Al-Kashi Background Statistics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arxiv:1906.06684V1 [Math.NA]
Randomized Computation of Continuous Data: Is Brownian Motion Computable?∗ Willem L. Fouch´e1, Hyunwoo Lee2, Donghyun Lim2, Sewon Park2, Matthias Schr¨oder3, Martin Ziegler2 1 University of South Africa 2 KAIST 3 University of Birmingham Abstract. We consider randomized computation of continuous data in the sense of Computable Analysis. Our first contribution formally confirms that it is no loss of generality to take as sample space the Cantor space of infinite fair coin flips. This extends [Schr¨oder&Simpson’05] and [Hoyrup&Rojas’09] considering sequences of suitably and adaptively biased coins. Our second contribution is concerned with 1D Brownian Motion (aka Wiener Process), a prob- ability distribution on the space of continuous functions f : [0, 1] → R with f(0) = 0 whose computability has been conjectured [Davie&Fouch´e’2013; arXiv:1409.4667,§6]. We establish that this (higher-type) random variable is computable iff some/every computable family of moduli of continuity (as ordinary random variables) has a computable probability distribution with respect to the Wiener Measure. 1 Introduction Randomization is a powerful technique in classical (i.e. discrete) Computer Science: Many difficult problems have turned out to admit simple solutions by algorithms that ‘roll dice’ and are efficient/correct/optimal with high probability [DKM+94,BMadHS99,CS00,BV04]. Indeed, fair coin flips have been shown computationally universal [Wal77]. Over continuous data, well-known closely connected to topology [Grz57] [Wei00, 2.2+ 3], notions of proba- § § bilistic computation are more subtle [BGH15,Col15]. 1.1 Overview Section 2 resumes from [SS06] the question of how to represent Borel probability measures. -
Gpindex: Generalized Price and Quantity Indexes
Package ‘gpindex’ August 4, 2021 Title Generalized Price and Quantity Indexes Version 0.3.4 Description A small package for calculating lots of different price indexes, and by extension quan- tity indexes. Provides tools to build and work with any type of bilateral generalized-mean in- dex (of which most price indexes are), along with a few important indexes that don't be- long to the generalized-mean family. Implements and extends many of the meth- ods in Balk (2008, ISBN:978-1-107-40496-0) and ILO, IMF, OECD, Euro- stat, UN, and World Bank (2020, ISBN:978-1-51354-298-0) for bilateral price indexes. Depends R (>= 3.5) Imports stats, utils License MIT + file LICENSE Encoding UTF-8 URL https://github.com/marberts/gpindex LazyData true Collate 'helper_functions.R' 'means.R' 'weights.R' 'price_indexes.R' 'operators.R' 'utilities.R' NeedsCompilation no Author Steve Martin [aut, cre, cph] Maintainer Steve Martin <[email protected]> Repository CRAN Date/Publication 2021-08-04 06:10:06 UTC R topics documented: gpindex-package . .2 contributions . .3 generalized_mean . .8 lehmer_mean . 12 logarithmic_means . 15 nested_mean . 18 offset_prices . 20 1 2 gpindex-package operators . 22 outliers . 23 price_data . 25 price_index . 26 transform_weights . 33 Index 37 gpindex-package Generalized Price and Quantity Indexes Description A small package for calculating lots of different price indexes, and by extension quantity indexes. Provides tools to build and work with any type of bilateral generalized-mean index (of which most price indexes are), along with a few important indexes that don’t belong to the generalized-mean family. Implements and extends many of the methods in Balk (2008, ISBN:978-1-107-40496-0) and ILO, IMF, OECD, Eurostat, UN, and World Bank (2020, ISBN:978-1-51354-298-0) for bilateral price indexes. -
Analysis of Questionnaires and Qualitative Data – Non-Parametric Tests
Analysis of Questionnaires and Qualitative Data – Non-parametric Tests JERZY STEFANOWSKI Instytut Informatyki Politechnika Poznańska Lecture SE 2013, Poznań Recalling Basics Measurment Scales • Four scales of measurements commonly used in statistical analysis: nominal, ordinal, interval, and ratio scales •A nominal scale -> there is no relative ordering of the categories, e.g. sex of a person, colour, trademark, • Ordinal -> place object in a relative ordering, Many rating scales (e.g. never, rarely, sometimes, often, always) • Interval -> Places objects in order and equal differences in value denote equal differences in what we are measuring • Ratio -> similar interval measurement but also has a ‘true zero point’ and you can divide values. Coding values with numbers Numbers are used to code nominal or ordered values but they are not true numbers! Only for interval or ratio measurements they are proper number – e.g. you are allowed to perform algebraic operations (+, -, *, /) Most of our considerations as to statistical data analysis or prediction methods concern → numerical (interval, ratio) data. • In many domains we collect nominal or oridinal data • Use of Questionnaires or Survey Studies in SE! • Also collected in Web applications Types of Variables in Questionnaires • Yes/No Questions Any question that has yes or no as a possible response is nominal • Two or multi-values (options) • Gender (Femal vs. Male) • Activity nominal data type of 6 choices of activity in the park: • sport, •picnic, • reading, • walk (including with the dog), • meditation, •jog. Likert Scales • A special kind of survey question uses a set of responses that are ordered so that one response is greater (or preferred) than another. -
Q Methodology As a Tool for Program Assessment
FEATURE ARTICLE PROGRAM ASSESSMENT Q Methodology as a Tool for Program Assessment Susan E. Ramlo The University of Akron Program assessment is now commonplace at most colleges and universities and is required for accreditation of specific degree programs. Key aspects of program assessment include program improvement, improved student learning, and adequate student preparation for the workforce. Thus, program assessment is a key ingredient to program health. Although surveys are often used within program assessment in higher education, this study demonstrates the weaknesses of this method and, instead, introduces Q methodology as a means of program assessment especially in the area of needs assessment. In essence, Q offers an objective way to measure subjectivity about any topic. Unlike Likert-scale surveys, Q is a mixed method that reveals the multiple unique views as well as consensus within the group of participants. In this study, Q was used to determine views of a construction engineering technology program. How the results will be used to improve the program is presented. In higher education, there is an increasing focus on program assessment. Essentially, program assessment is about program improvement and enhanced student learning. Program assessment involves examining how the program impacts students and how well program goals are met. To accomplish this, faculty are asked to demonstrate that their programs benefit students and prepare them for the workforce (Gardiner, Corbitt, & Adams, 2010; Martell & Calderon, 2005; McNeil, Newman, & Steinhauser, 2005). As a result of the program assessment, programs make adjustments to better meet goals. Program assessment leads to informed decision making, which is a key ingredient to program health and program capabilities to meet the needs of stakeholders, including students (Jorgensen, 2008; McNeil et al., 2005). -
Univariate and Multivariate Skewness and Kurtosis 1
Running head: UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 1 Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation Meghan K. Cain, Zhiyong Zhang, and Ke-Hai Yuan University of Notre Dame Author Note This research is supported by a grant from the U.S. Department of Education (R305D140037). However, the contents of the paper do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Correspondence concerning this article can be addressed to Meghan Cain ([email protected]), Ke-Hai Yuan ([email protected]), or Zhiyong Zhang ([email protected]), Department of Psychology, University of Notre Dame, 118 Haggar Hall, Notre Dame, IN 46556. UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 2 Abstract Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74% of univariate distributions and 68% multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17% in a t-test and 30% in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. -
Inequalities Among Complementary Means of Heron Mean and Classical Means
Advances and Applications in Mathematical Sciences Volume 20, Issue 7, May 2021, Pages 1249-1258 © 2021 Mili Publications INEQUALITIES AMONG COMPLEMENTARY MEANS OF HERON MEAN AND CLASSICAL MEANS AMBIKA M. HEJIB, K. M. NAGARAJA, R. SAMPATHKUMAR and B. S. VENKATARAMANA Department of Mathematics R N S Institute of Technology Uttarahalli-Kengeri Main Road R Rnagar post, Bengaluru-98, Karnataka, India E-mail: [email protected] [email protected] Department of Mathematics J.S.S. Academy of Technical Education Uttarahalli-Kengeri Main Road Bengaluru-60, Karnataka, India E-mail: [email protected] Department of Mathematics K S Institute of Technology Kannakapura Main Road Bengaluru - 560 109, Karnataka, India E-mail: [email protected] Abstract In this paper, the complementary means of arithmetic, geometric, harmonic and contra harmonic with respect to Heron mean are defined and verified them as means. Further, inequalities among them and classical means are established. I. Introduction In Pythagorean school ten Greek means are defined based on proportion, the following are the familiar means in literature and are given as follows: 2010 Mathematics Subject Classification: Primary 26D10, secondary 26D15. Keywords: Complementary mean, Heron mean, Classical means. Received September 7, 2020; Accepted February 18, 2021 1250 HEJIB, NAGARAJA, SAMPATHKUMAR and VENKATARAMANA u v For two real numbers u and v which are positive, Au , v 1 1 ; 1 1 1 1 2 2 2 2u1v1 u1 v1 Gu1, v1 u1v1 ; Hu1, v1 and Cu1, v1 . These are u1 v1 u1 v1 called Arithmetic, Geometric, Harmonic and Contra harmonic mean respectively. The Hand book of Means and their Inequalities, by Bullen [1], gave the tremendous work on Mathematical means and the corresponding inequalities involving huge number of means. -
Digital Image Processing Chapter 5: Image Restoration Concept of Image Restoration
Digital Image Processing Chapter 5: Image Restoration Concept of Image Restoration Image restoration is to restore a degraded image back to the original image while image enhancement is to manipulate the image so that it is suitable for a specific application. Degradation model: g(x, y) = f (x, y) ∗h(x, y) +η(x, y) where h(x,y) is a system that causes image distortion and η(x,y) is noise. (Images from Rafael C. Gonzalez and Richard E. Wood, Digital Image Processing, 2nd Edition. Concept of Image Restoration g(x, y) = f (x, y) ∗h(x, y) +η(x, y) We can perform the same operations in the frequency domain, where convolution is replaced by multiplication, and addition remains as addition, because of the linearity of the Fourier transform. G(u,v) = F(u,v)H(u,v) + N(u,v) If we knew the values of H and N we could recover F by writing the above equation as N(u,v) F(u,v) = G(u,v) − H(u,v) However, as we shall see, this approach may not be practical. Even though we may have some statistical information about the noise, we will not know the value of n(x,y) or N(u,v) for all, or even any, values. A s we ll, di vidi ng b y H(i, j) will cause diff ulti es if there are values which are close to, or equal to, zero. Noise WdfiibddiihiilWe may define noise to be any degradation in the image signal, caused by external disturbance. -
A Guide on Probability Distributions
powered project A guide on probability distributions R-forge distributions Core Team University Year 2008-2009 LATEXpowered Mac OS' TeXShop edited Contents Introduction 4 I Discrete distributions 6 1 Classic discrete distribution 7 2 Not so-common discrete distribution 27 II Continuous distributions 34 3 Finite support distribution 35 4 The Gaussian family 47 5 Exponential distribution and its extensions 56 6 Chi-squared's ditribution and related extensions 75 7 Student and related distributions 84 8 Pareto family 88 9 Logistic ditribution and related extensions 108 10 Extrem Value Theory distributions 111 3 4 CONTENTS III Multivariate and generalized distributions 116 11 Generalization of common distributions 117 12 Multivariate distributions 132 13 Misc 134 Conclusion 135 Bibliography 135 A Mathematical tools 138 Introduction This guide is intended to provide a quite exhaustive (at least as I can) view on probability distri- butions. It is constructed in chapters of distribution family with a section for each distribution. Each section focuses on the tryptic: definition - estimation - application. Ultimate bibles for probability distributions are Wimmer & Altmann (1999) which lists 750 univariate discrete distributions and Johnson et al. (1994) which details continuous distributions. In the appendix, we recall the basics of probability distributions as well as \common" mathe- matical functions, cf. section A.2. And for all distribution, we use the following notations • X a random variable following a given distribution, • x a realization of this random variable, • f the density function (if it exists), • F the (cumulative) distribution function, • P (X = k) the mass probability function in k, • M the moment generating function (if it exists), • G the probability generating function (if it exists), • φ the characteristic function (if it exists), Finally all graphics are done the open source statistical software R and its numerous packages available on the Comprehensive R Archive Network (CRAN∗). -
Functional Determinant of the Massive Laplace Operator and the Multiplicative Anomaly
Functional Determinant of the Massive Laplace Operator and the Multiplicative Anomaly a,b c a,b Guido Cognola ∗, Emilio Elizalde †, and Sergio Zerbini ‡ (a) Dipartimento di Fisica, Universit`adi Trento via Sommarive 14, 38123 Trento, Italia (b) TIFPA (INFN), Trento, Italia (c) Consejo Superior de Investigaciones Cientficas ICE (CSIC-IEEC), UAB Campus, 08193 Bellaterra, Barcelona, Spain Abstract After a brief survey of zeta function regularization issues and of the related multiplica- tive anomaly, illustrated with a couple of basic examples, namely the harmonic oscillator and quantum field theory at finite temperature, an application of these methods to the computa- tion of functional determinants corresponding to massive Laplacians on spheres in arbitrary dimensions is presented. Explicit formulas are provided for the Laplace operator on spheres in N = 1, 2, 3, 4 dimensions and for ‘vector’ and ‘tensor’ Laplacians on the unitary sphere S4. 1 Introduction In quantum field theory (QFT), the Euclidean partition function plays a very important role. The full propagator and all other n point correlation functions can be computed by means of it. − Moreover, this tool can be extended without problem to curved space-time [1]. As a formalism this is extremely beautiful but it must be noticed that in relativistic quantum field theories an infinite number of degrees of freedom is involved and, as a consequence, ultraviolet divergences will be present, thus rendering regularization and renormalization compulsory. In the one-loop approximation, and in the external field approximation too, one may describe (scalar) quantum fields by means of a (Euclidean) path integral and express the Euclidean parti- tion function as a function of functional determinants associated with the differential operators involved. -
Newton's Method for the Matrix Square Root*
MATHEMATICS OF COMPUTATION VOLUME 46, NUMBER 174 APRIL 1986, PAGES 537-549 Newton's Method for the Matrix Square Root* By Nicholas J. Higham Abstract. One approach to computing a square root of a matrix A is to apply Newton's method to the quadratic matrix equation F( X) = X2 - A =0. Two widely-quoted matrix square root iterations obtained by rewriting this Newton iteration are shown to have excellent mathematical convergence properties. However, by means of a perturbation analysis and supportive numerical examples, it is shown that these simplified iterations are numerically unstable. A further variant of Newton's method for the matrix square root, recently proposed in the literature, is shown to be, for practical purposes, numerically stable. 1. Introduction. A square root of an n X n matrix A with complex elements, A e C"x", is a solution X e C"*" of the quadratic matrix equation (1.1) F(X) = X2-A=0. A natural approach to computing a square root of A is to apply Newton's method to (1.1). For a general function G: CXn -* Cx", Newton's method for the solution of G(X) = 0 is specified by an initial approximation X0 and the recurrence (see [14, p. 140], for example) (1.2) Xk+l = Xk-G'{XkylG{Xk), fc = 0,1,2,..., where G' denotes the Fréchet derivative of G. Identifying F(X+ H) = X2 - A +(XH + HX) + H2 with the Taylor series for F we see that F'(X) is a linear operator, F'(X): Cx" ^ C"x", defined by F'(X)H= XH+ HX. -
Review on Generalized Pearson System of Probability Distributions
Review on Generalized Pearson System of Probability Distributions M. Shakil, Ph.D. † B.M. Golam Kibria, Ph.D. ‡ J. N. Singh, Ph.D. § Abstract In recent years, many researchers have considered a generalization of the Pearson system, known as generalized Pearson system of probability distributions. In this paper, we have reviewed these new classes of continuous probability distribution which can be generated from the generalized Pearson system of differential equation. We have identified as many as 15 such distributions. It is hoped that the proposed attempt will be helpful in designing a new approach of unifying different families of distributions based on the generalized Pearson differential equation, including the estimation of the parameters and inferences about the parameters. 1. Introduction: Pearson System of Distributions A continuous distribution belongs to the Pearson system if its pdf (probability density function) f satisfies a differential equation of the form 1 df (x) x + a X = − , (1) f ()x dx b x 2 + c x + d where a , b , c , and d are real parameters such that f is a pdf . The shapes of the pdf depend on the values of these parameters, based on which Pearson (1895, 1901) classified these distributions into a number of types known as Pearson Types I – VI. Later in another paper, Pearson (1916) defined more special cases and subtypes known as Pearson Types VII - XII. Many well- known distributions are special cases of Pearson Type distributions which include Normal and Student’s t distributions (Pearson Type VII), Beta distribution (Pearson Type I), Gamma distribution (Pearson Type III) among others. -
Q Workshop: an Application of Q Methodology for Visualizing, Deliberating and Learning Contrasting Perspectives
INTERNATIONAL JOURNAL OF ENVIRONMENTAL & SCIENCE EDUCATION 2016, VOL. 11, NO.13, 6277-6302 OPEN ACCESS Q Workshop: An Application of Q Methodology for Visualizing, Deliberating and Learning Contrasting Perspectives Go Yoshizawaa, Mineyo Iwaseb, Motoko Okumotoc, Keiichiro Taharad and Shingo Takahashie aOsaka University, JAPAN; bShimane University, JAPAN; cKyoto University, JAPAN; dInstitute for Future Engineering, JAPAN; eWaseda University, JAPAN ABSTRACT A value-centered approach to science, technology and society (STS) education illuminates the need of reflexive and relational learning through communication and public engagement. Visualization is a key to represent and compare mental models such as assumptions, background theories and value systems that tacitly shape our own understanding, interests and interactions. Yet conventional approaches including concept mapping and multi-criteria value elicitation methods often have little suggestion or implication as to how participants themselves can address and deliberate the incompatibility of their perceptions, preferences and perspectives. This study proposes Q workshop as a legitimate eliciting and deliberation technique that can be employed in pluralistic discourse, exploring systematic divergences of perspective by constructing the participant‘s self in a formative, emergent and contingent manner. For this it introduces Q mapping as a novel visualization tool for the hybridity of qualitative and quantitative methods derived from Q methodology. Q mapping is a two-factor solution that