Energy Degradation and Ecosystem Development: Theoretical Framing, Indicators

Total Page:16

File Type:pdf, Size:1020Kb

Energy Degradation and Ecosystem Development: Theoretical Framing, Indicators Ecological Indicators 20 (2012) 204–212 Contents lists available at SciVerse ScienceDirect Ecological Indicators jo urnal homepage: www.elsevier.com/locate/ecolind Energy degradation and ecosystem development: Theoretical framing, indicators definition and application to a test case study ∗ Alessandro Ludovisi Dipartimento di Biologia Cellulare e Ambientale, Università di Perugia, Via Elce di Sotto, 06123 Perugia, Italy a r t i c l e i n f o a b s t r a c t Article history: During the last few decades, the so-called “maximum dissipation principle” has raised a wide debate as Received 21 May 2011 a paradigm governing the development of ecological systems. In the present contribution, after having Received in revised form 5 February 2012 discussed the meaning of the term energy degradation within the framework provided by the entropy Accepted 9 February 2012 and the exergy balance, it is suggested to distinguish three different facets of the phenomenon of the energy degradation, respectively dealing with the overall, system and environmental degradation. In Keywords: relation with ecological indication, the above classification shows that different types of indicators of Ecological indicators energy degradation can be defined, thus emphasising that a clear reference to the specific facet consid- Ecological orientors Entropy ered should be made in order to avoid ambiguous statements. The behaviour of several thermodynamic Exergy indicators, which include previously derived indices and a new set of entropy-based indicators, is exam- Lake Trasimeno ined along the seasonal progression in a lake ecosystem, and the effectiveness of the considered indicators in characterising the development state is evaluated by comparing their responses with the main succes- sional traits of the phytoplankton community. The results show that, although overall degradation and related indices may deserve consideration as indicators of the extent of the degradative (biotic and abi- otic) processes acting within an ecosystem, their significance as indicators of development state appears to be limited. On the other hand, indicators related to environmental degradation appear to be more promising as indicators of the development state, provided that some methodological issues dealing with the effect of the abiotic noise are properly addressed. The net radiative entropy exchange shows a significant correlation with phytoplankton successional traits, thus suggesting that the entropy changes in the radiative portion of the entropy budget are the most informative in relation to the development state of aquatic communities. The methodology adopted also lends itself to be used for evaluating the energy quality associated with an energy flow, which is here measured by the energy-to-entropy ratio. © 2012 Elsevier Ltd. All rights reserved. 1. Introduction energy degradation. Although the authors explicitly avoided to formulate the principle in terms of entropy, it is rooted on the During the last century, many efforts were made to identify second law of thermodynamics and supported by the theoretical thermodynamic-based functions possessing specific realisations framework that has inspired the formulation of several “maxi- towards which ecosystem development is supposed to be ori- mum entropy production principles” (MEPP) in different fields (see ented, the so-called orientors (see reviews in: Müller and Leupelt, a historical review in Martyushev and Seleznev, 2006), including 1 1998; Fath et al., 2001; Jørgensen and Svirezhev, 2004; Müller, ecology (Ulanowicz and Hannon, 1987; Kleidon and Lorenz, 2005). 2005; Jørgensen et al., 2007). Among them, the so-called “maxi- In their paper, Schneider and Kay start distinguishing between mum dissipation principle”, stemming from the work of Schneider energy dissipation and energy degradation, concepts that have and Kay (1994), has received wide attention, as well as serious been indifferently used to denote the loss of the work-potential criticisms (see, e.g., Straskrabaˇ et al., 1999; Jørgensen et al., 2000; of energy since the appearance of the earlier statements of Nielsen, 2000; Fath et al., 2001, 2004; Pykh, 2002; Müller et al., the second law of thermodynamics (see, e.g., Brunhes, 1908). 2006; Meysman and Bruers, 2010). In short, the principle states that ecosystems tend to maximise the dissipation of the incom- ing energy and develop structural and functional attributes to abet 1 The relationship between MEPP and Prigogine’s minimum entropy production principle (Prigogine, 1945) has been the subject of long-standing discussions (see, e.g., Jaynes, 1980 and Martyushev and Seleznev, 2006). These principles should not ∗ Corresponding author. Tel.: +39 075 585 5707; fax: +39 075 585 5733. be mutually opposed since they are applicable to different stages of the evolution E-mail addresses: [email protected], [email protected] of a nonequilibrium system (Nicolis and Prigogine, 1977). 1470-160X/$ – see front matter © 2012 Elsevier Ltd. All rights reserved. doi:10.1016/j.ecolind.2012.02.019 A. Ludovisi / Ecological Indicators 20 (2012) 204–212 205 According to Schneider and Kay, dissipation of energy “means to higher values of SED with respect to crop fields and perturbed areas, move energy through the system”, thereby reflecting the ability of a but some inconclusive or contradictory results also emerged (e.g. system to discharge the absorbed energy towards the environment. Kutsch et al., 2001). Technical limitations related to the low accu- As shown by the authors by making reference to the Bénard exper- racy of the available remote sensing data or calibration issues might iment (Bénard, 1900), the heat transfer rate in a heated container help to explain some of the inconclusive results obtained (Dewulf enclosing a fluid increases linearly as a function of the imposed et al., 2008). Kutsch et al. (2001) claim that the energy exchanges temperature gradient, but the heat transfer becomes faster when due to abiotic phenomena (the abiotic noise), with a particular ref- convective cells (the Bénard Cells) spontaneously appear within the erence to the sensible heat losses, significantly obfuscates the biotic fluid. This simple phenomenon demonstrates that self-organised signal. structures can emerge in systems subjected to an energy flow, and However, a part of the limitations of SED resides on the fact also that the organisation makes the system more efficient in dis- that it simply expresses the fraction of the absorbed solar radiation sipating the absorbed energy. On the other hand, Schneider and that is converted into non-radiative energy losses. Therefore, the Kay defines energy degradation in terms of loss of work potential significance of SED as an indicator of energy degradation relies on of energy, i.e., in terms of exergy loss (Evans et al., 1966), stating the hypotheses that non-radiative releases are the most significant that “degradation of energy means to destroy the ability of energy ones in terms of degradation, or that the longwave budget is negli- to produce gradients that can accomplish work” and that “energy gible, which are both questionable assumptions. More importantly, degradation means exergy destruction”. In the Bénard experiment, SED has the drawback of being based on the energy budget terms the appearance of the convective cells reduces the extent of the of an ecosystem, and, as such, it is unable to account properly for overall temperature gradient within the fluid and increases entropy the change in energy quality, because no measure of energy quality production and exergy destruction. The fact that energy dissipation is associated with incoming and outgoing energy flows. and exergy destruction do not follow the same trend, the latter In the attempt to take into account the drop of energy qual- increasing more than linearly with respect to the temperature gra- ity due to dissipative processes, Svirezhev and Steinborn (2001) dient, corroborated the idea that they account for different aspects derived a method of calculation for the radiation exergy flux across of the dissipative process. an ecosystem (Exf), by following a information-statistical approach: As a whole, the Bénard experiment was used by Schneider and Eout out out l out Es Kay to support the “restated second law”, according to which any Ex f = E ln + Es ln + Rn (2) l Ein Ein system moved away from equilibrium will utilise all avenues avail- l s able to counteract the imposed gradient. In order to comply with where E represents the energy flow associated with longwave (sub- the principle, a sequence of states of increasing complexity (includ- script l) or shortwave (subscript s) radiation incoming (superscript ing chaotic structures) must be expected as the applied gradient in) or outgoing (superscript out) from the system surface. Together increases, with each transition being accompanied by an increas- in in Á with Exf, the authors proposed the ratios R = Rn/(El + Es ) (the ing ability to destroy gradients and degrade energy. By following in in Á radiation efficiency coefficient) and Ex = Exf/(El + Es ) (the exergy a heuristic inductive approach, Schneider and Kay extended the efficiency coefficient) as useful indicators of the efficiency of the above principle to living systems, suggesting that “life exists on “radiative machine” working at the ecosystem surface. In compar- earth as another means of dissipating the solar induced gradient ing the seasonal trends of these indicators in a crop field and a and, as such, is a manifestation
Recommended publications
  • Energy Energy Science and Technology Has Been a Primary Driver of Human Progress for Centuries, and Intensive Energy Use Is Essential to Industrialized Society
    Sustainability Brief: Energy Energy science and technology has been a primary driver of human progress for centuries, and intensive energy use is essential to industrialized society. Our energy infrastructure is the foundation that makes almost all commercial activity and modern home life possible. The growth and proliferation of this energy web over the last century has enabled both economic growth and improved quality of life. Along with those advantages and benefits, however, have come increasingly apparent costs, consequences, and risks. Because industrialized civilization depends so heavily on this energy infrastructure, failures or consequences of that infrastructure have a huge impact with economic, social, and environmental implications. The subject of Sustainable Energy addresses the impacts and vulnerabilities of our energy infrastructure, and focuses on reducing the emerging risks in our current approach so as to ensure the continued availability of reliable, cost-effective energy and the quality of life that depends upon it. These risks include the threat of supply disruptions, economic hardship imposed by rising energy costs, environmental impacts, public health issues, social equity issues, and threats related to either man-made (e.g. terrorist) or natural (e.g. extreme weather) causes, among many others. New Jersey citizens and businesses already bear the costs and consequences of our current energy infrastructure, and these impacts are likely to increase over time. Ensuring the long term sustainability of New Jersey’s
    [Show full text]
  • Second Biennial Conference of the United States Society for Ecological Economics
    Second Biennial Conference of the United States Society for Ecological Economics May 22-24, 2003 Prime Hotel and Conference Center Saratoga Springs, New York co-sponsored by Gund Institute for Ecological Economics Rensselaer Polytechnic Institute Dept. of Economics Santa-Barbara Family Foundation University of Vermont School of Natural Resources U.S. Society for Ecological Economics President John Gowdy Rensselaer Polytechnic Institute President-Elect Secretary-Treasurer Barry Solomon Joy Hecht University of California, Santa Cruz New Jersey Sustainable State Institute Executive Directors Susan and Michael Mageau Institute for a Sustainable Future Board Members at Large Jon Erickson Brent Haddad University of Vermont University of California, Santa Cruz Valerie Luzadis Karin Limburg SUNY College of Environmental SUNY College of Environmental Science & Forestry Science & Forestry Student Board Member Caroline Hermans University of Vermont Second Biennial USSEE Conference Planning Committee Jon Erickson, Chair University of Vermont Graham Cox Josh Farley Rensselaer Polytechnic Institute University of Vermont Rich Howarth Susan Mageau Dartmouth College Institute for a Sustainable Future Valerie Luzadis Trista Patterson SUNY College of Environmental Science University of Maryland & Forestry Roy Wood Kodak, Inc. SECOND BIENNIAL CONFERENCE OF THE UNITED STATES SOCIETY FOR ECOLOGICAL ECONOMICS CONFERENCE SUMMARY Thursday, May 22 Morning 9:00 Registration Opens 11:30 Concurrent Session 1 Afternoon 1:00 Refreshments 1:30 Concurrent Session 2 3:00
    [Show full text]
  • The Emergy Perspective: Natural and Anthropic Energy Flows in Agricultural Biomass Production
    The emergy perspective: natural and anthropic energy flows in agricultural biomass production Marta Pérez-Soba, Berien Elbersen, Leon Braat, Markus Kempen, Raymond van der Wijngaart, Igor Staritsky, Carlo Rega, Maria Luisa Paracchini 2019 Report EUR 29725 EN This publication is a Technical report by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide evidence-based scientific support to the European policymaking process. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Name: Maria Luisa Paracchini Address: JRC, Via Fermi 2749, I-21027 Ispra (VA), Italy Email: [email protected] Tel.: +39 0332 785223 EU Science Hub https://ec.europa.eu/jrc JRC116274 EUR 29725 EN PDF ISBN 978-92-76-02057-8 ISSN 1831-9424 doi:10.2760/526985 Luxembourg: Publications Office of the European Union, 2019 © European Union, 2019 The reuse policy of the European Commission is implemented by Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Reuse is authorised, provided the source of the document is acknowledged and its original meaning or message is not distorted. The European Commission shall not be liable for any consequence stemming from the reuse. For any use or reproduction of photos or other material that is not owned by the EU, permission must be sought directly from the copyright holders.
    [Show full text]
  • The Importance of Energy Quality in Matching Supply and Demand
    information paper IP 5/12 tHe IMPORTANCe OF ENERGY QUaLITY IN MATCHING SUPPLY AND DEMAND robin Wiltshire, Jonathan Williams and abhilash rajan energy used in buildings accounts for around half of the UK’s total carbon emissions. most of this energy is used for space heating, so minimising heat losses is a high priority. the heating requirement of buildings is primarily dependent on the building fabric, so less energy is needed to heat better-insulated buildings. However, the quality or grade of energy needed for space heating is very low. Low-grade energy, eg industrial waste heat, is available in large quantities and can be used in low-temperature internal distribution systems, such as underfloor heating. adopting lower building-heat distribution temperatures increases the availability and viability of a wide range of low-carbon and renewable heat sources. this information paper examines the importance of energy quality in matching energy supply and demand and will be of interest to those working in the field of energy in buildings, including building services engineers, building contractors and specifiers. introduction Buildings generally use very-high-grade energy derived from fossil fuels (Figure 1). By recognising that the energy quality required in buildings varies significantly Figure 1: Different forms of very-high-grade energy according to purpose, the energy supply can be adapted to maximise efficient use of resources. This integrated to reduce energy demand but also to provide the energy approach offers opportunities to maximise the use of needed in the most appropriate and beneficial manner. freely available heat and renewable energy technology.
    [Show full text]
  • An Introduction to the Concept of Exergy And
    Energy and Process Engineering Introduction to Exergy and Energy Quality AN INTRODUCTION TO THE CONCEPT OF EXERGY AND ENERGY QUALITY by Truls Gundersen Department of Energy and Process Engineering Norwegian University of Science and Technology Trondheim, Norway Version 3, November 2009 Truls Gundersen Page 1 of 25 Energy and Process Engineering Introduction to Exergy and Energy Quality PREFACE The main objective of this document is to serve as the reading text for the Exergy topic in the course Engineering Thermodynamics 1 provided by the Department of Energy and Process Engineering at the Norwegian University of Science and Technology, Trondheim, Norway. As such, it will conform as much as possible to the currently used text book by Moran and Shapiro 1 which covers the remaining topics of the course. This means that the nomenclature will be the same (or at least as close as possible), and references will be made to Sections of that text book. It will also in general be assumed that the reader of this document is familiar with the material of the first 6 Chapters in Moran and Shapiro, in particular the 1st and the 2nd Law of Thermodynamics and concepts or properties such as Internal Energy, Enthalpy and Entropy. The text book by Moran and Shapiro does provide material on Exergy, in fact there is an entire Chapter 7 on that topic. It is felt, however, that this Chapter has too much focus on developing various Exergy equations, such as steady-state and dynamic Exergy balances for closed and open systems, flow exergy, etc. The development of these equations is done in a way that may confuse the non-experienced reader.
    [Show full text]
  • UNEP Guide for Energy Efficiency and Renewable Energy Laws
    UNEP Guide for Energy Efficiency and Renewable Energy Laws United Nations Environment Programme, Pace University Law School Energy and Climate Center UNEP United Nations Environment Programme i Published by the United Nations Environment Programme (UN Environment) September 2016 UNEP Guide for Energy Efficiency and Renewable Energy Laws – English ISBN No: 978-92-807-3609-0 Job No: DEL/2045/NA Reproduction This publication may be reproduced in whole or in part and in any form for educational and non profit pur- poses without special permission from the copyright holder, provided that acknowledgement of the source is made. UN Environment Programme will appreciate receiving a copy of any publication that uses this material as a source. No use of this publication can be made for the resale or for any other commercial purpose whatsoever without the prior permission in writing of UN Environment Programme. Application for such permission with a statement of purpose of the reproduction should be addressed to the Communications Division, of the UN Environment Programme, P.O BOX 30552, Nairobi 00100 Kenya. The use of information from this document for publicity of advertising is not permitted. Disclaimer The contents and views expressed in this publication do not necessarily reflect the views or policies of the UN Environment Programme or its member states. The designations employed and the presentation of materials in this publication do not imply the expression of any opinion whatsoever on the part of UN Environ- ment concerning the legal status of any country, territory or its authorities, or concerning the delimitation of its frontiers and boundaries.
    [Show full text]
  • PRINCIPLES of EMERGY ANALYSIS for PUBLIC POLICY1 Howard T
    Appendix PRINCIPLES OF EMERGY ANALYSIS FOR PUBLIC POLICY1 Howard T. Odum Environmental Engineerin Sciences University of Florid a Gainesville, FL This paper explains EMERGY concepts for maximhhg public wealth, and gives explanations for why the principles are valid. The viewpoint is that the world economy, the nations, and states increase their real wealth and prevail according to these principles. A new quantity, the EMERGY, spelled with an "Mmeasures real wealth. Here we are using "wealth to mean usable products and services however produced. Maximizing the EMERGY is a new tool for those making public policy choices among alternative programs, resources, and appropriations. Choosing actions and patterns with the greatest EMERGY contribution to the public economy maximizes public wealth. Eh4ERGY analysis is not advocated as a tool for estimating market values. This paper explains EMERGY evaluation and its use to improve public policies. Human Choices Consistent with Mudmum Sustainable Wealth Many if not most people of the world assume that the economy is not subjjto scientific prediction but is a result of human free choices by businesses and individuals motivated by their individual needs. A different point of view is that the human economy, like many other self- organizing systems of nature, operates according to principles involving energy, materials, idonnation, hierarchical organization, and consumer uses that reinforce production. If those human choices that lead to successful, continuing wealth fit principles of larger xale self organization, then the economy ultimately uses human choices to follow the scientific laws. The human free choices are the means for finding the maximum public wealth by trial and error.
    [Show full text]
  • A New Energy Economy
    A BLUEPRINT FOR A New Energy Economy Report authored by Todd Hartman Photo, Above Mike Stewart looks over an array of solar panels at the Greater Sandhill Solar Project being constructed by SunPower Corporation outside of Alamosa. Photography by Matt McClain unless otherwise indicated Design by Communication Infrastructure Group, LLC No taxpayer dollars were used in the production of this report. On the Cover The light of the setting sun reflects off solar panels at SunEdison’s 8.2-megawatt solar photovoltaic plant outside of Alamosa. A LETTER FROM GOVERNOR RITTER A Letter From Governor Ritter Dear Reader, In four years as Governor of Colorado, I have made it a top priority to position Colorado as an economic and energy leader by creating sustainable jobs for our residents, encouraging economic growth for our businesses, and fostering new innovations and new technologies from our public, non-profit and private institutions. We call it the New Energy Economy, and it is built on the recognition that the world is changing the way it produces and consumes energy. By harnessing the creative forces of advancing the diversified energy resources In Colorado, we’ve elected to join that race, world, and give them the knowledge that we entrepreneurs, researchers, educators, that we turn to today, and will increasingly and together, we believe America can win worked with their futures in mind in hopes foundations, business leaders and policy do so in the future: solar, wind, geothermal, it. Colorado is proof positive that we can that they will do the same. makers, we have in Colorado created biomass, small hydro, Smart Grid and other create new opportunities for new forms of Sincerely, an ecosystem that is supporting private elements of the emerging new energy world.
    [Show full text]
  • SAB C-VPESS Draft Report, 9-24-07
    Draft Report 9/24/07 for SAB C-VPESS Public Teleconferences on October 15 and 16, 2007 This draft is a work in progress, does not reflect consensus advice or recommendations, has not been reviewed or approved by the chartered SAB, and does not represent EPA policy. 1 Table of Contents for Draft SAB C-VPESS Report “Valuing the Protection of 2 Ecological Systems and Services” 3 4 1 INTRODUCTION ....................................................................................................................... 6 5 2 CONCEPTUAL FRAMEWORK............................................................................................. 10 6 2.1. AN OVERVIEW OF KEY CONCEPTS...................................................................................... 10 7 2.1.1. The Concept of Ecosystem Services............................................................................... 10 8 2.1.2. The Concepts of Value................................................................................................... 12 9 2.1.3. The Concept of Valuation and Different Valuation Methods ........................................ 18 10 2.2. ECOLOGICAL VALUATION AT EPA ..................................................................................... 23 11 2.2.1. Policy Contexts at EPA Where Ecological Valuation Can be Important ...................... 23 12 2.2.2. Institutional and Other Issues Affecting Valuation at EPA ........................................... 25 13 2.2.3. An Illustrative Example of Economic Benefit Assessment Related to Ecological
    [Show full text]
  • The Early History of Modern Ecological Economics
    Ecological Economics 50 (2004) 293–314 www.elsevier.com/locate/ecolecon ANALYSIS The early history of modern ecological economics Inge Rbpke* Department of Manufacturing Engineering and Management, Technical University of Denmark, Matematiktorvet, Building 303 East, 2800 Kgs. Lyngby, Denmark Received 4 September 2003; received in revised form 4 February 2004; accepted 4 February 2004 Abstract This paper provides a historical perspective for the discussion on ecological economics as a special field of research. By studying the historical background of ecological economics, the present discussions and tensions inside the field might become easier to understand and to relate to. The study is inspired by other studies of the emergence of new research areas done by sociologists and historians of science, and includes both cognitive and social aspects, macro trends and the role of individuals. The basis for the paper is a combination of literature studies and interviews with key researchers from the field. The story opens with the emergence of the new environmental agenda in the 1960s, which was influenced by the scientific development in biology and ecology. Then it is outlined how the environmental challenge was met by economics in the 1960s. Around 1970, the basic ideas of ecological economics were given modern formulations, but it took a long gestation period from the beginning of the 1970s to the end of the 1980s, before ecological economics took shape. During this gestation period, the personal relationships between the actors were formed, and the meetings that were decisive for the formal establishment of ecological economics took place. D 2004 Elsevier B.V.
    [Show full text]
  • Review on Optimization Techniques Employed in Distribution Generation
    Journal of Critical Reviews ISSN- 2394-5125 Vol 7, Issue 2, 2020 Review Article REVIEW ON OPTIMIZATION TECHNIQUES EMPLOYED IN DISTRIBUTION GENERATION Srikanth Goud B1, B Loveswara Rao2, B Neelima Devi3, K Suresh Kumar4, N Keerthi5 1,2,5Department of Electrical and Electronics Engineering, Koneru Lakshmaiah Education Foundation, Guntur, India 522502 3 Department of Electrical and Electronics Engineering, Nalanda Institute of Engineering and Technology, Guntur, India. 522438 1,4 Department of Electrical and Electronics Engineering, Anurag College of Engineering, Ghatkesar, India 501301 Received: 15.11.2019 Revised: 20.12.2019 Accepted: 23.01.2020 Abstract Distributed Generators are playing a vital role and had achieve lot of attention due to their greater impact on various distribution systems. This approach encourages small scale technologies to produce electricity to the need at consumer end by utilizing the renewable energy sources. Power quality and reliability of distributed power can be attained by proper placing of Distributed Generators at appropriate location. Optimization tools were predominantly increasing their importance in integration of distributed generation. This paper proposes various reviews on recent optimization techniques being used over the years to the problem solving and sizing of DG units. In contrast this paper analyses the economical, technological, environmental etc., which are rapidly growing interest on integration of distributed generation by overcoming all the challenges. At last it presents several optimization
    [Show full text]
  • Transformity
    Trier-Pisa Summer School on measurement of welfare and social progress 9-13 September 2013 The measure of welfare in the context of a biophysical view of sustainability Federico M. Pulselli Ecodynamics Group Department of Physical, Earth and Environmental Sciences University of Siena FOUNDATIONS of SUSTAINABILITY …Sustainable is that development that meets the needs of the present without compromising the ability of future generations to meet their own needs... WCED: “Our Common Future” Rapporto Bruntland, 1987 SUSTAIN 1 TIME SUSTAINABILITY = ANTHROPOCENTRIC CONCEPT EARTH (4,5 bln years) HUMAN SPECIES •Biodiversity •Homologation vs •Solar energy •Fossil energy •High entropy (discharge) •Greenhouse effect 2 BIOPHYSICAL LIMITS THERMODYNAMICS IS THE SCIENCE OF LIMITS It sets limits to the total availability and capacity to exploit energy FIRST PRINCIPLE: the total energy existing in the universe, in all its possible forms, is constant: energy cannot be created or destroyed. This principle of the conservation of energy SECOND PRINCIPLE: energy cannot be freely transformed from one form to another and for any transformation of energy, such as transformation of energy into mechanical work, part of the energy used is degraded. In the universe, a degraded form of energy, heat, is favoured. In other words, energy tends towards complete energy degradation, culminating in so-called thermodynamic equilibrium (maximum entropy) or ‘thermal death’. Biological systems (open systems) seem to violate the second principle: they have extremely ordered structures that evolve in the direction of greater order or lower entropy. S U N – B I O S P H E R E – U N I V E R S E 5.800 K CLOSED SYSTEM INTERMEDIATE SYSTEM SOURCE SINK 5,6 x 1024 joule SUN BIOSPHERE UNIVERSE 1) Source + Sink 2) Intermediate system dSss+ dSint 0 where Sss is the entropy of the system ‘source + sink’ and Sint is the entropy of the intermediate system.
    [Show full text]