Using Modern Computing Tools to Fit the Pearson Type III Distribution to Aviation Loads Data

Total Page:16

File Type:pdf, Size:1020Kb

Using Modern Computing Tools to Fit the Pearson Type III Distribution to Aviation Loads Data DOT/FAA/AR-03/62 Using Modern Computing Tools to Office of Aviation Research Fit the Pearson Type III Washington, D.C. 20591 Distribution to Aviation Loads Data September 2003 Final Report This document is available to the U.S. public through the National Technical Information Service (NTIS), Springfield, Virginia 22161. U.S. Department of Transportation Federal Aviation Administration NOTICE This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for the contents or use thereof. The United States Government does not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the objective of this report. This document does not constitute FAA certification policy. Consult your local FAA aircraft certification office as to its use. This report is available at the Federal Aviation Administration William J. Hughes Technical Center's Full-Text Technical Reports page: actlibrary.tc.faa.gov in Adobe Acrobat portable document format (PDF). Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT/FAA/AR-03/62 4. Title and Subtitle 5. Report Date USING MODERN COMPUTING TOOLS TO FIT THE PEARSON September 2003 TYPE III DISTRIBUTION TO AVIATION LOADS DATA 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Peter Hovey* and Thomas DeFiore** 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) *University of Dayton Research **FAA William J. Hughes Technical Center RPD-510 Institute Airport and Aircraft Safety R&D Division 11. Contract or Grant No. Structural Integrity Division Airworthiness Assurance Branch Grant 00-G-015 300 College Park Atlantic City International Airport, NJ 08405 Dayton, OH 45469-0120 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered U.S. Department of Transportation Final Report Federal Aviation Administration Office of Aviation Research 14. Sponsoring Agency Code Washington, DC 20591 ANM-110 15. Supplementary Notes The FAA William J. Hughes Technical Center COTR was Thomas DeFiore. 16. Abstract The question of obtaining a relatively simple and at the same time accurate functional representation of asymmetric frequency distributions gives rise to one of the most important practical problems in mathematical statistics. The famous mathematician Karl Pearson solved this with a considerable degree of success in the development of his Type III frequency function. This function is a comparatively simple exponential expression, which is completely defined in terms of the mean, standard deviation, and the skewness of the distribution. The Type III function produces, with considerable accuracy, a large number of different distributions, both skew and symmetric, and reduces to the standard normal frequency function when skewness is zero. The Pearson Type III distribution is used by the U.S. Army Corps of Engineers in flood frequency analysis, by the National Oceanic and Atmospheric Administration in the analysis of precipitation data, and by the U.S. Navy in specifying airplane touchdown sink speed of non- carrier-based airplanes. A derivation of the Pearson Type III probability function, a table containing a complete set of Pearson Type III probability values for skewness values up to 1.1, an example describing how to use the tables, and a procedure and example for setting up an Excel spreadsheet and graphical applications are presented herein. 17. Key Words 18. Distribution Statement Pearson Type III distribution, Statistical analysis, This document is available to the public through the National Cumulative probability function, Skewness Technical Information Service (NTIS) Springfield, Virginia 22161. 19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 83 Form DOT F1700.7 (8-72) Reproduction of completed page authorized PREFACE The Flight Systems Integrity Group of the Structural Integrity Division of the University of Dayton Research Institute (UDRI) performed this study under Federal Aviation Administration (FAA) Grant No. 00-G-015 entitled “Pearson Type III and the Gamma Distribution.” Mr. Thomas DeFiore of the FAA William J. Hughes Technical Center at Atlantic City International Airport, New Jersey, was the program manager for the FAA and also a major contributor for the preparation of the report. Dr. Peter Hovey was the Principal Investigator for UDRI. iii ACKNOWLEDGEMENT The authors would like to acknowledge the following for their assistance in the preparation of this report: (1) University of Dayton Research Institute’s John Rustenburg for his technical review and final assembly into the report, (2) Federal Aviation Administration (FAA) William J. Hughes Technical Center’s Carman Munafo for the preparation of the proofs presented in Appendices B, C, and D, and (3) FAA William J. Hughes Technical Center’s Richard Micklos for his final technical edit and suggestion for the insertion for sample problems. iv TABLE OF CONTENTS Page EXECUTIVE SUMMARY ix 1. INTRODUCTION 1 2. DISCUSSION 1 3. EXAMPLES 3 3.1 Percentile of Distribution Table Look-Up 3 3.2 Generating Tables 4 3.3 Generating Exceedance Curves 5 4. CONCLUDING REMARKS 9 5. REFERENCES 9 APPENDICES A—Cumulative Probability of the Standardized Pearson Type III Distribution B—Derivation of the Pearson Type III Probability Density Function C—Deriving the Three-Parameter Gamma Probability Density Function D—Moments of the Pearson Type III Probability Density Function v LIST OF ILLUSTRATIONS Figure Page 1 Histogram of Wind Speed Parallel to the Runway at Touchdown 6 2 Histogram of Wind Speed Perpendicular to the Runway at Touchdown 6 3 Pearson Type III Probability Plot of Wind Speed Parallel to the Runway 7 4 Pearson Type III Probability Plot of Wind Speed Perpendicular to the Runway 7 5 Exceedance Probability for Wind Speed Parallel to the Runway 8 6 Exceedance Probability for Wind Speed Perpendicular to the Runway 8 LIST OF TABLES Table Page 1 Example Using the Excel Inverse Gamma Distribution Function to Calculate Pearson Type III Variates 4 vi LIST OF SYMBOLS AND ABBREVIATIONS a,c0, c1, c2 Constants in the Pearson differential equation f(x) Probability density function F-1(x) Inverse of the Cumulative Gamma Distribution Function F(x) Cumulative Gamma Distribution Function κ skewness K, m Constants in the Pearson Type III Density Function P(x) Pearson Type III Density Function P Percentile Pe Exceedance Probability x Sample Mean XP Standardized Pearson Type III Percentile s Sample Standard Deviation α Parameter of the Gamma Distribution β Scale Parameter of the Gamma Distribution Γ Gamma Distribution Function µ mean of distribution σ2 variance of distribution vii/viii EXECUTIVE SUMMARY The question of obtaining a relatively simple and at the same time accurate functional representation of asymmetric frequency distributions gives rise to one of the most important practical problems in mathematical statistics. The famous mathematician Karl Pearson solved this with a considerable degree of success in the development of his Type III frequency function. This function is comparatively simple exponential expression, which is completely defined in terms of the mean, standard deviation, and the skewness of the distribution. The Type III function produces, with considerable accuracy, a large number of different distributions, both skew and symmetric, and reduces to the standard normal frequency function when skewness is zero. The Pearson Type III distribution is used by the U.S. Army Corps of Engineers in flood frequency analysis, by the National Oceanic and Atmospheric Administration in the analysis of precipitation data, and by the U.S. Navy in specifying airplane touchdown sink speed of non- carrier-based airplanes. A derivation of the Pearson Type III probability function, a table containing a complete set of Pearson Type III probability values for skewness values up to 1.1, an example describing how to use the tables, and a procedure and example for setting up an Excel spreadsheet and graphical applications are presented herein. ix/x 1. INTRODUCTION. The Pearson Type III distribution is used by the U.S. Army Corps of Engineers in flood frequency analysis [1 and 2], the National Oceanic and Atmospheric Administration in the analysis of precipitation data [3], and by the U.S. Navy in specifying airplane touchdown sink speed of non-carrier-based airplanes [4]. The Federal Aviation Administration has been conducting video landing parameter surveys at high activity airports. Some of the parameters measured include sink speed, ground speed at touchdown, roll, pitch, and yaw rates. For almost every civil airplane model type for which substantial data has been collected, the most important measured parameter, sink speed appears to have a substantial degree of asymmetry, i.e., skewness to the positive side. Engineers need a simple statistical tool to analyze, present, and extrapolate frequency distributions for this type of skewed data in which the parameters of the distribution have a clear physical meaning. The three-parameter (mean, standard deviation, and skewness) Pearson Type III distribution appears to fulfill this need. The Pearson Type III distribution is better known today as the Gamma distribution. This report describes the relation between the parameters of the Pearson Type
Recommended publications
  • Univariate and Multivariate Skewness and Kurtosis 1
    Running head: UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 1 Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation Meghan K. Cain, Zhiyong Zhang, and Ke-Hai Yuan University of Notre Dame Author Note This research is supported by a grant from the U.S. Department of Education (R305D140037). However, the contents of the paper do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Correspondence concerning this article can be addressed to Meghan Cain ([email protected]), Ke-Hai Yuan ([email protected]), or Zhiyong Zhang ([email protected]), Department of Psychology, University of Notre Dame, 118 Haggar Hall, Notre Dame, IN 46556. UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 2 Abstract Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74% of univariate distributions and 68% multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17% in a t-test and 30% in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances.
    [Show full text]
  • Review on Generalized Pearson System of Probability Distributions
    Review on Generalized Pearson System of Probability Distributions M. Shakil, Ph.D. † B.M. Golam Kibria, Ph.D. ‡ J. N. Singh, Ph.D. § Abstract In recent years, many researchers have considered a generalization of the Pearson system, known as generalized Pearson system of probability distributions. In this paper, we have reviewed these new classes of continuous probability distribution which can be generated from the generalized Pearson system of differential equation. We have identified as many as 15 such distributions. It is hoped that the proposed attempt will be helpful in designing a new approach of unifying different families of distributions based on the generalized Pearson differential equation, including the estimation of the parameters and inferences about the parameters. 1. Introduction: Pearson System of Distributions A continuous distribution belongs to the Pearson system if its pdf (probability density function) f satisfies a differential equation of the form 1 df (x) x + a X = − , (1) f ()x dx b x 2 + c x + d where a , b , c , and d are real parameters such that f is a pdf . The shapes of the pdf depend on the values of these parameters, based on which Pearson (1895, 1901) classified these distributions into a number of types known as Pearson Types I – VI. Later in another paper, Pearson (1916) defined more special cases and subtypes known as Pearson Types VII - XII. Many well- known distributions are special cases of Pearson Type distributions which include Normal and Student’s t distributions (Pearson Type VII), Beta distribution (Pearson Type I), Gamma distribution (Pearson Type III) among others.
    [Show full text]
  • Portfolio Risk Measures and Option Pricing Under a Hybrid Brownian Motion Model
    Portfolio risk measures and option pricing under a Hybrid Brownian motion model by Innocent Mbona (Student no 15256422) Dissertation submitted in partial fulfillment of the requirements for the degree of Magister Scientiae in Financial Engineering in the Department of Mathematics and Applied Mathematics in the Faculty of Natural and Agricultural Sciences University of Pretoria Pretoria November 2017 Declaration I, the undersigned, declare that the dissertation, which I hereby submit for the degree Mag- ister Scientiae in Financial Engineering at the University of Pretoria, is my own work and has not been submitted by me for a degree at this or any other tertiary institution. Signature: I.N Mbona Name: Innocent Mbona Date: November 2017 1 Abstract The 2008/9 financial crisis intensified the search for realistic return models, that capture real market movements. The assumed underlying statistical distribution of financial re- turns plays a crucial role in the evaluation of risk measures, and pricing of financial instru- ments. In this dissertation, we discuss an empirical study on the evaluation of the traditional portfolio risk measures, and option pricing under the hybrid Brownian motion model, de- veloped by Shaw and Schofield. Under this model, we derive probability density functions that have a fat-tailed property, such that “25σ” or worse events are more probable. We then estimate Value-at-Risk (VaR) and Expected Shortfall (ES) using four equity stocks listed on the Johannesburg Stock Exchange, including the FTSE/JSE Top 40 index. We apply the his- torical method and Variance-Covariance method (VC) in the valuation of VaR. Under the VC method, we adopt the GARCH(1,1) model to deal with the volatility clustering phenomenon.
    [Show full text]
  • Field Guide to Continuous Probability Distributions
    Field Guide to Continuous Probability Distributions Gavin E. Crooks v 1.0.0 2019 G. E. Crooks – Field Guide to Probability Distributions v 1.0.0 Copyright © 2010-2019 Gavin E. Crooks ISBN: 978-1-7339381-0-5 http://threeplusone.com/fieldguide Berkeley Institute for Theoretical Sciences (BITS) typeset on 2019-04-10 with XeTeX version 0.99999 fonts: Trump Mediaeval (text), Euler (math) 271828182845904 2 G. E. Crooks – Field Guide to Probability Distributions Preface: The search for GUD A common problem is that of describing the probability distribution of a single, continuous variable. A few distributions, such as the normal and exponential, were discovered in the 1800’s or earlier. But about a century ago the great statistician, Karl Pearson, realized that the known probabil- ity distributions were not sufficient to handle all of the phenomena then under investigation, and set out to create new distributions with useful properties. During the 20th century this process continued with abandon and a vast menagerie of distinct mathematical forms were discovered and invented, investigated, analyzed, rediscovered and renamed, all for the purpose of de- scribing the probability of some interesting variable. There are hundreds of named distributions and synonyms in current usage. The apparent diver- sity is unending and disorienting. Fortunately, the situation is less confused than it might at first appear. Most common, continuous, univariate, unimodal distributions can be orga- nized into a small number of distinct families, which are all special cases of a single Grand Unified Distribution. This compendium details these hun- dred or so simple distributions, their properties and their interrelations.
    [Show full text]
  • APPROVED: Chairman, Richard G
    COMPUTERMETHODS FOR GE}IERATI~GPSEUOO-RANOOM NUMBERS FROMPEARSOK DISTRIBUTIONS AND MIXTURES OF PEARSONAND UNIFORMDISTRIBUTIONS by Donald Gale Thomas Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute in candidacy for the degree of MASTEROF SCIENCE in statistics APPROVED: Chairman, Richard G. Krutchkoff, PhD• Boyd Harshbarger, PhD. Whitney L• Johnson Raymond H. Myers, PhD. May 1966 Blacksburg, Virginia -2- TABLEOF CONTENTS Chapter Pa.ge INTRODUOTION• • • • • • • • • • • • • • • • • • • • • • • 7 II. A BRIEF SURVEYOF METHODSOF GENERATWGPSEUDO-RANDOM 1'.'U1,1BERS• • • • • • • • • • • • • • • • • • • • • • • • . ll 2.1 Definition and Use of Pseudo-Random Numbers . 11 2.2 CommonMethods of Generating Pseudo-Random Numbers. • 11 2.21 Mid-Square Methods. • • • • • • • • • • • • • • l} 2.22 Multiplicative Congruential Methods • • • • • • 15 2.2} Mixed Congruential Methods. • • • • • • • • • • 14 2.24 Multiplicative vs. Mixed Generators • • • • • • 15 2.25 Other Methods • • • • • • • • • • • • • • • • • 16 III. A BRIEF SURVEYOF METHODSOF TESTING RANDOMNUMBERS •• • • 18 }ol Necessity for Testing • • • • • • • • • • • • • • • • 18 }.2 Tests of Fit ••••••••••••••••••• . 20 2 ,.21 x .Goodness of Fit • • • . • • • • . • • 20 }o22 Kolmogorov Statistic. • • • • • • • • • • • • • 21 }.2; Moments • • .. • • • • • .. • • • • • • • • • • • 21 Tests of Performance ••• . • • • • • • 21 ,.,1Runs Up and Down • • • • • • • • • • • • • . 22 ,.,2 Runs Above and Below Mean .. .. • • • • 22 ,.,, Serial Correlation •••• 22 ;.:,4 Other Tests
    [Show full text]
  • Ari Pani Desvina, Elfira Safitri, and Ade Novia Rahma
    Indonesian Journal of Pure and Applied Mathematics http://journal.uinjkt.ac.id/index.php/inprime Vol. 1, No. 1 (2019), pp. 48-56 ISSN 2686-5335 doi: 10.15408/inprime.v1i1.12839 Ari Pani Desvina , Elfira Safitri, and Ade Novia Rahma Mathematics Department, Science and Technology Faculty, UIN Sultan Syarif Kasim Riau Jl. HR. Soebrantas No. 155 Simpang Baru, Panam, Pekanbaru, 28293 Email: [email protected] Abstract Air pollution is a phenomenon that is often discussed, especially regarding air quality in urban areas. This has become a major contributor to health problems and environmental issues in Asian countries, such as Indonesia, especially Riau Province. The event of forest fires is one of the many events that occurred in Indonesia, especially Riau Province which harmed the population of Indonesia and neighboring countries. The phenomenon of forest forestry generally occurs due to a shift in the season towards drought and can occur in areas prone to forest fires. Therefore, it is necessary to know the model of air pollution distribution by Particulate Matter (PM10) in Pekanbaru City. This study aims to obtain the distribution model for daily air pollution PM10 in Pekanbaru City from 2014 to February 2015. Data were taken from three stations i.e. Sukajadi Station, Tampan Station, and Kulim Station. Four distributions will be tested i.e. Log Pearson III distribution, Gumbel distribution, Generalized Pareto Distribution, and Generalized Extreme Value (GEV) distribution. We test the goodness of fit from these distribution using the Kolmogorov-Smirnov and the Anderson-Darling tests. The result shows that the Generalized Extreme Value (GEV) distribution model was better than the Log Pearson III, Gumbel and Generalized Pareto distribution models for modeling city air pollution data Pekanbaru with three stations namely Sukajadi, Tampan, and Kulim.
    [Show full text]
  • Some Characteristic Properties of the Exponential Family
    Journal of Statistics and Mathematics ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 3, Issue 3, 2012, pp.-130-133. Available online at http://www.bioinfo.in/contents.php?id=85 SOME CHARACTERISTIC PROPERTIES OF THE EXPONENTIAL FAMILY ALI A. A-RAHMAN Institute of Statistical Studies and Research, Cairo University, Egypt *Corresponding Author: Email- [email protected] Received: November 05, 2012; Accepted: December 03, 2012 Abstract- In this paper, two recurrence relations characterizing a certain class of distribution family are presented. The first one is a recur- m rence relation between conditional moments of ℎ(X) given X < y. The second is a relationship between the conditional moments E(h (Yk ) |Yk t) m1 th and E(h (Yk ) | Yk t) where Yk is the k order statistic from a sample of size n. Finally the concept of conditional variance of ℎ(Yk) given Yk > t is used to characterize this family. Some results concerning Modified Weibull, Weibull, Rayleigh, exponential, Linear failure rate, 1st type Pear- sonian distributions, Burr, Pareto, Power and uniform distributions are obtained as special cases. Keywords- Characterization, truncated moments, conditional variance, order statistics, recurrence relations, Modified Weibull, Linear failure rate, Pearson distribution of the first type, Burr, and Power distributions. Citation: Ali A. A-Rahman (2012) Some Characteristic Properties of the Exponential Family. Journal of Statistics and Mathematics, ISSN: 0976-8807 & E-ISSN: 0976-8815, Volume 3, Issue 3, pp.-130-133. Copyright: Copyright©2012 Ali A. A-Rahman. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Computing and Graphing Probability Values of Pearson Distributions: a SAS/IML Macro Arxiv:1704.02706V1 [Stat.CO] 10 Apr 2017
    Computing and Graphing Probability Values of Pearson Distributions: A SAS/IML Macro Wei Pan Duke University Xinming An SAS Institute Inc. Qing Yang Duke University April 2017 Abstract Any empirical data can be approximated to one of Pearson distributions using the first four moments of the data (Elderton and Johnson, 1969; Pearson, 1895; Solomon and Stephens, 1978). Thus, Pearson distributions made statistical analysis possible for data with unknown distributions. There are both extant old-fashioned in-print tables (Pearson and Hartley, 1972) and contemporary computer programs (Amos and Daniel, 1971; Bouver and Bargmann, 1974; Bowman and Shenton, 1979; Davis and Stephens, 1983; Pan, 2009) available for obtaining percentage points of Pearson dis- tributions corresponding to certain pre-specified percentages (or probability values) (e.g., 1.0%, 2.5%, 5.0%, etc.), but they are little useful in statistical analysis because arXiv:1704.02706v1 [stat.CO] 10 Apr 2017 we have to rely on unwieldy second difference interpolation to calculate a probability value of a Pearson distribution corresponding to any given percentage point, such as an observed test statistic in hypothesis testing. Thus, the present study develops a SAS/IML macro program to compute and graph probability values of Pearson dis- tributions for any given percentage point so as to facilitate researchers to conduct statistical analysis on data with unknown distributions. Keywords: Pearson distributions, curve fitting; distribution-free statistics; hypothesis test- ing 1 1 Introduction Most of statistical analysis relies on normal distributions, but this assumption is often difficult to meet in reality. Pearson distributions can be approximated for any data using the first four moments of the data (Elderton and Johnson, 1969; Pearson, 1895; Solomon and Stephens, 1978).
    [Show full text]
  • Relative Increments of Pearson Distributions Z. I
    Acta MathematicaAcademiae Paedagogicae Ny regyh aziensis 15 1999, 45{54 www.bgytf.hu/~amapn RELATIVE INCREMENTS OF PEARSON DISTRIBUTIONS Z. I. Szabo Abstract. This pap er is a direct continuation of [6] whose results are applied to Pearson distribu- tions, particularly to normal, gamma, b eta of the rst kind, Pareto of the second kind, chi-square and other sp eci c distributions. In this pap er weinvestigate the hazard rate and relative increment functions of Pearson dis- tribution functions. Let f b e a probability density function. The corresp onding distribution function is denoted by F . De nition 1. By the relative increment function [brie y, RIF] of F we mean the fraction hx=[F x + a F x]=[1 F x]; where a is a p ositive constant, and F x < 1 for all x. Monotone prop erties of RIFs are imp ortant from the p oints of view of statistics, probability theory, in mo delling b ounded growth pro cesses in biology, medicine and dental science and in reliability and actuarial theories, where the probability that an individual, having survived to time x, will survive to time x + a is hx; \death rate per unit time" in the time interval [x; x + a] is hx=a, and the hazardrate failurerate or force of mortality is de ned to b e lim hx=a = f x=[1 F x]: a!0 See e.g. [3], Vol. 2, Chap. 33, Sec. 7 or [4], x 5.34 and x 5.38. In [3], Vol. 2, Chap. 33, Sec. 7.2, some distributions are classi ed by their increasing/decreasing hazard rates.
    [Show full text]
  • Gaussxtm Econotron Software, Inc
    GAUSSXTM ECONOTRON SOFTWARE, INC. Version 10.1 Jon Breslaw January, 2011 The contents of this manual is subject to change without notice, and does not represent a commitment on the part of Econotron Software, Inc. The software described in this document is furnished under a license agreement or nondisclosure agreement. The software may be used or copied only in accordance with the terms of the agreement. The purchaser may make one copy of the software for backup purposes. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose other than the purchaser’s personal use without the prior written permission of Econotron Software. Copyright c 1989-2011 Econotron Software, Inc. All Rights Reserved GAUSS and GAUSS–Light are trademarks of Aptech Systems, Inc. GAUSSX is a trademark of Econotron Software, Inc. Maple is a trademark of Waterloo Maple, Inc. Support: Econotron Software 447 Grosvenor Ave. Westmount, P.Q. Canada H3Y-2S5 Tel: (514) 939-3092 Fax: (514) 938-4994 Eml: [email protected] Web: http://www.econotron.com ii Contents Contents 1 Concept 1.1 Overview ...................................... i 2 Installation and Configuration 2.1 Installing GAUSSX ................................. i 2.1.1 GAUSSX for Windows .......................... i 2.1.2 GAUSSX for UNIX and MAC ...................... ii 2.1.3 Installing GAUSSX manually . iii 2.2 Configuring GAUSSX for Windows . iii 2.2.1 GAUSSX mode ............................. iii 2.2.2 Precision ................................. iii 2.2.3 Projects ................................. iv 2.2.4 Configuration File ............................ iv 2.2.5 Performance ............................... iv 2.2.6 Network support ............................
    [Show full text]
  • Comparison of Pearson Distribution System and Response Modeling Methodology (RMM) As Models for Process Capability Analysis of S
    Research Article (wileyonlinelibrary.com) DOI: 10.1002/qre.1232 Published online in Wiley Online Library Comparison of Pearson Distribution System and Response Modeling Methodology (RMM) as Models for Process Capability Analysis of Skewed Data Michal Shauly∗† and Yisrael Parmet Clements’ approach to process capability analysis for skewed distributions, based on fitting the Pearson distribution system to data, is widely used in industry. In this paper we compare the accuracy of the Pearson system and the RMM (response modeling methodology) distribution, as distributional models for process capability analysis of non-normal data. The accuracy of the estimates of Cp and CPU is measured by the relative mean square errors. Three factors that may affect the accuracy of RMM and Pearson are examined: the data-generating distribution (Weibull, log- normal, gamma), the skewness (0.5,1.25,2) and the sample size (50,300,2000). The results show that RMM consistently outperforms Pearson, even for samples from gamma, which is a special case of Pearson. This implies that when observations are visibly skewed yet their underlying distribution is unknown, RMM estimators for Cp and CPU take account of the information stored in the data more precisely than the Pearson model, and may therefore constitute a preferred distributional model to pursue in process capability analysis. Copyright © 2011 John Wiley & Sons, Ltd. Keywords: Clements’ method; relative mean square error; Pearson distribution system; process capability analysis; response modeling methodology 1. Introduction rocess capability analysis is an essential part of the statistical process control. The capability of a process to meet its specifications is commonly measured by process capability indices (PCI).
    [Show full text]
  • Peoplesoft Quality
    PeopleSoft FSCM 9.2: Quality July 2021 PeopleSoft FSCM 9.2: Quality Copyright © 1988, 2021, Oracle and/or its affiliates. This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or “commercial computer software documentation” pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in the applicable contract.
    [Show full text]