Chemical Diversity of Metal Sulfide Minerals and Its Implications for Origin of Life

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Diversity of Metal Sulfide Minerals and Its Implications for Origin of Life Chemical Diversity of Metal Sulfide Minerals and its Implications for Origin of Life Yamei Li 1*, Norio Kitadai 1 and Ryuhei Nakamura 1,2* 1 Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; 2 Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; * Correspondence: [email protected]; [email protected]; Tel.: +81-3-5734-3414 60000 55000 50000 45000 2 40000 FeS 35000 2 30000 CuFeS 25000 Locality counts 20000 12 S 4 15000 8 4 S Sb 7 ] 14 4 2 8 2 S FeAsS Fe S (x = 0-0.07) 6 FeS S 10000 3 5 Fe 9 4 4 S 4 1+x S 2 FeS 2 Cu S Cu 2 FeSnS [ FeSb 2 6 5000 4 (Ni,Fe) FeS CuFe Cu Ag Pb FeSb (Fe,Ni) 0 FeNi Pyrite Idaite Bornite Troilite CubaniteStannite Violarite Valleriite Pyrrhotite Marcasite Berthierite Pentlandite Jamesonite Freibergite Isocubanite Daubréelite Chalcopyrite Arsenopyrite Mackinawite Gudmundite Figure S1. Species-locality distribution of Fe-containing sulfides (top 20). 1800 8 S 1600 9 1400 (Ni,Fe) 1200 1000 NiS 800 S NiAsS Locality counts 1-1.07 4 600 Cl S 26 2 S 4 (Fe,Ni) 25 8 S 2 2 FeNi S 400 S 8 2 2 NiSbS S 4 3 CoNi S 2 Ni 200 3 (Bi,Pb) (Fe,Cu,Ni) Ni 3 NiS 6 Ag(Fe,Ni) K Ni 0 Millerite Violarite Vaesite Siegenite Parkerite Pentlandite Ullmannite Polydymite Mackinawite Djerfisherite Heazlewoodite Gersdorffite-Pa3 Argentopentlandite Figure S2. Species-locality distribution of Ni-containing sulfides (top 12). Figure S Figure S 3 Locality Counts 10000 15000 20000 25000 30000 . 5000 Locality Counts Species 1000 1200 200 400 600 800 0 4 Chalcopyrite . 0 Species Cobaltite CuFeS2 CoAsS - Linnaeite distribution locality Chalcocite Siegenite Co S - 2 4 locality distribution of locality Cu2S Carrollite CoNi2S4 Bornite Cu5FeS4 Glaucodot CuCo2S4 Tetrahedrite Cobaltpentlandite CoFe(AsS)2 Cu12Sb4S13 Alloclasite Co9S8 Covellite CuS Cattierite CoAsS of Cu Tennantite Willyamite CoS2 Cu12As4S13 Bournonite - Costibite CoSbS containing Co Paracostibite CuPbSbS3 - CoSbS containing containing Digenite CoSbS Jaipurite Cu1.8S CoS Enargite Julienite sulfide Cu3AsS Na2Co(SCN)4.8H2O 4 Cubanite sulfide CuFe2S3 s (top 10) (top s s . Figure S Figure S Locality Counts 1000 2000 3000 4000 5000 6000 Locality Count 0 100 150 200 250 300 350 50 Molybdenite 0 Alabandite 5602 6 5 . MoS Species MnS Species 2 Helvine Be3Mn4(SiO4)3S Jordisite Hauerite 101 Benavidesite MnS Low crystallinity MoS2 - 2 - locality distribution of locality locality distribution of locality Pb MnSb S Hemusite Samsonite 4 6 14 7 Cu6SnMoS8 Rambergite Ag4MnSb2S6 Uchucchacuaite Tarkianite MnS 6 (Cu,Fe)(Re,Mo)4S8 AgMnPb3Sb5S12 Clerite Maikainite Gravegliaite MnSb2S4 2 Joegoldsteinite Cu10Fe3MoGe3S16 MnS4O3.3H2O Ekplexite Agmantinite Mn MnCr2S4 Mo 1 (Nb,Mo)S2.(Mg1-xAlx)(OH)2+x - - Browneite Ag2MnSnS4 containing containing containing containing Kaskasite MnS Buseckite 1 Manganokaskasite (Mo,Nb)S2.(Mg1-xAlx)(OH)2+x (Fe,Zn,Mn)S ManganokaskasiteGraţianite Manganoquadratite MnBi2S4 1 sulfide sulfides (Mo,Nb)S2.(Mn1-xAlx)(OH)2+x (Mo,Nb)S2(Mn1-xAlx)(OH)2+x Merelaniite Pb5Mn3Ag2Sb6As4S24 1 Pb Mo VSbS s 4 4 15 . Figure S Figure S Locality Counts 10 15 20 25 30 Locality Counts 0 5 100 120 140 7 20 40 60 80 8 0 . Tungstenite . Species Species Colusite WS Cu12VAs3S16 2 Sulvanite - - locality distribution of W locality locality distribution of V locality Cu3VS4 Nekrasovite Kiddcreekite Cu13VSn3S16 Cu6WSnS8 Patrónite Germanocolusite VS4 Catamarcaite Cu VGe S Stibiocolusite 13 3 16 Cu6GeWS8 Cu13V(Sb,Sn,As)3S16 Colimaite Ekplexite - K VS 3 4 - containing sulfides containing Merelaniite sulfides containing (Nb,Mo,W)S2.(Mg1-xAlx)(OH)2+x Pb4Mo4VSbS15 Yushkinite (Mg,Al)(OH)2VS2 Ovamboite Cu10Fe3WGe3S16 . (b) Valence Crystal Symmetry Chemical State Mineral Name Locality Distribution Composition Crystal Space Cu S System Group Chalcocite Cu2S +1 -2 Monoclinic P21/b +1,+ Tetrahedrite Cu12Sb4S13 -2 Cubic I4 3m 2 Covellite CuS +1 -1 Hexagonal P6�3/mmc +1,+ Tennantite Cu12As4S13 -2 Cubic I4 3m 2 Bournonite CuPbSbS3 Orthorhombic Pmn2� 1 Digenite Cu1.8S Trigonal R3m Enargite Cu3AsS4 Orthorhombic Pmn21 � Polybasite-M2a2b2c Monoclinic B2/b Cu(Ag,Cu)6A Polybasite-T2ac Trigonal P321 g9Sb2S11 Polybasite-Tac Trigonal P3m1 Stromeyerite CuAgS Orthorhombic mmm � Figure S9. (a) Locality-mineral distribution of Cu mono-metal sulfide species and chemical diversity with regards to chemical composition, Cu/S valence states and crystal symmetry; (b) plots of the distribution of species type and locality counts for species containing Cu(I), Cu(II) and Cu(I,II) valence states. (b) Valence Crystal Symmetry Chemical State Mineral Name Composition Crystal Space Ni S Locality Distribution System Group Millerite NiS +2 -2 Trigonal R3m Gersdorffite-Pa3 Ni(As,S)2 2 -2 cubic Ullmannite NiSbS cubic P213 Heazlewoodite Ni3S2 trigonal R32 Polydymite Ni3S4 +2,+3 -2 cubic Va e s ite NiS 2 +2 -1 cubic Pa3 Parkerite Ni3(Bi,Pb)2S2 monoclinic Vysotskite (Pd,Ni)S +2 -2 Tetragonal Figure S10. (a) Locality-mineral distribution of Ni mono-metal sulfide species and chemical diversity with regards to chemical composition, Ni/S valence states and crystal symmetry; (b) plots of the distribution of species type and locality counts for species containing Ni(II), Ni(III) and Ni(II,III) valence states. Valence ) Crystal Symmetry Chemical State Mineral Name Composition Crystal Space Co S Locality Distribution System Group Cobaltite CoAsS +3 Orthorhombic Pca21 Linnaeite Co3S4 +2,+3 -2 Cubic Cobaltpentlandite Co9S8 Cubic Fm3m Alloclasite CoAsS Monoclinic P21 Cattierite CoS2 +2 -1 Cubic Pa3 Willyamite Cubic Costibite CoSbS +3 Orthorhombic Pmn21 Paracostibite Orthorhombic Jaipurite CoS +2 -2 Hexagonal Na2Co(SCN)4 Julienite +2 -2 Monoclinic P21/n .8H2O Figure S11. (a) Locality-mineral distribution of Co mono-metal sulfide species and chemical diversity with regards to chemical composition, Co/S valence states and crystal symmetry; (b) plots of the distribution of species type and locality counts for species containing Co(II), Co(III) and Co(II,III) valence states. Table S1. Chemical properties of Fe-Cu and Fe-Ni binary metal sulfide minerals. Fe, Cu Locality Chemical Valence State Crystal Symmetry Mineral Name Counts Composition Cu Fe S Crystal System Space Group Chalcopyrite 26279 CuFeS2 +1 +3 -2 Tetragonal I42d Bornite 5293 Cu5FeS4 +1 +3 -2 Orthorhombic Pbca Cubanite 748 CuFe2S3 +1 +2,+3 -2 Orthorhombic 2/m2/m2/m Stannite 632 Cu2FeSn4S4 +1 +2 -2 Tetragonal I42m Freibergite 630 Ag6Cu4Fe2Sb4S12 +1 +2 -2 Tetragonal I43m 2[(Fe,Cu)S]·1.53[( Valleriite 229 +2 +2 -2 Hexagonal Mg,Al)(OH)2] Isocubanite 184 CuFe2S3 +1 +2,+3 -2 Cubic Fm3m Idaite 133 Cu3FeS4 +2 +2 -2 Hexagonal Fe, Ni Valence State Crystal Symmetry Locality Mineral Name Chemical Composition Crystal Space Counts Fe Ni S System Group Pentlandite 1392 (Ni,Fe)9S8 Cubic Fm3m Mackinawite 424 (Fe,Ni)1+xS (x = 0-0.07) +2 +2 -2 Tetragonal P4/nmm Violarite 361 FeNi2S4 +2 +3 -2 Cubic Smythite 71 (Fe,Ni)3+xS4 (x ≈ 0-0.3) Trigonal R3m Argentopentlandite 63 Ag(Fe,Ni)8S8 Cubic Fm3m� Godlevskite 32 (Ni,Fe)9S8 Orthorhombic C222 Table S2. Sulfide minerals with ternary metal compositions. Mineral Name Locality Counts Chemical Composition Djerfisherite 57 K6(Fe,Cu,Ni)25S26Cl Sugakiite 3 Cu(Fe,Ni)8S8 Kharaelakhite 2 (Cu,Pt,Pb,Fe,Ni)9S8 Owensite 2 (Ba,Pb2+)6(Cu1+,Fe2+,Ni2+)25S2-27 Samaniite 2 Cu2Fe5Ni2S8 Ferhodsite 1 (Fe,Rh,Ni,Ir,Cu,Pt)9S8 Zoharite 1 (Ba,K)6(Fe,Cu,Ni)25S27 Tarkianite 6 (Cu,Fe)(Re,Mo)4S8 Maikainite 2 Cu1+10Fe2+3Mo4+Ge4+3S2-16 Ovamboite 1 Cu1+10Fe2+3W4+Ge4+3S2-16 Table S3. X-ray amorphous mineral species in the RRUFF database. Mineral Name Chemical Composition Delvauxite CaFe3+4(P5+O4)2(OH)8. 4-5H2O Diadochite Fe3+2(PO4)(SO4)(OH). 6H2O Ekanite Ca2ThSi8O20 Evansite Al3PO4(OH)6. 8H2O Georgeite Cu2+2CO3(OH)2 Ice H2O Jordisite Mo4+S2-2 Zaratite Ni2+3C4+O3(OH)4. 4H2O .
Recommended publications
  • The Behavior of Molybdenum., Tungsten, and Titanium
    The behavior of molybdenum, tungsten, and titanium in the porphyry copper environment Item Type text; Dissertation-Reproduction (electronic) Authors Kuck, Peter Hinckley Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 08/10/2021 00:24:06 Link to Item http://hdl.handle.net/10150/565421 THE BEHAVIOR OF MOLYBDENUM., TUNGSTEN, AND TITANIUM IN THE PORPHYRY COPPER ENVIRONMENT Peter' 'Hinckley Kuck A Dissertation Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES. In Partial.Fulfillment of the Requirements. ' ■ For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College ■ THE UNIVERSITY OF ARIZONA 1 9 7 8 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE I hereby recommend that this dissertation prepared under my Peter Hinckley Kuck direction by ___________ , , The Behavior of Molybdenum, Tungsten, and Titanium entitled ________________________________________________________ in the Porphyry Copper Environment be accepted as fulfilling the dissertation requirement for the Doctor of Philosophy degree of _______________________________________________________ Dissertation Director Date As members of the Final Examination Committee, we certify that we have read this dissertation and agree that it may be presented for final defense. \ R A j r i A hi / 7IT 2 / 1 r 7 - Final approval and acceptance of this dissertation is contingent on the candidate's adequate performance and defense thereof at the final oral examination. STATEMENT BY AUTHOR This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of.
    [Show full text]
  • Metamorphism of Sedimentary Manganese Deposits
    Acta Mineralogica-Petrographica, Szeged, XX/2, 325—336, 1972. METAMORPHISM OF SEDIMENTARY MANGANESE DEPOSITS SUPRIYA ROY ABSTRACT: Metamorphosed sedimentary deposits of manganese occur extensively in India, Brazil, U. S. A., Australia, New Zealand, U. S. S. R., West and South West Africa, Madagascar and Japan. Different mineral-assemblages have been recorded from these deposits which may be classi- fied into oxide, carbonate, silicate and silicate-carbonate formations. The oxide formations are represented by lower oxides (braunite, bixbyite, hollandite, hausmannite, jacobsite, vredenburgite •etc.), the carbonate formations by rhodochrosite, kutnahorite, manganoan calcite etc., the silicate formations by spessartite, rhodonite, manganiferous amphiboles and pyroxenes, manganophyllite, piedmontite etc. and the silicate-carbonate formations by rhodochrosite, rhodonite, tephroite, spessartite etc. Pétrographie and phase-equilibia data indicate that the original bulk composition in the sediments, the reactions during metamorphism (contact and regional and the variations and effect of 02, C02, etc. with rise of temperature, control the mineralogy of the metamorphosed manga- nese formations. The general trend of formation and transformation of mineral phases in oxide, carbonate, silicate and silicate-carbonate formations during regional and contact metamorphism has, thus, been established. Sedimentary manganese formations, later modified by regional or contact metamorphism, have been reported from different parts of the world. The most important among such deposits occur in India, Brazil, U.S.A., U.S.S.R., Ghana, South and South West Africa, Madagascar, Australia, New Zealand, Great Britain, Japan etc. An attempt will be made to summarize the pertinent data on these metamorphosed sedimentary formations so as to establish the role of original bulk composition of the sediments, transformation and reaction of phases at ele- vated temperature and varying oxygen and carbon dioxide fugacities in determin- ing the mineral assemblages in these deposits.
    [Show full text]
  • Washington State Minerals Checklist
    Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • A Review on Historical Earth Pigments Used in India's Wall Paintings
    heritage Review A Review on Historical Earth Pigments Used in India’s Wall Paintings Anjali Sharma 1 and Manager Rajdeo Singh 2,* 1 Department of Conservation, National Museum Institute, Janpath, New Delhi 110011, India; [email protected] 2 National Research Laboratory for the Conservation of Cultural Property, Aliganj, Lucknow 226024, India * Correspondence: [email protected] Abstract: Iron-containing earth minerals of various hues were the earliest pigments of the prehistoric artists who dwelled in caves. Being a prominent part of human expression through art, nature- derived pigments have been used in continuum through ages until now. Studies reveal that the primitive artist stored or used his pigments as color cakes made out of skin or reeds. Although records to help understand the technical details of Indian painting in the early periodare scanty, there is a certain amount of material from which some idea may be gained regarding the methods used by the artists to obtain their results. Considering Indian wall paintings, the most widely used earth pigments include red, yellow, and green ochres, making it fairly easy for the modern era scientific conservators and researchers to study them. The present knowledge on material sources given in the literature is limited and deficient as of now, hence the present work attempts to elucidate the range of earth pigments encountered in Indian wall paintings and the scientific studies and characterization by analytical techniques that form the knowledge background on the topic. Studies leadingto well-founded knowledge on pigments can contribute towards the safeguarding of Indian cultural heritage as well as spread awareness among conservators, restorers, and scholars.
    [Show full text]
  • The First Record of Siegenite (Ni,Co)3S4 from the Netherlands
    Netherlands Journal of Geosciences / Geologie en Mijnbouw 82 (2): 215-218 (2003) The first record of siegenite (Ni,Co)3S4 from the Netherlands H. Bongaerts Rector van de Boornlaan 13, 6061 AN Posterholt, the Netherlands; e-mail: [email protected] Manuscript received: August 2001; accepted: October 2002 G Abstract Epigenetic mineralisations occurring in the former coal-mining district of Limburg predominantly consist of sphalerite, gale­ na, chalcopyrite, quartz, Fe-dolomite/ankerite and calcite. The present note describes siegenite which was collected for the first time from this paragenesis some years ago. Keywords: hydrothermal mineralizations, Limburg, siegenite, Carboniferous Introduction tions was discussed by Krahn et al. (1986), to which reference is made. When collieries in southern Limburg (the Nether­ The mineralisations occurring in the Limburg lands) were still in operation, epigenetic mineralisa­ Westphalian predominantly consist of sphalerite, tions were encountered in sediments of Westphalian galena, chalcopyrite, quartz, Fe-dolomite/ankerite (Late Carboniferous) age, and records of such date and calcite. Less common are pyrite and marcasite back to the earliest days of mining (Leggewie & Jong- while barites is extremely rare. These mineralisations mans, 1931). The first detailed descriptions may be occurred almost exclusively in sandstones and found in Douw & Oorthuis (1945) and in De Wijker- quartzitic sandstones (NITG-TNO, 1999). In addi­ slooth(1949). tion, dickite is common, mainly in pseudobreccias of From the
    [Show full text]
  • The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn
    minerals Article The Gersdorffite-Bismuthinite-Native Gold Association and the Skarn-Porphyry Mineralization in the Kamariza Mining District, Lavrion, Greece † Panagiotis Voudouris 1,* , Constantinos Mavrogonatos 1 , Branko Rieck 2, Uwe Kolitsch 2,3, Paul G. Spry 4 , Christophe Scheffer 5, Alexandre Tarantola 6 , Olivier Vanderhaeghe 7, Emmanouil Galanos 1, Vasilios Melfos 8 , Stefanos Zaimis 9, Konstantinos Soukis 1 and Adonis Photiades 10 1 Department of Geology & Geoenvironment, National and Kapodistrian University of Athens, 15784 Athens, Greece; [email protected] (C.M.); [email protected] (E.G.); [email protected] (K.S.) 2 Institut für Mineralogie und Kristallographie, Universität Wien, 1090 Wien, Austria; [email protected] 3 Mineralogisch-Petrographische Abteilung, Naturhistorisches Museum, 1010 Wien, Austria; [email protected] 4 Department of Geological and Atmospheric Sciences, Iowa State University, Ames, IA 50011, USA; [email protected] 5 Département de Géologie et de Génie Géologique, Université Laval, Québec, QC G1V 0A6, Canada; [email protected] 6 Université de Lorraine, CNRS, GeoRessources UMR 7359, Faculté des Sciences et Technologies, F-54506 Vandoeuvre-lès-Nancy, France; [email protected] 7 Université de Toulouse, Géosciences Environnement Toulouse (GET), UMR 5563 CNRS, F-31400 Toulouse, France; [email protected] 8 Department of Mineralogy-Petrology-Economic Geology, Faculty of Geology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 9 Institut für Mineralogie, TU Bergakademie Freiberg, 09599 Freiberg, Germany; [email protected] 10 Institute of Geology and Mineral Exploration (I.G.M.E.), 13677 Acharnae, Greece; [email protected] * Correspondence: [email protected]; Tel.: +30-210-7274129 † The paper is an extended version of our paper published in 1st International Electronic Conference on Mineral Science.
    [Show full text]
  • Cobalt Mineral Ecology
    American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods.
    [Show full text]
  • Epithermal Bicolor Black and White Calcite Spheres from Herja Ore Deposit, Baia Mare Neogene Ore District, Romania-Genetic Considerations
    minerals Review Epithermal Bicolor Black and White Calcite Spheres from Herja Ore Deposit, Baia Mare Neogene Ore District, Romania-Genetic Considerations 1 1, 2 3 4,5 Ioan Mârza ,Călin Gabriel Tămas, * , Romulus Tetean , Alina Andreica , Ioan Denut, and Réka Kovács 1,4 1 Babe¸s-BolyaiUniversity, Faculty of Biology and Geology, Department of Geology, 1, M. Kogălniceanu str., Cluj-Napoca 400084, Romania; [email protected] (I.M.); [email protected] (R.K.) 2 Babe¸s-BolyaiUniversity, Faculty of Physics, 1, M. Kogălniceanu str., Cluj-Napoca 400084, Romania; [email protected] 3 Babe¸s-BolyaiUniversity, Faculty of European Studies, 1, Em. de Martonne, Cluj-Napoca 400090, Romania; [email protected] 4 County Museum of Mineralogy, Bulevardul Traian nr. 8, Baia Mare 430212, Romania; [email protected] 5 Technical University of Cluj-Napoca, North University Centre of Baia Mare, 62A, Dr. Victor Babes, str., Baia Mare 430083, Romania * Correspondence: [email protected] or [email protected]; Tel.: +40-264-405-300 (ext. 5216) Received: 24 April 2019; Accepted: 5 June 2019; Published: 8 June 2019 Abstract: White, black, or white and black calcite spheres were discovered during the 20th century within geodes from several Pb-Zn Au-Ag epithermal vein deposits from the Baia Mare ore district, ± Eastern Carpathians, Romania, with the Herja ore deposit being the maiden occurrence. The black or black and white calcite spheres are systematically accompanied by needle-like sulfosalts which are known by the local miners as “plumosite”. The genesis of epithermal spheres composed partly or entirely of black calcite is considered to be related to the deposition of calcite within voids filled by hydrothermal fluids that contain acicular crystals of sulfosalts, mostly jamesonite in suspension.
    [Show full text]
  • Article Is Available On- Bearing Mineralising Event Is Not Possible Because of the Line At
    Eur. J. Mineral., 33, 175–187, 2021 https://doi.org/10.5194/ejm-33-175-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Grimmite, NiCo2S4, a new thiospinel from Príbram,ˇ Czech Republic Pavel Škácha1,2, Jiríˇ Sejkora1, Jakub Plášil3, Zdenekˇ Dolnícekˇ 1, and Jana Ulmanová1 1Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, 193 00 Prague 9 – Horní Pocernice,ˇ Czech Republic 2Mining Museum Príbram,ˇ Hynka Klickyˇ place 293, 261 01 Príbramˇ VI, Czech Republic 3Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 182 21 Prague 8, Czech Republic Correspondence: Pavel Škácha ([email protected]) Received: 25 December 2020 – Revised: 2 March 2021 – Accepted: 8 March 2021 – Published: 19 April 2021 Abstract. The new mineral grimmite, NiCo2S4, was found in siderite–sphalerite gangue at the dump of shaft no. 9, one of the mines in the abandoned Príbramˇ uranium and base-metal district, central Bohemia, Czech Republic. The new mineral occurs as rare idiomorphic to hypidiomorphic grains up to 200 µm × 70 µm in size or veinlet aggregates. In reflected light, grimmite is creamy grey with a pinkish tint. Pleochroism, polarising colours and internal reflections were not observed. Reflectance values of grimmite in the air (R %) are 42.5 at 470 nm, 45.9 at 546 nm, 47.7 at 589 nm and 50.2 at 650 nm). The empirical formula for grimmite, based on electron-microprobe analyses (n D 13), is Ni1:01(Co1:99Fe0:06Pb0:01Bi0:01/62:07S3:92. The ideal formula is NiCo2S4; requires Ni 19.26, Co 38.67, and S 42.07; and totals 100.00 wt %.
    [Show full text]
  • Spatial Distribution, Geochemistry, and Storage of Mining Sediment In
    STATEMENT OF WORK Spatial distribution, geochemistry, and storage of mining sediment in channel and floodplain deposits of streams draining the Viburnum Trend Mining District of Southeast Missouri, USA Prepared by: Dr. Robert T. Pavlowsky, Ph.D., Principle Investigator Ozarks Environmental and Water Resources Institute Missouri State University 901 South National Avenue Springfield, MO 65897 [email protected] Co‐Principle Investigators Dr. Scott Lecce, Ph.D., East Carolina University Marc R. Owen, M.S., Ozarks Environmental and Water Resources Institute Submitted to: John Weber U.S. Fish and Wildlife Service 101 Park DeVille, Suite A Columbia, MO 65203 573‐234‐2132 x 177 [email protected] July 16, 2012 1 INTRODUCTION The New Lead Belt in southeastern Missouri has been a major producer of lead (Pb) and other metals since 1960 when the first mine opened in Viburnum, Missouri (Seeger, 2008). To date, 10 mines have operated along a north‐south line extending for almost 100 kilometers (km) from from Viburnum to south of Bunker, Missouri. This subdistrict of the Southeast Missouri Lead Mining District is referred to as the Viburnum Trend (VT). Seven mines are presently in operation in the VT: (i) Viburnum #29 Mine in Washington County which uses the Buick Mill; (ii) Casteel or Viburnum #35 Mine in Iron County which uses the Buick and Brushy Creek Mills; (iii) Buick Mine and Mill in Iron and Reynolds Counties; (iv) Fletcher Mine and Mill in Reynolds County which sometimes uses the Brushy Creek Mill; (v) Brushy Creek mine and mill in Reynolds County; (vi) West Fork Mine and Mill in Reynolds County; and (vii) Sweetwater Mine and Mill in Reynolds County (Seeger, 2008).
    [Show full text]
  • Manganoquadratite, Agmnass3, a New Manganese Bearing
    American Mineralogist, Volume 97, pages 1199–1205, 2012 Manganoquadratite, AgMnAsS3, a new manganese-bearing sulfosalt from the Uchucchacua polymetallic deposit, Lima Department, Peru: Description and crystal structure PAOLA BONAZZI,1,* FRANK N. KEUTSCH,2 AND LUCA BINDI1,3 1Dipartimento di Scienze della Terra, Università degli Studi di Firenze, via La Pira 4, I-50121 Firenze, Italy 2Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, U.S.A. 3Museo di Storia Naturale, sezione di Mineralogia e Litologia, Università degli Studi di Firenze, via La Pira 4, I-50121 Firenze, Italy ABSTRACT Manganoquadratite, ideally AgMnAsS3, is a new mineral from the Uchucchacua polymetallic deposit, Oyon district, Catajambo, Lima Department, Peru. It occurs as dark gray, anhedral to subhe- dral grains up 0.5 mm across, closely associated with alabandite, Mn-rich calcite, Mn-rich sphalerite, proustite, pyrite, pyrrhotite, tennantite, argentotennantite, stannite, and other unnamed minerals of the system Pb-Ag-Sb-Mn-As-S. Manganoquadratite is opaque with a metallic luster and possesses 2 a reddish-brown streak. It is brittle, the Vickers microhardness (VHN10) is 81 kg/mm (range 75–96) (corresponding Mohs hardness of 2–2½). The calculated density is 4.680 g/cm3 (on the basis of the empirical formula). In plane-polarized reflected light, manganoquadratite is moderately bireflectant and very weakly pleochroic from dark gray to a blue gray. Internal reflections are absent. Between crossed polars, the mineral is anisotropic, without characteristic rotation tints. Reflectance percentages (Rmin and Rmax) for the four standard COM wavelengths are 29.5, 31.8 (471.1 nm), 28.1, 30.5 (548.3 nm), 27.3, 29.3 (586.6 nm), and 26.0, 28.2 (652.3 nm), respectively.
    [Show full text]