi Germany • 4.4 The Secret Gets Out • 4.5 Since World War II • 4.6 Ocean Disposal of Chemical Weapons • 5 Popular Culture • 6 References and External Links --------------- ----·-- - Overview As chemical weapons, they are classified as weapons of mass destruction by the United Nations according to UN Resolution 687, and their production and stockpiling was outlawed by the Chemical Weapons Convention of 1993; the Chemical Weapons Convention officially took effect on April 291997. Poisoning by a nerve agent leads to contraction of pupils, profuse salivation, convulsions, involuntary urination and defecation, and eventual death by asphyxiation as control is lost over respiratory muscles.
    [Show full text]
  • Whoosh Bottle
    Whoosh Bottle Introduction SCIENTIFIC Wow your students with a whoosh! Students will love to see the blue alcohol flame shoot out the mouth of the bottle and watch the dancing flames pulsate in the jug as more air is drawn in. Concepts • Exothermic reactions • Activation energy • Combustion Background Low-boiling alcohols vaporize readily, and when alcohol is placed in a 5-gallon, small-mouthed jug, it forms a volatile mixture with the air. A simple match held by the mouth of the jug provides the activation energy needed for the combustion of the alcohol/air mixture. Only a small amount of alcohol is used and it quickly vaporizes to a heavier-than-air vapor. The alcohol vapor and air are all that remain in the bottle. Alcohol molecules in the vapor phase are farther apart than in the liquid phase and present far more surface area for reaction; therefore the combustion reaction that occurs is very fast. Since the burning is so rapid and occurs in the confined space of a 5-gallon jug with a small neck, the sound produced is very interesting, sounding like a “whoosh.” The equation for the combustion reaction of isopropyl alcohol is as follows, where 1 mole of isopropyl alcohol combines with 4.5 moles of oxygen to produce 3 moles of carbon dioxide and 4 moles of water: 9 (CH3)2CHOH(g) + ⁄2O2(g) → 3CO2(g) + 4H2O(g) ∆H = –1886.6 kJ/mol Materials Isopropyl alcohol, (CH3)2CHOH, 20–30 mL Graduated cylinder, 25-mL Whoosh bottle, plastic jug, 5-gallon Match or wood splint taped to meter stick Fire blanket (highly recommended) Safety shield (highly recommended) Funnel, small Safety Precautions Please read all safety precautions before proceeding with this demonstration.
    [Show full text]
  • Fire Prevention Program Revised September 2018 Page 1 of 10 Obey All “No Smoking” and “No Open Flame” Signs and Postings
    FIRE PREVENTION & PROTECTION PROGRAM PURPOSE / SCOPE The purpose or goal of the Fire Extinguisher Program is to inform and train employees on preventing fires in the workplace and the proper selection and the use of fire extinguishers in the event of an incipient fire. GENERAL REQUIREMENTS Fire is a common and serious hazard in the construction industry. Each year fires take many lives, cause workers and their families to suffer, and cost millions of dollars. Fire prevention is everyone’s responsibility. Employees must do their part by observing and complying with fire-prevention regulations and procedures. Employees should report any potential fire hazard or condition that could cause a fire to their supervisor immediately. Many potential fire hazards that are commonly found on job sites include gasoline, diesel fuel, oxygen, acetylene and various other building materials. Most fires are caused by a violation of basic fire safety precautions. While proper procedures and training can minimize the chances of an accidental fire, employees must still be prepared to deal with a fire emergency should it occur. In accordance with OSHA standards, our employees must adhere to the following written Fire Prevention and Protection Program. A copy of this program shall be kept at the work place and is available for employee review. Fire extinguishers shall be readily available and located so that personnel do not have to travel more than 75 feet to reach one. On job sites, all Winger Companies, herein referred to as Winger, fire extinguishers SHALL be conspicuously located, readily accessible, and immediately available in the event of a fire for all cutting, welding and grinding operations.
    [Show full text]
  • Flinn Scientific 2019 Purchase Guide a Quick and Easy Checklist of Science Essentials
    Flinn Scientific 2019 Purchase Guide A Quick and Easy Checklist of Science Essentials Use this Purchase Guide as a handy tool for: • Taking Inventory • Order Preparation • Budget Management • Future Planning See your Flinn Scientific Catalog/Reference Manual SCIENTIFIC or visit www.flinnsci.com for product details. It’s Easy to Order Tom Trapp from Flinn Scientific! National Account Development Consultant [email protected] www.flinnsci.com/tom-trapp/sa1001 Online 402-960-5578 (mobile) www.flinnsci.com Offering personal assistance to help meet your science curriculum, supply, and lab safety needs. Email [email protected] Quality Products, Fast Delivery, Fax and Low Prices Guaranteed 1-866-452-1436 (toll free) Mail Flinn Scientific, Inc. P.O. Box 219 Batavia, IL 60510-0219 Phone 1-800-452-1261 7:30 am to 5:00 pm CT Monday through Friday Our Guarantee Flinn Scientific, Inc. guarantees that no sale is complete unless the customer is satisfied. Every item we furnish will either conform to the catalog specification, or we will ask your permission, prior to shipment, to ship an alternative product. If you find a lower published nationally advertised catalog price for an identical item, Flinn will “meet or beat” that price. Use this purchase guide containing popular product recommendations ©2019 Flinn Scientific, Inc. All Rights Reserved. to prepare your order, take inventory, and manage your budget. 1 www.flinnsci.com Flinn Scientific 2019 Purchase Guide 1 Item Rec. Item Rec. Product / Item Name Qty 2019 Price Total Product / Item Name Qty 2019 Price Total No. Qty No. Qty Safety & Personal Protection Equipment Aspirator, Water, Polypropylene AP1203 1 $ 19.30 $ - Apron, rubberized, 27" W X 36" L AP7125 30 $ 15.00 $ - Autoclave, Electric, Portable AP1004 1 $ 865.20 $ - Apron, plastic, 30" W x 36" L AP7120 30 $ 7.25 $ - ♦ Balance, Flinn Triple Beam OB2181 $ 115.00 $ - Gloves, Butyl rubber for conc.
    [Show full text]
  • Classification of Laboratory Ventilation Design Levels
    Classification of Laboratory Ventilation Design Levels Developed by ASHRAE Technical Committee 9.10, Laboratory Systems Laboratory Classification Subcommittee In partnership with American Chemical Society Division of Chemical Health and Safety and American Industrial Hygiene Association Laboratory Health and Safety Committee Atlanta This publication was developed by the Laboratory Classification Subcommittee of ASHRAE Technical Committee (TC) 9.10, Laboratory Systems, with support from members of other organizations that specialize in laboratory health and safety. ASHRAE TC 9.10 Laboratory Classification Subcommittee Adam Bare, PE, Chair Roland Charneux, PE, HFDP, ASHRAE Fellow Newcomb & Boyd, LLP Pageau & Morel Jim Coogan Gary Goodson, PE Siemens Exposure Control Technologies, Inc. Henry Hays Nathan Ho, PE USDA Agricultural Research Service P2S Engineering, Inc. Guy Perreault Tom Smith Evap-Tech MTC Inc. Exposure Control Technologies, Inc. Contributors from Other Organizations Debbie Decker Ken Kretchman University of California, Davis North Carolina State University Rebecca Lally, CIH Elizabeth Kolacki, PE Southern California Edison Cornell University Peter Slinn Ralph Stuart, CIH Natural Resources Canada Keene State College Ellen Sweet Cornell University This work is the product of an effort started by Andrew Dymek well over 10 years ago. Thanks to everyone involved for their help in producing this document. Special thanks go to Tom Smith for his considerable efforts. Updates/errata for this publication will be posted on the ASHRAE website at www.ashrae.org/publicationupdates. ISBN 978-1-939200-90-7 (PDF) © 2018 ASHRAE 1791 Tullie Circle, NE Atlanta, GA 30329 www.ashrae.org All rights reserved. ASHRAE is a registered trademark in the U.S. Patent and Trademark Office, owned by the American Society of Heat- ing, Refrigerating and Air-Conditioning Engineers, Inc.
    [Show full text]
  • GG Brown Board
    VARIABLE VOLUME GENERAL LAB FREE COOLING OPTIMIZE ENERGY LAB EXHAUST FANS EXHAUST AIR Because of heat gain from lab equipment lab spaces require cooling year round. At the G.G. Brown SOLAR PERFORMANCE Addition the heat from lab equipment is used to preheat ventilation air in the winter using the chilled THERMAL G.G. Brown Addition avoids excessive energy SENSIBLE HEAT water system. After the chilled water is cooled again from the cold ventilation air it is sent back to COLLECTOR use by implementing a superior building envelope cool the lab spaces. This cycle continues, creating a perpetual “Free Cooling” process. WHEEL DOMESTIC TOTAL ENTHALPY to minimize heat loss and by executing modern HOT WATER WHEEL FUME HOODS heating, ventilation and air conditioning strategies. LAB SYSTEM SUPPLY The labs at G.G. Brown implement a variety of innovative fume G.G. Brown Addition exceeds the AIR hood technologies to save energy while maintaining a performance of a code minimum safe environment. Among these technologies are PHOTO-VOLTAIC SOLARSOLAR building by 40%. variable volume fume hoods with sash SOLAR PANELS COLD WATERWATER position sensors and reduced Photo-Voltaic solar panels on the roof WATER face velocity fume HEATINGHEATIN HAZARDOUS of the G.G. Brown Addition generate hoods. SolarSolar collectorscollec on FUME HOOD enough electricity to support 1% of the roofroof useuse energy OUTSIDE AIR EXHAUST AIR the total building energy use. This PUMP fromfrom thethe sun to heat LEED PUMP INTAKE ultimately reduces the environmental domesticdomestic waterw at for use and economic impacts associated with inin lavatorieslavatories anda sinks. 40% GOLD the use of fossil fuels.
    [Show full text]
  • Specific Lab Safety Procedure Johnson's Group
    Specific Lab Safety Procedure Johnson’s Group Last Edited: 1/18/2018 1. Purpose The purpose of this procedure is to support work practices for protecting laboratory personnel from potential health hazards in the laboratory. 1. Laboratory Safety Guidelines 1.1 GENERAL LABORATORY SAFETY • Do not eat, drink, or apply cosmetics in the lab. • Store food and drink in food designated refrigerators only. Don’t mix chemicals and food. • Tie back medium length and long hair and remove or secure dangling pieces of clothing (e.g. ties, draw-strings, headphones, etc. ) when working near flames or entangling equipment. • All accidents, no matter how minor, should be reported to the faculty/staff member supervising the laboratory. • Know the location of all safety equipment (e.g. eyewash, fire extinguisher, fire blanket, safety showers, spill kit) if available. • Keep aisles clear. • Maintain unobstructed access to all exits, fire extinguishers, electrical panels, emergency showers, and eyewashes. • Do not use corridors for storage or work areas. • Do not store heavy items above 6 feet high. • Consult with your Principal Investigator if planning to work alone or running an unattended operation. • Avoid working alone in the lab when performing high-risk operations. • Keep area clean and uncluttered; clean up area upon completion of task or at end of the day. 1.2 PERSONAL PROTECTIVE EQUIPMENT (PPE) • Review SOP, MSDS and other hazard information to determine appropriate PPE to wear based on chemical hazards encountered. • Remove gloves when leaving the laboratory, so as not to contaminate doorknobs, etc. 1.3 ELECTRICAL SAFETY • Don’t use permanent extension cords.
    [Show full text]