<<

Chemical Diversity of Metal Sulfide and its Implications for Origin of Life

Yamei Li 1*, Norio Kitadai 1 and Ryuhei Nakamura 1,2* 1 Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; 2 Biofunctional Catalyst Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; * Correspondence: [email protected]; [email protected]; Tel.: +81-3-5734-3414

60000

55000

50000

45000 2

40000 FeS

35000 2 30000 CuFeS 25000

Locality counts 20000 12 S 4

15000 8 4 S Sb 7 ] 14 4 2 8 2 S FeAsS Fe S (x = 0-0.07) 6 FeS S

10000 3 5 Fe 9 4 4 S 4 1+x S 2 FeS 2 Cu S Cu 2 FeSnS [ FeSb 2 6 5000 4 (Ni,Fe) FeS CuFe Cu Ag Pb FeSb (Fe,Ni) 0 FeNi

Pyrite Idaite Bornite Troilite CubaniteStannite Violarite Valleriite Marcasite Berthierite Pentlandite Jamesonite Freibergite Isocubanite Daubréelite Mackinawite Gudmundite

Figure S1. Species-locality distribution of Fe-containing sulfides (top 20).

1800 8 S 1600 9

1400 (Ni,Fe)

1200

1000 NiS

800 S NiAsS Locality counts 1-1.07 4 600 Cl S 26 2 S 4 (Fe,Ni) 25 8 S 2 2 FeNi S

400 S 8 2 2 NiSbS S 4 3 CoNi S 2 Ni 200 3 (Bi,Pb) (Fe,Cu,Ni) Ni 3 NiS 6 Ag(Fe,Ni) K Ni 0

Millerite Violarite Vaesite Siegenite Parkerite Pentlandite Polydymite Mackinawite Heazlewoodite -Pa3 Argentopentlandite Figure S2. Species-locality distribution of Ni-containing sulfides (top 12). 30000 2 CuFeS 25000

20000

15000 Locality Counts 13 S 10000 4 4 S Sb 2 FeS 5 12 13 3 Cu S Cu Cu 4 4 5000 3 CuS S As S 2 S 12 As 1.8 3 Cu CuPbSbS Cu Cu CuFe 0

Bornite Covellite Digenite Enargite Cubanite Chalcocite Tennantite Bournonite Chalcopyrite Tetrahedrite Figure S3. Species-locality distribution of Cu-containing sulfides (top 10).

1200

1000 CoAsS

800

600 O 2 4 2 S Locality Counts 400 4 2 4 .8H S 4 2 S 2 Co CoNi 8

200 S 9 CuCo 2 CoFe(AsS) Co(SCN) Co 2 CoAsS CoSbS CoSbS CoS CoSbS CoS 0 Na

Cobaltite Cattierite Costibite Jaipurite Julienite Linnaeite Siegenite Glaucodot Alloclasite Willyamite Paracostibite Cobaltpentlandite Figure S4. Species-locality distribution of Co-containing sulfides. 2

6000 MoS 5602

5000

4000

3000 2+x 2+x 2+x 2 (OH) (OH) (OH) Locality Counts ) ) ) x x x 8 Al Al 16 Al

2000 S 4 S 1-x 1-x 1-x 3 15 Mg 8 Mg Mn ( ( ( . . . 2 2 2 MoGe VSbS 3 1000 4 Fe SnMoS Mo 6 10 4 Low crystallinity MoS Cu Pb Cu (Mo,Nb)S (Nb,Mo)S (Cu,Fe)(Re,Mo) (Mo,Nb)S 101 0 7 6 2 1 1 1 1

Jordisite Hemusite Ekplexite Kaskasite Tarkianite Maikainite Merelaniite Molybdenite Manganokaskasite Figure S5. Species-locality distribution of Mo-containing sulfides.

350 MnS S 3

300 ) 4 SiO ( 4 Mn

250 3 Be

200

150 2+x Locality Count (OH) 24 ) x S

100 4 Al As 12 1-x 6 S 6 O 5 14 2 S Sb Mn 4 S 2 ( 2 6 Sb 2 2 3 .3H 4 4 3 4 50 Ag S 3 S S 2 O 2 2 4 MnSb MnS MnSb 4 MnSnS Mn 4 2 5 Ag Pb MnS MnS MnSb MnCr MnBi AgMnPb Ag Pb (Mo,Nb)S (Fe,Zn,Mn)S 0 MnS

Clerite Helvine Browneite Buseckite Graţianite SamsoniteRambergite Benavidesite Gravegliaite Agmantinite Joegoldsteinite ManganokaskasiteManganoquadratite Figure S6. Species-locality distribution of Mn-containing sulfides. 30 2 WS

25

20

15 2+x 8 )(OH) x Locality Counts WSnS 6 Al 1-x

10 Cu 16 S 3 .(Mg 2 8 WGe 5 3 Fe GeWS 10 6 Cu Cu (Nb,Mo,W)S 0

Ekplexite Tungstenite Ovamboite Kiddcreekite Catamarcaite Figure S7. Species-locality distribution of W-containing sulfides.

140 16 S 120 3 VAs 12

100 Cu

80

60 4 VS 3 16 S 3 Cu Locality Counts 2 40 16 S 15 VS 3 16 2 S 3 VSn VSbS 13 4

20 VGe V(Sb,Sn,As) 4 4 13 Cu 13 Mo 4 VS VS 3 Cu Cu K (Mg,Al)(OH) Pb 0

Colusite Patrónite Sulvanite Colimaite Yushkinite Nekrasovite Merelaniite Stibiocolusite Germanocolusite Figure S8. Species-locality distribution of V-containing sulfides. (b) Valence Symmetry Chemical State Name Locality Distribution Composition Crystal Space Cu S System Group Chalcocite Cu2S +1 -2 Monoclinic P21/b +1,+ Tetrahedrite Cu12Sb4S13 -2 Cubic I4 3m 2 Covellite CuS +1 -1 Hexagonal P6�3/mmc +1,+ Tennantite Cu12As4S13 -2 Cubic I4 3m 2 Bournonite CuPbSbS3 Orthorhombic Pmn2� 1 Digenite Cu1.8S Trigonal R3m Enargite Cu3AsS4 Orthorhombic Pmn21 � Polybasite-M2a2b2c Monoclinic B2/b Cu(Ag,Cu)6A Polybasite-T2ac Trigonal P321 g9Sb2S11 Polybasite-Tac Trigonal P3m1 Stromeyerite CuAgS Orthorhombic mmm �

Figure S9. (a) Locality-mineral distribution of Cu mono-metal sulfide species and chemical diversity with regards to chemical composition, Cu/S valence states and crystal symmetry; (b) plots of the distribution of species type and locality counts for species containing Cu(I), Cu(II) and Cu(I,II) valence states.

(b) Valence Crystal Symmetry Chemical State Mineral Name Composition Crystal Space Ni S Locality Distribution System Group NiS +2 -2 Trigonal R3m Gersdorffite-Pa3 Ni(As,S)2 2 -2 cubic Ullmannite NiSbS cubic P213 Heazlewoodite Ni3S2 trigonal R32 Polydymite Ni3S4 +2,+3 -2 cubic Va e s ite NiS 2 +2 -1 cubic Pa3

Parkerite Ni3(Bi,Pb)2S2 monoclinic Vysotskite (Pd,Ni)S +2 -2 Tetragonal

Figure S10. (a) Locality-mineral distribution of Ni mono-metal sulfide species and chemical diversity with regards to chemical composition, Ni/S valence states and crystal symmetry; (b) plots of the distribution of species type and locality counts for species containing Ni(II), Ni(III) and Ni(II,III) valence states. Valence ) Crystal Symmetry Chemical State Mineral Name Composition Crystal Space Co S Locality Distribution System Group Cobaltite CoAsS +3 Orthorhombic Pca21 Linnaeite Co3S4 +2,+3 -2 Cubic Cobaltpentlandite Co9S8 Cubic Fm3m Alloclasite CoAsS Monoclinic P21 Cattierite CoS2 +2 -1 Cubic Pa3 Willyamite Cubic Costibite CoSbS +3 Orthorhombic Pmn21 Paracostibite Orthorhombic Jaipurite CoS +2 -2 Hexagonal Na2Co(SCN)4 Julienite +2 -2 Monoclinic P21/n .8H2O

Figure S11. (a) Locality-mineral distribution of Co mono-metal sulfide species and chemical diversity with regards to chemical composition, Co/S valence states and crystal symmetry; (b) plots of the distribution of species type and locality counts for species containing Co(II), Co(III) and Co(II,III) valence states.

Table S1. Chemical properties of Fe-Cu and Fe-Ni binary metal sulfide minerals. Fe, Cu Locality Chemical Valence State Crystal Symmetry Mineral Name Counts Composition Cu Fe S Space Group Chalcopyrite 26279 CuFeS2 +1 +3 -2 Tetragonal I42d Bornite 5293 Cu5FeS4 +1 +3 -2 Orthorhombic Pbca Cubanite 748 CuFe2S3 +1 +2,+3 -2 Orthorhombic 2/m2/m2/m Stannite 632 Cu2FeSn4S4 +1 +2 -2 Tetragonal I42m Freibergite 630 Ag6Cu4Fe2Sb4S12 +1 +2 -2 Tetragonal I43m 2[(Fe,Cu)S]·1.53[( Valleriite 229 +2 +2 -2 Hexagonal Mg,Al)(OH)2] Isocubanite 184 CuFe2S3 +1 +2,+3 -2 Cubic Fm3m

Idaite 133 Cu3FeS4 +2 +2 -2 Hexagonal Fe, Ni

Valence State Crystal Symmetry Locality Mineral Name Chemical Composition Crystal Space Counts Fe Ni S System Group

Pentlandite 1392 (Ni,Fe)9S8 Cubic Fm3m

Mackinawite 424 (Fe,Ni)1+xS (x = 0-0.07) +2 +2 -2 Tetragonal P4/nmm

Violarite 361 FeNi2S4 +2 +3 -2 Cubic

Smythite 71 (Fe,Ni)3+xS4 (x ≈ 0-0.3) Trigonal R3m

Argentopentlandite 63 Ag(Fe,Ni)8S8 Cubic Fm3m�

Godlevskite 32 (Ni,Fe)9S8 Orthorhombic C222

Table S2. Sulfide minerals with ternary metal compositions. Mineral Name Locality Counts Chemical Composition Djerfisherite 57 K6(Fe,Cu,Ni)25S26Cl Sugakiite 3 Cu(Fe,Ni)8S8 Kharaelakhite 2 (Cu,Pt,Pb,Fe,Ni)9S8 Owensite 2 (Ba,Pb2+)6(Cu1+,Fe2+,Ni2+)25S2-27 Samaniite 2 Cu2Fe5Ni2S8 Ferhodsite 1 (Fe,Rh,Ni,Ir,Cu,Pt)9S8 Zoharite 1 (Ba,K)6(Fe,Cu,Ni)25S27 Tarkianite 6 (Cu,Fe)(Re,Mo)4S8 Maikainite 2 Cu1+10Fe2+3Mo4+Ge4+3S2-16 Ovamboite 1 Cu1+10Fe2+3W4+Ge4+3S2-16

Table S3. X-ray amorphous mineral species in the RRUFF database. Mineral Name Chemical Composition Delvauxite CaFe3+4(P5+O4)2(OH)8. 4-5H2O Diadochite Fe3+2(PO4)(SO4)(OH). 6H2O Ekanite Ca2ThSi8O20 Evansite Al3PO4(OH)6. 8H2O Georgeite Cu2+2CO3(OH)2 Ice H2O Jordisite Mo4+S2-2 Zaratite Ni2+3C4+O3(OH)4. 4H2O