Sirius Astronomer

Total Page:16

File Type:pdf, Size:1020Kb

Sirius Astronomer February 2015 Free to members, subscriptions $12 for 12 issues Volume 42, Number 2 Comet Lovejoy (C2014/Q2) is seen in this spectacular image by Kaz Fuseya taken from Julian, Cali- fornia (north of San Diego) on January 20, 2015. Lovejoy may still be seen in the evening sky this month. OCA CLUB MEETING STAR PARTIES COMING UP The free and open club meeting will The Black Star Canyon site will open on The next session of the Beginners be held February 13 at 7:30 PM in the February 14. The Anza site will be open on Class will be held at the Heritage Mu- Irvine Lecture Hall of the Hashinger February 14. Members are encouraged to seum of Orange County at 3101 West Science Center at Chapman University check the website calendar for the latest Harvard Street in Santa Ana on Febru- in Orange. This month’s speaker is Dr. updates on star parties and other events. ary 6. The following class will be held Andrew Benson from UC Irvine. The March 6. topic for this month’s presentation is Please check the website calendar for the “To The Ends of Galaxies: How Do The outreach events this month! Volunteers are GOTO SIG: TBA Smallest Galaxies Form?” always welcome! Astro-Imagers SIG: Feb. 10, Mar. 10 Remote Telescopes: TBA You are also reminded to check the web NEXT MEETINGS: March 13, April 10 Astrophysics SIG: Feb. 20, Mar. 20 site frequently for updates to the calendar Dark Sky Group: TBA of events and other club news. Minor mergers have massive consequences for black holes By Dr. Ethan Siegel When you think of our sun, the nearest star to our world, you think of an isolated entity, with more than four light years separating it from its next nearest neighbor. But it wasn't always so: billions of years ago, when our sun was first created, it very likely formed in concert with thousands of other stars, when a giant molecular cloud containing perhaps a million times the mass of our solar system col- lapsed. While the vast majority of stars that the universe forms— some ninety-five percent—are the mass of our sun or smaller, a rare but significant fraction are ultra-massive, containing tens or even hundreds of times the mass our star contains. When these stars run out of fuel in their cores, they explode in a fantastic Type II supernova, where the star's core collapses. In the most massive cases, this forms a black hole. Over time, many generations of stars—and hence, many black holes—form, with the majority eventually migrating towards the centers of their host galaxies and merging together. Our own galaxy, the Milky Way, houses a supermassive black hole that weighs in at about four million solar masses, while our big sis- ter, Andromeda, has one nearly twenty times as massive. But even relatively isolated galaxies Images credit: NGC 3393 in the optical (L) by M. Malkan (UCLA), HST, NASA (L); NGC didn't simply form from the 3393 in the X-ray and optical (R), composite by NASA / CXC / SAO / G. Fabbiano et al. (X- monolithic collapse of an isolat- ray) and NASA/STScI (optical). ed clump of matter, but by hierarchical mergers of smaller galaxies over tremendous timescales. If galaxies with large amounts of stars all have black holes at their centers, then we should be able to see some fraction of Milky Way-sized galaxies with not just one, but multiple supermassive black holes at their center! It was only in the early 2000s that NASA's Chandra X-ray Observatory was able to find the first binary supermassive black hole in a galaxy, and that was in an ultra-luminous galaxy with a double core. Many other examples were discov- ered since, but for a decade they were all in ultra-massive, active galaxies. That all changed in 2011, with the discovery of two active, massive black holes at the center of the regular spiral galaxy NGC 3393, a galaxy that must have under- gone only minor mergers no less than a billion years ago, where the black hole pair is separated by only 490 light years! It's only in the cores of active, X-ray emitting galaxies that we can detect binary black holes like this. Examples like NGC 3393 and IC 4970 are not only confirming our picture of galaxy growth and formation, but are teaching us that super- massive relics from ancient, minor mergers might persist as standalone entities for longer than we ever thought! Check out some cool images and artist reconstructions of black holes from Chandra: http://chandra.harvard.edu/photo/ category/blackholes.html Kids can learn all about Black Holes from this cool animation at NASA’s Space Place: http://spaceplace.nasa.gov/black- holes. 2 AstroSpace Update February 2015 Gathered by Don Lynn from NASA and other sources ALMA (radiotelescope array) was used to make detailed observations of the protoplanetary disk surrounding the star known as HD 107146, and found an unexpected increase in the concentration of millimeter-size dust grains in the disk’s outer reaches. This in- crease, which begins remarkably far about 8 billion miles (13 billion km) from the host star, may be the result of Pluto-size planetesi- mals stirring up the region, causing smaller objects to collide and blast themselves apart. Dust in debris disks typically comes from material left over from the formation of planets. Very early in the life of the disk, this dust is continuously replenished by collisions of larger bodies, such as comets and asteroids. In mature systems with fully formed planets, comparatively little dust remains. In be- tween these 2 ages, certain models predict that the concentration of dust would be much denser in the most distant regions of the disk. This is precisely what ALMA has found. This is the opposite of what is seen in younger primordial disks where the dust is denser near the star. According to current computer simulations, the density of dust higher in the outer regions of the disk can only be ex- plained by the presence of recently formed Pluto-size bodies. Their gravity would disturb smaller planetesimals, causing more fre- quent collisions that generate the dust. The data also show a possible dip in the dust about ¾ billion miles wide (1.2 billion km), be- ginning about 2.5 times the distance of Neptune from our Sun. This dip could be a gap in the disk, which would indicate a planet sweeping the area clear of debris. The star is of particular interest to astronomers because it is in many ways a younger version of our Sun. It represents a period of transition from a solar system’s early life to more mature stages where planets have finished form- ing. The star is about 90 light-years away in Coma Berenices. It is about 100 million years old. ALMA was also used to observe binary protostars (stars still forming), and found spiral arms of molecular gas and dust around them. Compared to single star formation, our understanding of binary star formation has been limited. However, more than half of stars with a mass similar to our Sun are known to be binaries. Some recent observations have been made of binary protostars, but not with the resolution and sensitivity of ALMA. The new observations showed a gas component associated with each binary star and a disk surrounding both stars, with a radius of 300 AU (1 AU is the Sun-Earth distance). This is about 10 times the size of Neptune’s orbit. To understand these features, the research team constructed a computer simulation of binary formation using a supercomput- er. The results show that the baby twin stars shake the surrounding disk and induce the falling gas motion to feed the materials to the baby twins. Hubble Space Telescope has measured the velocity, composition and temperature of the expanding gas inside the galactic outflows from the Milky Way known as the Fermi bubbles. Hubble probed the light from a distant quasar to analyze the Fermi bubbles as the quasar light passed through. The outflow was produced by some vio- lent event that happened about 2 million years ago in the Milky Way core. Gasses and other material were driven outward at 2 million mph (3 million km/h). The gas on the near side of the bubble is moving toward us and the gas on the far side is traveling away. The Hubble spec- trograph detected silicon, carbon, and aluminum, indicat- ing that the gas is enriched in the heavy elements that are produced inside stars. The temperature of the gas is about 17,500°F (9700°C), which is much cooler than most of the super-hot gas in the outflow, thought to be about 18 million °F (10 million °C), from X-ray data. Now we are witnessing the result: billowing clouds of gas tow- ering about 30,000 light-years above and below the plane of our galaxy. The enormous structure was discovered 5 years ago as a gamma-ray glow. The features have since been ob- served in X-rays and radio waves. The Hubble observations were the 1st to measure the velocity and composition. Astronomers have 3 proposed 2 possible origins for the lobes: a firestorm of star birth at the Milky Way’s center, or the eruption of its supermassive black hole. This is the 1st result in a survey of 20 quasars whose light passes through gas inside or just outside the Fermi bubbles.
Recommended publications
  • Messier Objects
    Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun.
    [Show full text]
  • Naming the Extrasolar Planets
    Naming the extrasolar planets W. Lyra Max Planck Institute for Astronomy, K¨onigstuhl 17, 69177, Heidelberg, Germany [email protected] Abstract and OGLE-TR-182 b, which does not help educators convey the message that these planets are quite similar to Jupiter. Extrasolar planets are not named and are referred to only In stark contrast, the sentence“planet Apollo is a gas giant by their assigned scientific designation. The reason given like Jupiter” is heavily - yet invisibly - coated with Coper- by the IAU to not name the planets is that it is consid- nicanism. ered impractical as planets are expected to be common. I One reason given by the IAU for not considering naming advance some reasons as to why this logic is flawed, and sug- the extrasolar planets is that it is a task deemed impractical. gest names for the 403 extrasolar planet candidates known One source is quoted as having said “if planets are found to as of Oct 2009. The names follow a scheme of association occur very frequently in the Universe, a system of individual with the constellation that the host star pertains to, and names for planets might well rapidly be found equally im- therefore are mostly drawn from Roman-Greek mythology. practicable as it is for stars, as planet discoveries progress.” Other mythologies may also be used given that a suitable 1. This leads to a second argument. It is indeed impractical association is established. to name all stars. But some stars are named nonetheless. In fact, all other classes of astronomical bodies are named.
    [Show full text]
  • WASP Page 1 Hubble Eyes Aging Stars Science News, Vol. 148
    WASP Warren Astronomical Society Paper Volume 27, number 11 $1.00 for non-members November 1995 DATING THE COSMOS COMPUTER CHATTER ANNUAL HOLIDAY AWARDS Hubble eyes aging stars Larry F. Kalinowski Science News, Vol. 148, September 2,1995 submitted by Lorna Simmons Everyone knows you can't be older than your mother. But over the past year, observations with the Hubble Space Telescope and several other Comet DeVico has just passed perihelion in instruments seem to have contradicted this cardi- early October, so its beginning to fade from its maxi- nal rule. On the one hand, measurements of the mum brightness of 5.6. It was recovered in its seventy- speed at which the most distant galaxies are mov- four year orbit by independent comet observers Naka- ing from Earth suggest that the universe may be mura, Tanaka and Utsunomiya. It becomes a sixth no older than 8 billion to 12 billion years (SN: magnitude object on the night of the Macomb meeting, 10/8;94, p.232). On the other hand, astronomers October 19. Early reports say it has two tails. A morn- ing object, only, about fifteen degrees above the hori- estimate he ages of our galaxy's oldest stars at zon before twilight begins, it's easily observed as it 13 billion to 16 billion years. leaves Leo and enters the Ursa Major-Coma Berenices Now, new findings from Hubble may provide a area of the sky. However, it is quickly moving closer to step toward resolving this cosmic conundrum. the horizon and will become increasingly more difficult In viewing the globular cluster M4, the dense to observe during the rest of the month.
    [Show full text]
  • Australian Sky & Telescope
    TRANSIT MYSTERY Strange sights BINOCULAR TOUR Dive deep into SHOOT THE MOON Take amazing as Mercury crosses the Sun p28 Virgo’s endless pool of galaxies p56 lunar images with your smartphone p38 TEST REPORT Meade’s 25-cm LX600-ACF P62 THE ESSENTIAL MAGAZINE OF ASTRONOMY Lasers and advanced optics are transforming astronomy p20 HOW TO BUY THE RIGHT ASTRO CAMERA p32 p14 ISSUE 93 MAPPING THE BIG BANG’S COSMIC ECHOES $9.50 NZ$9.50 INC GST LPI-GLPI-G LUNAR,LUNAR, PLANETARYPLANETARY IMAGERIMAGER ANDAND GUIDERGUIDER ASTROPHOTOGRAPHY MADE EASY. Let the LPI-G unleash the inner astrophotographer in you. With our solar, lunar and planetary guide camera, experience the universe on a whole new level. 0Image Sensor:'+(* C O LOR 0 Pixel Size / &#*('+ 0Frames per second/Resolution• / • / 0 Image Format: #,+$)!&))'!,# .# 0 Shutter%,*('#(%%#'!"-,,* 0Interface: 0Driver: ASCOM compatible 0GuiderPort: 0Color or Monochrome Models (&#'!-,-&' FEATURED DEALERS: MeadeTelescopes Adelaide Optical Centre | www.adelaideoptical.com.au MeadeInstrument The Binocular and Telescope Shop | www.bintel.com.au MeadeInstruments www.meade.com Sirius Optics | www.sirius-optics.com.au The device to free you from your handbox. With the Stella adapter, you can wirelessly control your GoTo Meade telescope at a distance without being limited by cord length. Paired with our new planetarium app, *StellaAccess, astronomers now have a graphical interface for navigating the night sky. STELLA WI-FI ADAPTER / $#)'$!!+#!+ #$#)'#)$##)$#'&*' / (!-')-$*')!($%)$$+' "!!$#$)(,#%',).( StellaAccess app. Available for use on both phones and tablets. /'$+((()$!'%!#)'*")($'!$)##!'##"$'$*) stars, planets, celestial bodies and more /$,'-),',### -' ($),' /,,,$"$')*!!!()$$"%)!)!($%( STELLA is controlled with Meade’s planetarium app, StellaAccess. Available for purchase for both iOS S and Android systems.
    [Show full text]
  • Optical Counterparts of ROSAT X-Ray Sources in Two Selected Fields at Low
    Astronomy & Astrophysics manuscript no. sbg˙comsge˙ed c ESO 2018 October 16, 2018 Optical counterparts of ROSAT X-ray sources in two selected fields at low vs. high Galactic latitudes J. Greiner1, G.A. Richter2 1 Max-Planck-Institut f¨ur extraterrestrische Physik, 85740 Garching, Germany 2 Sternwarte Sonneberg, 96515 Sonneberg, Germany Received 14 October 2013 / Accepted 12 August 2014 ABSTRACT Context. The optical identification of large number of X-ray sources such as those from the ROSAT All-Sky Survey is challenging with conventional spectroscopic follow-up observations. Aims. We investigate two ROSAT All-Sky Survey fields of size 10◦× 10◦ each, one at galactic latitude b = 83◦ (26 Com), the other at b = –5◦ (γ Sge), in order to optically identify the majority of sources. Methods. We used optical variability, among other more standard methods, as a means of identifying a large number of ROSAT All- Sky Survey sources. All objects fainter than about 12 mag and brighter than about 17 mag, in or near the error circle of the ROSAT positions, were tested for optical variability on hundreds of archival plates of the Sonneberg field patrol. Results. The present paper contains probable optical identifications of altogether 256 of the 370 ROSAT sources analysed. In partic- ular, we found 126 AGN (some of them may be misclassified CVs), 17 likely clusters of galaxies, 16 eruptive double stars (mostly CVs), 43 chromospherically active stars, 65 stars brighter than about 13 mag, 7 UV Cet stars, 3 semiregular resp. slow irregular variable stars of late spectral type, 2 DA white dwarfs, 1 Am star, 1 supernova remnant and 1 planetary nebula.
    [Show full text]
  • Biennial Report 2006 2007 Published in Spain by the Isaac Newton Group of Telescopes (ING) ISSN 1575–8966 Legal License: TF–1142 /99
    I SAAC N EWTON G ROUP OF T ELESCOPES Biennial Report 2006 2007 Published in Spain by the Isaac Newton Group of Telescopes (ING) ISSN 1575–8966 Legal license: TF–1142 /99 Apartado de correos, 321 E-38700 Santa Cruz de La Palma; Canary Islands; Spain Tel: +34 922 425 400 Fax: +34 922 425 401 URL: http://www.ing.iac.es/ Editor and designer: Javier Méndez ([email protected]) Printing: Gráficas Sabater. Tel: +34 922 623 555 Front cover: The Milky Way from the site of the William Herschel Telescope. Credit: Nik Szymanek. Inset: Photograph of the WHT at sunset. Credit: Nik Szymanek. Other picture credits: Nik Szymanek (WHT, p. 4; INT, p. 4; JKT, p. 4; ING, p. 5); Jens Moser (WHT, back; INT, back); Nik Szymanek (JKT, back). The ING Biennial Report is available online at http://www.ing.iac.es/PR/AR/. ISAAC NEWTON GROUP OF TELESCOPES Biennial Report of the STFC-NWO-IAC ING Board 2006 – 2007 ISAAC NEWTON GROUP William Herschel Telescope Isaac Newton Telescope Jacobus Kapteyn Telescope 4 • ING BIENNIAL R EPORT 2006–2007 OF TELESCOPES The Isaac Newton Group of Telescopes (ING) consists of the 4.2- metre William Herschel Telescope (WHT), the 2.5-metre Isaac Newton Telescope (INT) and the 1.0-metre Jacobus Kapteyn Telescope (JKT). The ING is located 2350 metres above sea level at the Observatorio del Roque de los Muchachos (ORM) on the island of La Palma, Canary Islands, Spain. The WHT is the largest telescope of its kind in Western Europe. The construction, operation, and development of the ING telescopes are the result of a collaboration between the United Kingdom, The Netherlands and Spain.
    [Show full text]
  • A Survey of Active Galaxies at Tev Photon Energies with the HAWC Gamma-Ray Observatory
    Draft version September 22, 2020 Typeset using LATEX default style in AASTeX63 A survey of active galaxies at TeV photon energies with the HAWC gamma-ray observatory A. Albert,1 C. Alvarez,2 J.R. Angeles Camacho,3 J.C. Arteaga-Velazquez,´ 4 K.P. Arunbabu,5 D. Avila Rojas,3 H.A. Ayala Solares,6 V. Baghmanyan,7 E. Belmont-Moreno,3 S.Y. BenZvi,8 C. Brisbois,9 K.S. Caballero-Mora,2 T. Capistran´ ,10 A. Carraminana~ ,10 S. Casanova,7 U. Cotti,4 J. Cotzomi,11 S. Coutino~ de Leon´ ,10 E. De la Fuente,12 B.L. Dingus,1 M.A. DuVernois,13 M. Durocher,1 J.C. D´ıaz-Velez´ ,12 K. Engel,9 C. Espinoza,3 K.L. Fan,9 M. Fernandez´ Alonso,6 H. Fleischhack,14 N. Fraija,15 A. Galvan-G´ amez,´ 15 D. Garc´ıa,3 J.A. Garc´ıa-Gonzalez´ ,3 F. Garfias,15 M.M. Gonzalez´ ,15 J.A. Goodman,9 J.P. Harding,1 S. Hernandez´ ,3 B. Hona,14 D. Huang,14 F. Hueyotl-Zahuantitla,2 P. Huntemeyer,¨ 14 A. Iriarte,15 A. Jardin-Blicq,16, 17, 18 V. Joshi,19 D. Kieda,20 G.J. Kunde,1 A. Lara,5 W.H. Lee,15 H. Leon´ Vargas,3 J.T. Linnemann,21 A.L. Longinotti,10 G. Luis-Raya,22 J. Lundeen,21 K. Malone,1 O. Mart´ınez,11 I. Martinez-Castellanos,9 J. Mart´ınez-Castro,23 J.A. Matthews,24 P. Miranda-Romagnoli,25 J.A. Morales-Soto,4 E. Moreno,11 M.
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]
  • Tvsnews 05 01.Indd
    2005 PRIMEFOCUS Tri-Valley Stargazers January January Meeting A Distributed Global Observing Network and the Mystery of Extrasolar Planet TrES-1b Ron Bissinger Affordable off-the- Meeting Info: shelf CCD digital cameras and medium aperture computer controlled telescopes have allowed an What increasing number of amateur astronomers to blur the line between amateur The Mystery of Extrasolar and professional astronomers. Amateur astronomers now frequently collaborate Planet TrES-1b with their professional colleagues on cutting-edge research endeavors. Who A current example of such an amateur/professional collaboration is the search Ron Bissinger for extrasolar planets. The American Association of Variable Star Observers (AAVSO) and the Transitsearch.org team have partnered to conduct world- When wide observing campaigns of stars that have, or may have, planetary systems. January 21, 2005 The 2003 discovery of a transiting extrasolar planet designated TrES-1b Conversation 7:00 p.m. prompted many amateur astronomers around the world to capture the light- Lecture 7:30 p.m. curve as the planet eclipsed, or transited, the parent star. Where Several amateur astronomers noted that the TrES-1b transit lightcurves did Unitarian Universalist not follow the classic, sharp-cornered “dips” of other transiting extrasolar Church in Livermore planets. These observations lead to an extensive and continuing analysis of the 1893 N. Vasco Road TrES-1b lightcurve to determine whether they indicate the presence of a struc- ture around the planet or its parent star. Whether or not any structure is ultimately confirmed around TrES-1b, the work exem- Inside plifies the high precision observations that News & Notes 2 are now made by a global group of amateur and professional astronomers formally coor- Calendar of Events 3 dinated over the internet.
    [Show full text]
  • Extrasolar Planets and Their Host Stars
    Kaspar von Braun & Tabetha S. Boyajian Extrasolar Planets and Their Host Stars July 25, 2017 arXiv:1707.07405v1 [astro-ph.EP] 24 Jul 2017 Springer Preface In astronomy or indeed any collaborative environment, it pays to figure out with whom one can work well. From existing projects or simply conversations, research ideas appear, are developed, take shape, sometimes take a detour into some un- expected directions, often need to be refocused, are sometimes divided up and/or distributed among collaborators, and are (hopefully) published. After a number of these cycles repeat, something bigger may be born, all of which one then tries to simultaneously fit into one’s head for what feels like a challenging amount of time. That was certainly the case a long time ago when writing a PhD dissertation. Since then, there have been postdoctoral fellowships and appointments, permanent and adjunct positions, and former, current, and future collaborators. And yet, con- versations spawn research ideas, which take many different turns and may divide up into a multitude of approaches or related or perhaps unrelated subjects. Again, one had better figure out with whom one likes to work. And again, in the process of writing this Brief, one needs create something bigger by focusing the relevant pieces of work into one (hopefully) coherent manuscript. It is an honor, a privi- lege, an amazing experience, and simply a lot of fun to be and have been working with all the people who have had an influence on our work and thereby on this book. To quote the late and great Jim Croce: ”If you dig it, do it.
    [Show full text]
  • Observations and Models of Infrared Debris Disk Signatures and Their Evolution
    Observations and Models of Infrared Debris Disk Signatures and their Evolution Item Type text; Electronic Dissertation Authors Gaspar, Andras Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 14:47:51 Link to Item http://hdl.handle.net/10150/202982 OBSERVATIONS AND MODELS OF INFRARED DEBRIS DISK SIGNATURES AND THEIR EVOLUTION by Andr´as G´asp´ar A Dissertation Submitted to the Faculty of the DEPARTMENT OF ASTRONOMY In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2011 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Andr´as G´asp´ar entitled “Observations and models of infrared debris disk signatures and their evolution” and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy. Date: 3 November 2011 Dr. George Rieke Date: 3 November 2011 Dr. Dimitrios Psaltis Date: 3 November 2011 Dr. Feryal Ozel¨ Date: 3 November 2011 Dr. Kate Y. L. Su Date: 3 November 2011 Dr. D´aniel Apai Final approval and acceptance of this dissertation is contingent upon the candi- date’s submission of the final copies of the dissertation to the Graduate College. I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.
    [Show full text]
  • Haar Der Berenike – Coma Berenices (Com)
    Haar der Berenike – Coma Berenices (Com) Stb Lateinischer Deutscher Rang Kulm@0h DeklBereich Fläche Name Name Com Coma Haar der 47 2. April 13° 33° 386° 2 Berenices Berenike Grenzt an folgende Sternbilder Norden Westen Süden Osten Jagdhunde Großer Bär Jungfrau Rinderhirt Löwe Sichtbarkeitsbereich / komplett – teilweise Nördlich geografische Breite Südlich geografische Breite / nicht vollständig sichtbar ab 77 ° zirkumpolar - 56 ° Astronomische Bücher, Sternkarten, Seite, Blatt Aufsuchhilfen KOSMOS Sternführer 138 Karkoschka E 13 Cambridge Sternatlas 5, 11 Sky Atlas 2000 7, 13, 14 Baye Flamstee Sternna RA Dekl mv Mv Spektru LJ r d me h m ° ' m β 43 13:12 27:50 4,2 4,4 G0V 30 α 42 Diadem 13:10 17:29 4,3 3,5 F5V 47 γ 15 12:27 28:13 4,4 0,8 K2IIICN 170 11 12:21 17:45 4,7 -0,5 G8III 361 12 12:23 25:48 4,8 0,2 F8:p 273 23 12:35 22:35 4,8 -0,4 A0IV 365 36 12:59 17:22 4,8 -0,1 M0III 299 41 13:08 27:35 4,8 0,0 K5III 303 14 12:27 27:13 4,9 0,3 F0p 274 31 12:52 27:30 4,9 0,1 G0III 307 35 12:54 21:12 4,9 -0,1 G8III 324 37 13:01 30:44 4,9 -2,3 K1IIIp 898 7 12:17 23:54 4,9 0,5 K0III 249 12:17 33:01 5,0 0,1 K1III 306 16 12:27 26:47 5,0 0,3 A4V 282 Virgo-Galaxienhaufen AUFSUCHEN: Der Virgo-Galaxienhaufen ist mit 60 Millionen Lichtjahren der nächste seiner Art zur Erde und beheimatet etwa 2000 Galaxien.
    [Show full text]