Efektywność Szyfrów Strumieniowych W Układach Programowalnych

Total Page:16

File Type:pdf, Size:1020Kb

Efektywność Szyfrów Strumieniowych W Układach Programowalnych Efektywność szyfrów strumieniowych w układach programowalnych Marcin Rogawski Plan referatu eSTREAM: 2004-2008, Implementacje sprzętowe finalistów eSTREAM, Porównanie wyników prac z ośrodkami naukowymi, Podsumowanie prac z lat 2004-2007, Podsumowanie, eSTREAM http://www.ecrypt.eu.org/stream/ 2 profile – sprzętowy i programowy, III faza (finał): 2007 kwiecień – 2008 marzec, implementacje w środowiskach z bardzo mała bateria zasilająca (np. RFID) implementacje przy ograniczonej ilości zasobów (np. Smard Card) implementacje w specyficznych architekturach (8-bit) implementacje w środowiskach o bardzo dużej przepustowości (wiele Gigabitów na sekundę ) duża elastyczność implementacji: od bardzo małych i wolniejszych, po większe i bardzo szybkie, jakość specyfikacji – eleg ancja i prostota zapisu. eSTREAM – profil sprzętowy Achterbahn, Decim, Edon80, F-FCSR, Grain, Hermes, LEX, MAG, MICKEY, Moustique, NLS, Phelix, Polar Bear, Pomaranch, Rabbit, Salsa20, Sfinks, SSS, TRBDK3 YAEA, Trivium, TSC-3, Yamb, VEST, WG, Zk-Crypt Pochodzenie algorytmów zgłoszonych do konkursu eSTREAM Profil sprzętowy – po pierwszej fazie Achterbahn, Decim, Edon80, F-FCSR, Grain, Hermes, LEX, MAG, MICKEY, Moustique, NLS, Phelix, Polar Bear, Pomaranch, Rabbit, Salsa20, Sfinks, SSS, TRBDK3 YAEA, Trivium, TSC-3, Yamb, VEST, WG, Zk-Crypt SASC2007 – wyniki głosowania Finaliści eSTREAM – profil sprzętowy Achterbahn, Decim, Edon80, F-FCSR, Grain, Hermes, LEX, MAG, MICKEY, Moustique, NLS, Phelix, Polar Bear, Pomaranch, Rabbit, Salsa20, Sfinks, SSS, TRBDK3 YAEA, Trivium, TSC-3, Yamb, VEST, WG, Zk-Crypt Założenia implementacyjne Architektura iteracyjna, Quartus II 6.0, Altera Cyclone EP1C12, AHDL (VHDL), Biblioteka funkcji, Standardowa logika, Bez metod autoryzacji, FSM: „one hot” Benchmark: “Testing Framework for eSTREAM Profile II candidates”: GMU: ~1000LE, 174Mb/s US:~500LE, 2,2Mb/s autorskie: 5053LE, 611Mb/s Wyniki implementacji - Zajętość struktury 5500 5000 4500 4000 3500 3000 E L 2500 2000 1500 1000 500 0 Salsa20 Salsa20 LEX Grain_1 Grain_1 Triv ium Triv ium Mickey Mickey Pomara Decim Moustiq F- Sosem AES_12 AES_G AES_U _dr _qr 6 _1 _64 _2 _128 nch ue FCSR anuk 8 MU S Energia do wygenerowania 1Gb strumienia klucza 8 7,5 7 6,5 6 5,5 5 4,5 l u 4 J 3,5 3 2,5 2 1,5 1 0,5 0 Salsa2 Salsa2 LEX Grain_1 Grain_1 Triv ium Triv ium Mickey Mickey Decim Moustiq AES_1 F- Sosem 0_dr 0_qr 6 _1 _64 _2 _128 ue 28 FCSR anuk Przepustowość 5000 4500 4000 3500 3000 2500 2000 1500 1000 500 0 Sals a2 Salsa2 LEX Grain_ Grain_ Triv ium Triv ium Mic k ey Mick ey F - Sosem D ec im Mous ti AES_1 AES_G AES_U 0_dr 0_qr 1 16 _1 _64 _2 _128 F C SR anuk que 28 MU S Oceny implementacji sprzętowych Wyniki implementacji różnych ośrodków naukowych – rozwiązania kompaktowe 350 325 300 275 250 225 200 s / b 175 M 150 125 100 75 50 25 0 G MU :Tri U S : K U L: N as z:Tri G MU : U S : K U L: N as z: LU :G rai U S :Mou N as z: G MU :Mi H O U :Mi N as z:Mi R U B :E d v ium -1 Triv ium - Triv ium - v ium -1 G rain-1 G rain-1 G rain-1 G rain-1 n-1 s t ique Mous tiq c k ey 12 c k ey 12 c k ey 12 on80 1 1 ue 8 8 8 Wyniki implementacji różnych ośrodków naukowych – „szybkie” 18000 16000 14000 12000 10000 s / b M 8000 6000 4000 2000 0 GMU:Triv ium- Nasz:Triv ium- GMU:Grain-16 LU:Grain-16 Nasz: Grain-16 64 64 Technologie - przepustowości 10000 650 9000 600 8000 550 500 7000 450 6000 400 5000 s 350 / b 300 4000 M 250 3000 200 2000 150 1000 100 0 50 ATM- PCI Fiber SATA AGPx8 ATM- ATM- Firewire Ultra 0 OC-192 Ekspre Channe OC-36 OC-24 640 ATM- PCI USB ATM- IEEE FDDI ArcNe WiMa IEEE ATM- ss x32 l SCSI OC- 3.0 2.0 OC-3 801.1 t x 801.1 OC-1 12 1n 1g 55 50 45 40 35 s 30 / b M 25 20 15 10 5 0 ATM- IEEE Toke USB ISA IEEE IrDA I2C IEEE Bluet Bluet PS/2 OC-1 801.1 n 1.0 801.1 1.1 High 801.1 ooth ooth 1a Ring 1b Spee 1 edr Implementacje - profile eSTREAM - profile Podsumowanie prac 2004-2007 Enigma 2005: “Szyfry strumieniowe w układach programowalnych FPGA” {A5, BGML, E0, Helix, Leviathan, Lili- 128, Mir-1, Mugi, Rabbit, RC-4, Sober-t16, VMPC, W7, F8, AES OFB Mode} Enigma 2006: “Sprzętowo-zorientowane konstrukcje szyfrów strumieniowych” {A5, Grain, Trivium} Enigma 2007: “Efektywność szyfrów strumieniowych w układach programowalnych” {AES, Grain, LEX, Mickey, Salsa20, Trivium, Pomaranch, Moustique, F-FCSR Decim} Zajętość: 1560LE (2005) -> 1425LE (2007), Przepustowość: 218Mb/s (2005) -> 2045Mb/s (2007), Podsumowanie Zajętość – Grain, Pobór mocy – Trivium, Przepustowość - Trivium, Elastyczność – Trivium, Grain, wyniki potwierdzone na znanych uniwersytetach, eSTREAM – ogłoszenie wyników konkursu Dziękuję za uwagę ... .
Recommended publications
  • Secure Transmission of Data Using Rabbit Algorithm
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 05 | May -2017 www.irjet.net p-ISSN: 2395-0072 Secure Transmission of Data using Rabbit Algorithm Shweta S Tadkal1, Mahalinga V Mandi2 1 M. Tech Student , Department of Electronics & Communication Engineering, Dr. Ambedkar institute of Technology,Bengaluru-560056 2 Associate Professor, Department of Electronics & Communication Engineering, Dr. Ambedkar institute of Technology,Bengaluru-560056 ---------------------------------------------------------------------***----------------------------------------------------------------- Abstract— This paper presents the design and simulation of secure transmission of data using rabbit algorithm. The rabbit algorithm is a stream cipher algorithm. Stream ciphers are an important class of symmetric encryption algorithm, which uses the same secret key to encrypt and decrypt the data and has been designed for high performance in software implementation. The data or the plain text in our proposed model is the binary data which is encrypted using the keys generated by the rabbit algorithm. The rabbit algorithm is implemented and the language used to write the code is Verilog and then is simulated using Modelsim6.4a. The software tool used is Xilinx ISE Design Suit 14.7. Keywords—Cryptography, Stream ciphers, Rabbit algorithm 1. INTRODUCTION In today’s world most of the communications done using electronic media. Data security plays a vitalkrole in such communication. Hence there is a need to predict data from malicious attacks. This is achieved by cryptography. Cryptographydis the science of secretscodes, enabling the confidentiality of communication through an in secure channel. It protectssagainstbunauthorizedapartiesoby preventing unauthorized alterationhof use. Several encrypting algorithms have been built to deal with data security attacks.
    [Show full text]
  • Detection and Exploitation of Small Correlations in Stream Ciphers
    Detection and Exploitation of Small Correlations in Stream Ciphers Masterthesis conducted under the guidance of Prof. Dr. Joachim Rosenthal and Dr. Gérard Maze Institute of Mathematics, University of Zurich 2008 Urs Wagner Outline This thesis gives an overview of stream ciphers based on linear feedback shift registers (LFSR) and their vulnerability to correlation attacks. In the rst chapter, a short introduction to symmetric key ciphers is given. The main focus hereby is on LFSR based stream ciphers. Further, the principles of LFSR are presented. The chapter is then closed by a stream cipher example, the Gee Generator. The second chapter treats the general approach of correlation attacks. Moreover a correlation attack is mounted on the Gee Generator and the practical results are presented. Boolean functions play an important role in stream cipher designs. The Walsh transform, a tool to analyze the cryptographic properties of Boolean functions, is introduced in chapter 3. Additionally, the cryptographic properties themselves are discussed. In the fourth chapter, an improved kind of correlation attack -the fast correlation attack- is presented. It exploits the same weaknesses in the stream cipher designs as the correlation attack, the mode of operation is however dierent. In the last chapter, the insights gained in the previous chapters are used to suggest an attack on a stream cipher by Philips, named Hitag 2. 1 Acknowledgments This thesis was written in the course of my master's studies at the University of Zurich. I am grateful to Prof. Joachim Rosenthal who gave me the opportunity to write my master thesis in cryptography. Special thanks go to Dr.
    [Show full text]
  • Key Differentiation Attacks on Stream Ciphers
    Key differentiation attacks on stream ciphers Abstract In this paper the applicability of differential cryptanalytic tool to stream ciphers is elaborated using the algebraic representation similar to early Shannon’s postulates regarding the concept of confusion. In 2007, Biham and Dunkelman [3] have formally introduced the concept of differential cryptanalysis in stream ciphers by addressing the three different scenarios of interest. Here we mainly consider the first scenario where the key difference and/or IV difference influence the internal state of the cipher (∆key, ∆IV ) → ∆S. We then show that under certain circumstances a chosen IV attack may be transformed in the key chosen attack. That is, whenever at some stage of the key/IV setup algorithm (KSA) we may identify linear relations between some subset of key and IV bits, and these key variables only appear through these linear relations, then using the differentiation of internal state variables (through chosen IV scenario of attack) we are able to eliminate the presence of corresponding key variables. The method leads to an attack whose complexity is beyond the exhaustive search, whenever the cipher admits exact algebraic description of internal state variables and the keystream computation is not complex. A successful application is especially noted in the context of stream ciphers whose keystream bits evolve relatively slow as a function of secret state bits. A modification of the attack can be applied to the TRIVIUM stream cipher [8], in this case 12 linear relations could be identified but at the same time the same 12 key variables appear in another part of state register.
    [Show full text]
  • Ray Bradbury Creative Contest Literary Journal
    32nd Annual Ray Bradbury Creative Contest Literary Journal 2016 Val Mayerik Val Ray Bradbury Creative Contest A contest of writing and art by the Waukegan Public Library. This year’s literary journal is edited, designed, and produced by the Waukegan Public Library. Table of Contents Elementary School Written page 1 Middle School Written page 23 High School Written page 52 Adult Written page 98 Jennifer Herrick – Designer Rose Courtney – Staff Judge Diana Wence – Staff Judge Isaac Salgado – Staff Judge Yareli Facundo – Staff Judge Elementary School Written The Haunted School Alexis J. In one wonderful day there was a school-named “Hyde Park”. One day when, a kid named Logan and his friend Mindy went to school they saw something new. Hyde Park is hotel now! Logan and Mindy Went inside to see what was going on. So they could not believe what they say. “Hyde Park is also now haunted! When Logan took one step they saw Slender Man. Then they both walk and there was a scary mask. Then mummies started coming out of the grown and zombies started coming from the grown and they were so stinky yuck! Ghost came out all over the school and all the doors were locked. Now Mindy had a plan to scare all the monsters away. She said “we should put all the monsters we saw all together. So they make Hyde Park normal again. And they live happy ever after and now it is back as normal. THE END The Haunted House Angel A. One day it was night. And it was so dark a lot of people went on a house called “dead”.
    [Show full text]
  • (SMC) MODULE of RC4 STREAM CIPHER ALGORITHM for Wi-Fi ENCRYPTION
    InternationalINTERNATIONAL Journal of Electronics and JOURNAL Communication OF Engineering ELECTRONICS & Technology (IJECET),AND ISSN 0976 – 6464(Print), ISSN 0976 – 6472(Online), Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME COMMUNICATION ENGINEERING & TECHNOLOGY (IJECET) ISSN 0976 – 6464(Print) IJECET ISSN 0976 – 6472(Online) Volume 6, Issue 1, January (2015), pp. 79-85 © IAEME: http://www.iaeme.com/IJECET.asp © I A E M E Journal Impact Factor (2015): 7.9817 (Calculated by GISI) www.jifactor.com VHDL MODELING OF THE SRAM MODULE AND STATE MACHINE CONTROLLER (SMC) MODULE OF RC4 STREAM CIPHER ALGORITHM FOR Wi-Fi ENCRYPTION Dr.A.M. Bhavikatti 1 Mallikarjun.Mugali 2 1,2Dept of CSE, BKIT, Bhalki, Karnataka State, India ABSTRACT In this paper, VHDL modeling of the SRAM module and State Machine Controller (SMC) module of RC4 stream cipher algorithm for Wi-Fi encryption is proposed. Various individual modules of Wi-Fi security have been designed, verified functionally using VHDL-simulator. In cryptography RC4 is the most widely used software stream cipher and is used in popular protocols such as Transport Layer Security (TLS) (to protect Internet traffic) and WEP (to secure wireless networks). While remarkable for its simplicity and speed in software, RC4 has weaknesses that argue against its use in new systems. It is especially vulnerable when the beginning of the output key stream is not discarded, or when nonrandom or related keys are used; some ways of using RC4 can lead to very insecure cryptosystems such as WEP . Many stream ciphers are based on linear feedback shift registers (LFSRs), which, while efficient in hardware, are less so in software.
    [Show full text]
  • Side Channel Analysis Attacks on Stream Ciphers
    Side Channel Analysis Attacks on Stream Ciphers Daehyun Strobel 23.03.2009 Masterarbeit Ruhr-Universität Bochum Lehrstuhl Embedded Security Prof. Dr.-Ing. Christof Paar Betreuer: Dipl.-Ing. Markus Kasper Erklärung Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß übernommen wurden, sind als solche gekennzeichnet. Bochum, 23.März 2009 Daehyun Strobel ii Abstract In this thesis, we present results from practical differential power analysis attacks on the stream ciphers Grain and Trivium. While most published works on practical side channel analysis describe attacks on block ciphers, this work is among the first ones giving report on practical results of power analysis attacks on stream ciphers. Power analyses of stream ciphers require different methods than the ones used in todays most popular attacks. While for the majority of block ciphers it is sufficient to attack the first or last round only, to analyze a stream cipher typically the information leakages of many rounds have to be considered. Furthermore the analysis of hardware implementations of stream ciphers based on feedback shift registers inevitably leads to methods combining algebraic attacks with methods from the field of side channel analysis. Instead of a direct recovery of key bits, only terms composed of several key bits and bits from the initialization vector can be recovered. An attacker first has to identify a sufficient set of accessible terms to finally solve for the key bits.
    [Show full text]
  • Most Popular ■ CORN STALK RUNNER at Flock Together This 2017 TROY TURKEY TROT
    COVERING FREE! UPSTATE NY NOVEMBER SINCE 2000 2018 Flock Together this Thanksgiving ■ 5K START AT 2013 TROY TURKEY TROT. JOIN THE CONTENTS 1 Running & Walking Most Popular ■ CORN STALK RUNNER AT Flock Together this 2017 TROY TURKEY TROT. Thanksgiving! 3 Alpine Skiing & Boarding Strutting Day! Ready for Ski Season! By Laura Clark 5 News Briefs 5 From the Publishers hat I enjoy most about Thanksgiving is that it is a teams are encouraged and die-hards relaxed, all-American holiday. And what is more are invited to try for the individual 50K option. 6-9 CALENDAR OF EVENTS WAmerican than our plucky, ungainly turkey? Granted, Proceeds benefit the Regional Food Bank of Northeastern New although Ben Franklin lost his bid to elevate our native species to November to January York, enabling them to ensure a bountiful Thanksgiving for every- national symbol status, the turkey gets the last cackle. For when one. (fleetfeetalbany.com) Things to Do was the last time you celebrated eagle day? On Thanksgiving Day, Thursday, November 22, get ready for 11 Hiking, Snowshoeing In a wishbone world, Thanksgiving gives the least offense. the most popular running day of the whole year. Sample one of Sure, it is a worry for turkeys but a trade-off if you consider all the these six races in our area. & Camping free publicity. While slightly distasteful for vegetarians, there are While most trots cater to the 5K crowd, perfect for strollers, West Stony Creek: Well-Suited all those yummy sides and desserts to consider. Best of all is the aspiring turklings and elders, the premiere 71st annual Troy emphasis on family members, from toms to hens to the littlest Turkey Trot is the only area race where it is still possible to double for Late Fall/Early Winter turklings (think ducklings).
    [Show full text]
  • Cryptanalysis of Stream Ciphers Based on Arrays and Modular Addition
    KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT INGENIEURSWETENSCHAPPEN DEPARTEMENT ELEKTROTECHNIEK{ESAT Kasteelpark Arenberg 10, 3001 Leuven-Heverlee Cryptanalysis of Stream Ciphers Based on Arrays and Modular Addition Promotor: Proefschrift voorgedragen tot Prof. Dr. ir. Bart Preneel het behalen van het doctoraat in de ingenieurswetenschappen door Souradyuti Paul November 2006 KATHOLIEKE UNIVERSITEIT LEUVEN FACULTEIT INGENIEURSWETENSCHAPPEN DEPARTEMENT ELEKTROTECHNIEK{ESAT Kasteelpark Arenberg 10, 3001 Leuven-Heverlee Cryptanalysis of Stream Ciphers Based on Arrays and Modular Addition Jury: Proefschrift voorgedragen tot Prof. Dr. ir. Etienne Aernoudt, voorzitter het behalen van het doctoraat Prof. Dr. ir. Bart Preneel, promotor in de ingenieurswetenschappen Prof. Dr. ir. Andr´eBarb´e door Prof. Dr. ir. Marc Van Barel Prof. Dr. ir. Joos Vandewalle Souradyuti Paul Prof. Dr. Lars Knudsen (Technical University, Denmark) U.D.C. 681.3*D46 November 2006 ⃝c Katholieke Universiteit Leuven { Faculteit Ingenieurswetenschappen Arenbergkasteel, B-3001 Heverlee (Belgium) Alle rechten voorbehouden. Niets uit deze uitgave mag vermenigvuldigd en/of openbaar gemaakt worden door middel van druk, fotocopie, microfilm, elektron- isch of op welke andere wijze ook zonder voorafgaande schriftelijke toestemming van de uitgever. All rights reserved. No part of the publication may be reproduced in any form by print, photoprint, microfilm or any other means without written permission from the publisher. D/2006/7515/88 ISBN 978-90-5682-754-0 To my parents for their unyielding ambition to see me educated and Prof. Bimal Roy for making cryptology possible in my life ... My Gratitude It feels awkward to claim the thesis to be singularly mine as a great number of people, directly or indirectly, participated in the process to make it see the light of day.
    [Show full text]
  • The Moral Character of Cryptographic Work⋆
    The Moral Character of Cryptographic Work? Phillip Rogaway Department of Computer Science University of California, Davis, USA [email protected] December 2015 (minor revisions March 2016) Abstract. Cryptography rearranges power: it configures who can do what, from what. This makes cryptography an inherently political tool, and it confers on the field an intrinsically moral dimension. The Snowden revelations motivate a reassessment of the political and moral positioning of cryptography. They lead one to ask if our inability to effectively address mass surveillance constitutes a failure of our field. I believe that it does. I call for a community-wide effort to develop more effective means to resist mass surveillance. I plead for a reinvention of our disciplinary culture to attend not only to puzzles and math, but, also, to the societal implications of our work. Keywords: cryptography · ethics · mass surveillance · privacy · Snowden · social responsibility Preamble. Most academic cryptographers seem to think that our field is a fun, deep, and politically neutral game|a set of puzzles involving communicating parties and notional adversaries. This vision of who we are animates a field whose work is intellectually impressive and rapidly produced, but also quite inbred and divorced from real-world concerns. Is this what cryptography should be like? Is it how we should expend the bulk of our intellectual capital? For me, these questions came to a head with the Snowden disclosures of 2013. If cryptography's most basic aim is to enable secure communications, how could it not be a colossal failure of our field when ordinary people lack even a modicum of communication privacy when interacting electronically? Yet I soon realized that most cryptographers didn't see it this way.
    [Show full text]
  • *UPDATED Canadian Values 07-04 201 7/26/2016 4:42:21 PM *UPDATED Canadian Values 07-04 202 COIN VALUES: CANADA 02 .0 .0 12
    CANADIAN VALUES By Michael Findlay Large Cents VG-8 F-12 VF-20 EF-40 MS-60 MS-63R 1917 1.00 1.25 1.50 2.50 13. 45. CANADA COIN VALUES: 1918 1.00 1.25 1.50 2.50 13. 45. 1919 1.00 1.25 1.50 2.50 13. 45. 1920 1.00 1.25 1.50 3.00 18. 70. CANADIAN COIN VALUES Small Cents PRICE GUIDE VG-8 F-12 VF-20 EF-40 MS-60 MS-63R GEORGE V All prices are in U.S. dollars LargeL Cents C t 1920 0.20 0.35 0.75 1.50 12. 45. Canadian Coin Values is a comprehensive retail value VG-8 F-12 VF-20 EF-40 MS-60 MS-63R 1921 0.50 0.75 1.50 4.00 30. 250. guide of Canadian coins published online regularly at Coin VICTORIA 1922 20. 23. 28. 40. 200. 1200. World’s website. Canadian Coin Values is provided as a 1858 70. 90. 120. 200. 475. 1800. 1923 30. 33. 42. 55. 250. 2000. reader service to collectors desiring independent informa- 1858 Coin Turn NI NI 2500. 5000. BNE BNE 1924 6.00 8.00 11. 16. 120. 800. tion about a coin’s potential retail value. 1859 4.00 5.00 6.00 10. 50. 200. 1925 25. 28. 35. 45. 200. 900. Sources for pricing include actual transactions, public auc- 1859 Brass 16000. 22000. 30000. BNE BNE BNE 1926 3.50 4.50 7.00 12. 90. 650. tions, fi xed-price lists and any additional information acquired 1859 Dbl P 9 #1 225.
    [Show full text]
  • Security Evaluation of the K2 Stream Cipher
    Security Evaluation of the K2 Stream Cipher Editors: Andrey Bogdanov, Bart Preneel, and Vincent Rijmen Contributors: Andrey Bodganov, Nicky Mouha, Gautham Sekar, Elmar Tischhauser, Deniz Toz, Kerem Varıcı, Vesselin Velichkov, and Meiqin Wang Katholieke Universiteit Leuven Department of Electrical Engineering ESAT/SCD-COSIC Interdisciplinary Institute for BroadBand Technology (IBBT) Kasteelpark Arenberg 10, bus 2446 B-3001 Leuven-Heverlee, Belgium Version 1.1 | 7 March 2011 i Security Evaluation of K2 7 March 2011 Contents 1 Executive Summary 1 2 Linear Attacks 3 2.1 Overview . 3 2.2 Linear Relations for FSR-A and FSR-B . 3 2.3 Linear Approximation of the NLF . 5 2.4 Complexity Estimation . 5 3 Algebraic Attacks 6 4 Correlation Attacks 10 4.1 Introduction . 10 4.2 Combination Generators and Linear Complexity . 10 4.3 Description of the Correlation Attack . 11 4.4 Application of the Correlation Attack to KCipher-2 . 13 4.5 Fast Correlation Attacks . 14 5 Differential Attacks 14 5.1 Properties of Components . 14 5.1.1 Substitution . 15 5.1.2 Linear Permutation . 15 5.2 Key Ideas of the Attacks . 18 5.3 Related-Key Attacks . 19 5.4 Related-IV Attacks . 20 5.5 Related Key/IV Attacks . 21 5.6 Conclusion and Remarks . 21 6 Guess-and-Determine Attacks 25 6.1 Word-Oriented Guess-and-Determine . 25 6.2 Byte-Oriented Guess-and-Determine . 27 7 Period Considerations 28 8 Statistical Properties 29 9 Distinguishing Attacks 31 9.1 Preliminaries . 31 9.2 Mod n Cryptanalysis of Weakened KCipher-2 . 32 9.2.1 Other Reduced Versions of KCipher-2 .
    [Show full text]
  • Cryptanalysis of Sfinks*
    Cryptanalysis of Sfinks? Nicolas T. Courtois Axalto Smart Cards Crypto Research, 36-38 rue de la Princesse, BP 45, F-78430 Louveciennes Cedex, France, [email protected] Abstract. Sfinks is an LFSR-based stream cipher submitted to ECRYPT call for stream ciphers by Braeken, Lano, Preneel et al. The designers of Sfinks do not to include any protection against algebraic attacks. They rely on the so called “Algebraic Immunity”, that relates to the complexity of a simple algebraic attack, and ignores other algebraic attacks. As a result, Sfinks is insecure. Key Words: algebraic cryptanalysis, stream ciphers, nonlinear filters, Boolean functions, solving systems of multivariate equations, fast algebraic attacks on stream ciphers. 1 Introduction Sfinks is a new stream cipher that has been submitted in April 2005 to ECRYPT call for stream cipher proposals, by Braeken, Lano, Mentens, Preneel and Varbauwhede [6]. It is a hardware-oriented stream cipher with associated authentication method (Profile 2A in ECRYPT project). Sfinks is a very simple and elegant stream cipher, built following a very classical formula: a single maximum-period LFSR filtered by a Boolean function. Several large families of ciphers of this type (and even much more complex ones) have been in the recent years, quite badly broken by algebraic attacks, see for exemple [12, 13, 1, 14, 15, 2, 18]. Neverthe- less the specialists of these ciphers counter-attacked by defining and applying the concept of Algebraic Immunity [7] to claim that some designs are “secure”. Unfortunately, as we will see later, the notion of Algebraic Immunity protects against only one simple alge- braic attack and ignores other algebraic attacks.
    [Show full text]