Floods, Habitat Hydraulics and Upstream Migration of Neritina Virginea (Gastropoda: Neritidae) in Northeastern Puerto Rico

Total Page:16

File Type:pdf, Size:1020Kb

Floods, Habitat Hydraulics and Upstream Migration of Neritina Virginea (Gastropoda: Neritidae) in Northeastern Puerto Rico Caribbean Journal of Science, Vol. 41, No. 1, 55-74, 2005 Copyright 2005 College of Arts and Sciences University of Puerto Rico, Mayagu¨ez Floods, Habitat Hydraulics and Upstream Migration of Neritina virginea (Gastropoda: Neritidae) in Northeastern Puerto Rico JUAN F. BLANCO1 AND FREDERICK N. SCATENA2 1Department of Biology, University of Puerto Rico, Rio Piedras Campus, P.O. Box 23360, San Juan, Puerto Rico 00931–3360. Corresponding author: [email protected], [email protected] 2Department of Earth and Environmental Sciences, University of Pennsylvania, Philadelphia, PA 19104–6313 ABSTRACT.—Massive upstream migrations of neritid snails (Neritidae: Gastropoda) occur in tropical and subtropical streams worldwide, but their seasonality and proximate causes are unknown. We monitored massive upstream migrations of Neritina virginea for 99 weeks, and conducted a detailed study of snail density, size, and hydraulic descriptors in lower Río Mameyes, northeastern Puerto Rico. The study assessed the 1) timing and seasonality of upstream migration, 2) size composition of migratory aggregations, 3) patterns of habitat use, and 4) role of floods on upstream migration. Massive upstream migrations (500–3000 ind/m2) were observed in 44 of 99 weeks of observation. While N. virginea aggregations occurred at random time intervals, they were clumped during rainy periods. Migratory aggregations consisted mostly of small individuals (5–7 mm). Greater mean density was consistently observed in a stable riffle than in an unstable run (115.7 and 17.8 ind/m2, respectively), but mean density increased and mean size reduced in both reaches during the first 7 upstream migratory events. N. virginea density and size dynamics differed between reaches as a function of habitat hydraulics. While juveniles used the stable riffle as a permanent habitat and preferred passageway, they also used an adjacent, unstable reach after storm events. Density variation was correlated with days postflood (>3.5 m3/s) in both reaches. Our observations indicated that massive upstream migrations of N. virginea juveniles occur at least once a month, presumably as habitat-dependent responses to floods. KEYWORDS.—Neritid snails, diadromy, physical habitat, disturbances, Neotropical streams INTRODUCTION Lyons 1993), Japan (Nishiwaki et al. 1991a; Hirata et al. 1992), French Polynesia (Resh In coastal and insular streams and rivers, et al. 1990, 1992; Liu and Resh 1997), and migrations between marine and fresh wa- Puerto Rico (Covich and McDowell 1996; ters (i. e., diadromy) are common among Pyron and Covich 2003). aquatic fauna (Ford and Kinzie 1982; Mc- Recently, mark-and-recapture studies in Dowall 1998). Many species of fish, shrimp, northeastern Puerto Rico suggested that crayfish, and crabs exhibit this type of mi- neritid gastropods are more active and gration (Baker 1978). Nevertheless, migra- travel longer distances during given peri- tory events have been less frequently re- ods of the year and that upstream migra- ported in gastropod mollusks; although it tion may be seasonal (Pyron and Covich is known that at least 13 families include 2003). However, other one-year mark-and- migratory species (Huryn and Denny recapture study on a neritid gastropod in 1997). Among tropical gastropods, the fam- southern Japan showed no seasonal occur- ily Neritidae comprises several freshwater rence of upstream migrations, or seasonal genera (subfamily Neritinae) whose indi- changes in mean distance movement viduals migrate upstream in massive ag- (Nishiwaki et al. 1991a). These findings gregations. Such migrations of freshwater contrast with another study in the same neritids were reported in Hawaii (Ford area, showing that maximum travel dis- 1979; Ford and Kinzie 1982), Costa Rica tance varies over the year, being greater (Schneider and Frost 1986; Schneider and during the period of high water tempera- ture between April and August (Hirata et al. 1992). Records of gastropod density and ms. received April 12, 2004; accepted November 15, egg laying in French Polynesia (Resh et al. 2004 1991, 1992) and Japan (Nishiwaki et al. 55 56 JUAN F. BLANCO AND FREDERICK N. SCATENA 1990b; Hirata et al. 1992) also suggest a sea- Measuring habitat stability in flashy sonal occurrence of such migrations, but tropical streams is logistically difficult. For- the controlling factors remain unknown. tunately, channel hydraulics may be used There are no additional long-term, high- to estimate the forces experienced by frequency studies dealing with upstream streambed elements and organisms (Now- migrations of neritid gastropods, although ell and Jumars 1984; Statzner et al. 1988; other aspects such as life history (Ford Davies and Barmuta 1989; Way et al. 1993). 1979), growth rates, and fecundity (Shi- If measured close to the streambed, stan- gemiya and Kato 2001), habitat selection dard Reynolds number (Re) and roughness (Liu and Resh 1997; Ohara and Tomiyama Reynolds number (Re*) indicate if micro- 2000), and predators (Teixeira 1994; Resh et flows are turbulent (Re>2000), laminar al. 1999) were studied elsewhere. (Re<500), rough (Re*>70), or smooth Schneider and Lyons (1993) proposed (Re*<70). Similarly, Froude number (Fr) in- that upstream migrations of neritids in a dicates if near-bed flows are supercritical Costa Rican stream were related with (i.e., erosive, Fr>1) or subcritical (i.e., depo- increased fish predation in the estuary. sitional, Fr< 1). Typically, flood stable habi- Small-sized individuals were more abun- tats have larger streambed elements, and dant within migratory groups, and they more turbulent and rough flows. Unstable were also more responsive to the presence habitats generally have fine-grained sub- of predators, as similarly observed in other strates and experience nearly laminar or freshwater gastropods (e.g., Alexander and smooth flows at baseline discharge (Nowell Covich 1991). The distribution of predatory and Jumars 1984; Davies and Barmuta 1989; fish (Allan 1995), and the quantity and Naiman 1998; Montgomery and Buffington quality of periphytonic food (Johnson and 1998; Matthaei et al. 1999a, b). Brown 1997; Biggs and Smith 2002) can also In this study we tested the following hy- be correlated with the spatio-temporal potheses: 1) upstream migration events of variations in discharge and water velocity. neritid gastropods are seasonal, 2) migra- Thus the occurrence of upstream migra- tory aggregations consist of small-sized in- tions might ultimately be a function of dividuals, 3) individuals use turbulent, stream discharge and channel hydraulics. rough flows as passages during upstream For example, laboratory experiments using migrations and as permanent habitats, and clams demonstrated that emigration is dis- 4) influence of flood regime on the distri- played only after increased water move- bution of neritid gastropods depends on ment, even when density-dependent com- habitat hydraulics and stability. petition is strong under slow water movement (Powers and Peterson 2000). In ATERIALS AND METHODS natural conditions, the flash flood distur- M bance can be an important control of stream Study organism community dynamics (Hart and Finelli 1999; Lake 2000). Several studies document The presence of the freshwater neritid that invertebrate abundance is a function of Neritina virginea (Linné 1758) in several is- the elapsed time after storm flows in both lands of the Caribbean has been noted in tropical and temperate streams (Grimm many studies, some from the middle of last and Fisher 1989; Flecker and Feifarek 1994; century (Russel 1941; Aguayo 1966; Hum- Ramírez and Pringle 1998). Recent studies frey 1971). Other species have also been re- also suggest that the effects of storm flow ported in the region (Russel 1941; Aguayo on benthic fauna are mediated by habitat 1966; Humfrey 1971), but may be color stability (reviewed by Lake 2000). Habitats variants of N. virginea (Cosel 1986; Diaz and experiencing greater scouring such as runs Puyana 1994; J. F. Blanco, unpublished and plane beds (Matthaei et al. 1999a, b) data). While the presence of N. virginea in show lower abundance and persistence of the Caribbean is well documented, massive benthos than more resistant riffle and pool upstream migrations have been recently habitat (e.g., Gjerløv et al. 2003). documented in two streams (e.g., Mameyes NERITINA VIRGINEA UPSTREAM MIGRATIONS 57 and Espíritu Santo) in northeastern Puerto 1771 of road PR Route 3 (18°22’27”N, Rico (Covich and McDowell 1996; Pyron 65°45’50” W, elevation: 5 m above sea level) and Covich 2003). over the Río Mameyes, where two reaches, separated by an elevated and stabilized is- land formed after the construction of the Study area bridge in 1982. Most of the river’s flow runs through a ∼11 m wide the main reach (MR: This study was conducted in a lower seg- a riffle at right and looking downstream). ment of Río Mameyes, draining the Lu- Channel depth is nearly constant across the quillo Experimental Forest (LEF), located in section (<40 cm), and the streambed con- northeastern Puerto Rico (Fig. 1a). The up- sists of mid-sized boulders (<50 cm) and per part of the watershed, managed by the cobbles. The right bank of the reach is a United States Forest Service, is covered by concrete-lined bridge abutment. Less water tropical wet forests (Scatena 1989). The flows through a side reach (SR) that occurs lower part of the watershed is suburban- on the opposite side of the bridge. This ized, but has extensive abandoned pastures reach is 3 m wide, less than 30 cm deep, (Ramos 2001). Río Mameyes is considered and is influenced by deflected flow from a the most conserved stream in Puerto Rico, channel bend located 5-m upstream. The and is gauged by the US Geological Survey streambed consists of cobbles in the deep- (USGS). The highest discharge is typically est part and of gravel in the shallowest part. observed during the two rainy seasons The MR and SR join about 40 m down- of the year: May and August-December stream, and this point becomes a decision- (Fig. 1b). making area for the migratory organisms The study site is located beneath Bridge moving upstream.
Recommended publications
  • Shell Classification – Using Family Plates
    Shell Classification USING FAMILY PLATES YEAR SEVEN STUDENTS Introduction In the following activity you and your class can use the same techniques as Queensland Museum The Queensland Museum Network has about scientists to classify organisms. 2.5 million biological specimens, and these items form the Biodiversity collections. Most specimens are from Activity: Identifying Queensland shells by family. Queensland’s terrestrial and marine provinces, but These 20 plates show common Queensland shells some are from adjacent Indo-Pacific regions. A smaller from 38 different families, and can be used for a range number of exotic species have also been acquired for of activities both in and outside the classroom. comparative purposes. The collection steadily grows Possible uses of this resource include: as our inventory of the region’s natural resources becomes more comprehensive. • students finding shells and identifying what family they belong to This collection helps scientists: • students determining what features shells in each • identify and name species family share • understand biodiversity in Australia and around • students comparing families to see how they differ. the world All shells shown on the following plates are from the • study evolution, connectivity and dispersal Queensland Museum Biodiversity Collection. throughout the Indo-Pacific • keep track of invasive and exotic species. Many of the scientists who work at the Museum specialise in taxonomy, the science of describing and naming species. In fact, Queensland Museum scientists
    [Show full text]
  • 2347-503X Assessment of Coastal Pollution Using Faunal Composit
    Research Chronicler, International Multidisciplinary Refereed Peer Reviewed Indexed Research Journal ISSN: Print: 2347-5021 www.research-chronicler.com ISSN: Online: 2347-503X Assessment of Coastal Pollution Using Faunal Composition of Macrobenthos from Panvel Creek, Navi Mumbai, West Coast of India Prabhakar Ramchandra Pawar,1 Leena N. Meshram,2 Sunil M. Udawant,3 Rauphunnisa F. Inamdar4 1,2,3Mahatma Phule Arts, Science & Commerce College, Panvel, Dist. – Raigad, Navi Mumbai, (M.S.) India 4Veer Wajekar Arts, Science & Commerce College, Phunde, Uran, Dist. – Raigad, Navi Mumbai, (M.S.) India Abstract Diversity of macrobenthos from Panvel creek remain poorly known. Here, the species composition and abundance of macrobenthos is explored from June 2018 to May 2019 to assess the ecological status of the creek. 18 species of macrobenthic fauna consisting of 14 genera, 12 families, 06 orders and 05 classes were recorded. The most abundant taxa were polychaetes, crustaceans, gastropods and pelecypods. Species belonging to Polynoidae, Cerithiidae, Potamididae, Neritidae and Trapezidae shows highest distribution and abundance. The creek is dominated by Perinereis cultrifera, Clypeomorus bifasciata, Potamides cingulatus, Nerita oryzarum and Neotrapezium sublaevigatum. N. sublaevigatum of the family Trapezidae from the class Bivalvia is recorded as an opportunistic taxa which exploits disturbed condition due to environmental stress. This study showed that at present though the creek is resourceful and supports the coastal marine life, is under considerable stress of anthropogenic inputs. Coastal environment of Panvel creek is deteriorating due to ongoing construction of Navi Mumbai International Airport and unplanned development activities. Present information could be helpful as a baseline data for further study of anthropogenic inputs on coastal ecosystem of Panvel creek.
    [Show full text]
  • Observations on Neritina Turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions
    Hristov, K.K. AvailableInd. J. Pure online App. Biosci. at www.ijpab.com (2020) 8(5), 1-10 ISSN: 2582 – 2845 DOI: http://dx.doi.org/10.18782/2582-2845.8319 ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2020) 8(5), 1-10 Research Article Peer-Reviewed, Refereed, Open Access Journal Observations on Neritina turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions Kroum K. Hristov* Department of Chemistry and Biochemistry, Medical University - Sofia, Sofia - 1431, Bulgaria *Corresponding Author E-mail: [email protected] Received: 15.08.2020 | Revised: 22.09.2020 | Accepted: 24.09.2020 ABSTRACT Neritina turrita (Gmelin 1791) along with other Neritina, Clithon, Septaria, and other fresh- water snails are popular animals in ornamental aquarium trade. The need for laboratory-bred animals, eliminating the potential biohazard risks, for the ornamental aquarium trade and the growing demand for animal model systems for biomedical research reasons the work for optimising a successful breading protocol. The initial results demonstrate N. turrita as tough animals, surviving fluctuations in pH from 5 to 9, and shifts from a fresh-water environment to brackish (2 - 20 ppt), to sea-water (35 ppt) salinities. The females laid over 630 (at salinities 0, 2, 10 ppt and temperatures of 25 - 28oC) white oval 1 by 0.5 mm egg capsules continuously within 2 months after collecting semen from several males. Depositions of egg capsules are set apart 6 +/-3 days, and consist on average of 53 (range 3 to 192) egg capsules. Production of viable veligers was recorded under laboratory conditions. Keywords: Neritina turrita, Sea-water, Temperatures, Environment INTRODUCTION supposably different genera forming hybrids Neritininae are found in the coastal swamps of with each other, suggesting their close relation.
    [Show full text]
  • The Marine and Brackish Water Mollusca of the State of Mississippi
    Gulf and Caribbean Research Volume 1 Issue 1 January 1961 The Marine and Brackish Water Mollusca of the State of Mississippi Donald R. Moore Gulf Coast Research Laboratory Follow this and additional works at: https://aquila.usm.edu/gcr Recommended Citation Moore, D. R. 1961. The Marine and Brackish Water Mollusca of the State of Mississippi. Gulf Research Reports 1 (1): 1-58. Retrieved from https://aquila.usm.edu/gcr/vol1/iss1/1 DOI: https://doi.org/10.18785/grr.0101.01 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf and Caribbean Research by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Gulf Research Reports Volume 1, Number 1 Ocean Springs, Mississippi April, 1961 A JOURNAL DEVOTED PRIMARILY TO PUBLICATION OF THE DATA OF THE MARINE SCIENCES, CHIEFLY OF THE GULF OF MEXICO AND ADJACENT WATERS. GORDON GUNTER, Editor Published by the GULF COAST RESEARCH LABORATORY Ocean Springs, Mississippi SHAUGHNESSY PRINTING CO.. EILOXI, MISS. 0 U c x 41 f 4 21 3 a THE MARINE AND BRACKISH WATER MOLLUSCA of the STATE OF MISSISSIPPI Donald R. Moore GULF COAST RESEARCH LABORATORY and DEPARTMENT OF BIOLOGY, MISSISSIPPI SOUTHERN COLLEGE I -1- TABLE OF CONTENTS Introduction ............................................... Page 3 Historical Account ........................................ Page 3 Procedure of Work ....................................... Page 4 Description of the Mississippi Coast ....................... Page 5 The Physical Environment ................................ Page '7 List of Mississippi Marine and Brackish Water Mollusca . Page 11 Discussion of Species ...................................... Page 17 Supplementary Note .....................................
    [Show full text]
  • The Freshwater Snails (Mollusca: Gastropoda) of Mexico: Updated Checklist, Endemicity Hotspots, Threats and Conservation Status
    Revista Mexicana de Biodiversidad Revista Mexicana de Biodiversidad 91 (2020): e912909 Taxonomy and systematics The freshwater snails (Mollusca: Gastropoda) of Mexico: updated checklist, endemicity hotspots, threats and conservation status Los caracoles dulceacuícolas (Mollusca: Gastropoda) de México: listado actualizado, hotspots de endemicidad, amenazas y estado de conservación Alexander Czaja a, *, Iris Gabriela Meza-Sánchez a, José Luis Estrada-Rodríguez a, Ulises Romero-Méndez a, Jorge Sáenz-Mata a, Verónica Ávila-Rodríguez a, Jorge Luis Becerra-López a, Josué Raymundo Estrada-Arellano a, Gabriel Fernando Cardoza-Martínez a, David Ramiro Aguillón-Gutiérrez a, Diana Gabriela Cordero-Torres a, Alan P. Covich b a Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av.Universidad s/n, Fraccionamiento Filadelfia, 35010 Gómez Palacio, Durango, Mexico b Institute of Ecology, Odum School of Ecology, University of Georgia, 140 East Green Street, Athens, GA 30602-2202, USA *Corresponding author: [email protected] (A. Czaja) Received: 14 April 2019; accepted: 6 November 2019 Abstract We present an updated checklist of native Mexican freshwater gastropods with data on their general distribution, hotspots of endemicity, threats, and for the first time, their estimated conservation status. The list contains 193 species, representing 13 families and 61 genera. Of these, 103 species (53.4%) and 12 genera are endemic to Mexico, and 75 species are considered local endemics because of their restricted distribution to very small areas. Using NatureServe Ranking, 9 species (4.7%) are considered possibly or presumably extinct, 40 (20.7%) are critically imperiled, 30 (15.5%) are imperiled, 15 (7.8%) are vulnerable and only 64 (33.2%) are currently stable.
    [Show full text]
  • The Fossil Record of Shell-Breaking Predation on Marine Bivalves and Gastropods
    Chapter 6 The Fossil Record of Shell-Breaking Predation on Marine Bivalves and Gastropods RICHARD R. ALEXANDER and GREGORY P. DIETL I. Introduction 141 2. Durophages of Bivalves and Gastropods 142 3. Trends in Antipredatory Morphology in Space and Time .. 145 4. Predatory and Non-Predatory Sublethal Shell Breakage 155 5. Calculation ofRepair Frequencies and Prey Effectiveness 160 6. Prey Species-, Size-, and Site-Selectivity by Durophages 164 7. Repair Frequencies by Time, Latitude, and Habitat.. 166 8. Concluding Remarks 170 References 170 1. Introduction Any treatment of durophagous (shell-breaking) predation on bivalves and gastropods through geologic time must address the molluscivore's signature preserved in the victim's skeleton. Pre-ingestive breakage or crushing is only one of four methods of molluscivory (Vermeij, 1987; Harper and Skelton, 1993), the others being whole­ organism ingestion, insertion and extraction, and boring. Other authors in this volume treat the last behavior, whereas whole-organism ingestion, and insertion and extraction, however common, are unlikely to leave preservable evidence. Bivalve and gastropod ecologists and paleoecologists reconstruct predator-prey relationships based primarily on two, although not equally useful, categories of pre-ingestive breakage, namely lethal and sublethal (repaired) damage. Peeling crabs may leave incriminating serrated, helical RICHARD R. ALEXANDER • Department of Geological and Marine Sciences, Rider University, Lawrenceville, New Jersey, 08648-3099. GREGORY P. DIETL. Department of Zoology, North Carolina State University, Raleigh, North Carolina, 27695-7617. Predator-Prey Interactions in the Fossil Record, edited by Patricia H. Kelley, Michal Kowalewski, and Thor A. Hansen. Kluwer Academic/Plenum Publishers, New York, 2003. 141 142 Chapter 6 fractures in whorls of high-spired gastropods (Bishop, 1975), but unfortunately most lethal fractures are far less diagnostic of the causal agent and often indistinguishable from abiotically induced, taphonomic agents ofshell degradation.
    [Show full text]
  • PRELIMINARY SURVEY and DIET ANALYSIS of JUVENILE FISHES of an ESTUARINE CREEK on ANDROS ISLAND, BAHAMAS Craig A. Layman and Bria
    BULLETIN OF MARINE SCIENCE, 70(l): 199-210, 2002 NOTES PRELIMINARY SURVEY AND DIET ANALYSIS OF JUVENILE FISHES OF AN ESTUARINE CREEK ON ANDROS ISLAND, BAHAMAS CraigA. Layman and Brian R. Silliman Estuarine habitats are important nursery and feeding areas for a variety of fish and invertebrate species. Although numerous studies have investigated trophic linkages in temperate estuarine systems, few have empirically examined these relationships in tropi- cal and subtropical estuaries (Colton and Alevizon, 1983; Heck and Weinstein, 1989; Warburton and Blaber, 1992; Ley et al., 1994; Crabtree et al., 1998). Without knowledge of dietary relationships among organisms, community structure and population interac- tions are difficult to deduce. To this end, a food web approach can be valuable in the study of natural communities (Polis and Winemiller, 1996). Since many tropical and subtropical estuaries are numerically dominated by juvenile fishes (Arrivillaga and Baltz, 1999), the trophic role of these life stages is especially important. Juvenile fish utilization of mangrove and seagrass habitats has been docu- mented in the Caribbean (Robblee and Zieman, 1984; Stoner, 1986; Rooker and Dennis, 1991; Sedberry and Carter, 1993) and Florida (Thayer et al., 1987; Sheridan, 1997; Ley et al., 1999), although few studies have analyzed feeding habitats of the juvenile fishes in these areas (Heck and Weinstein, 1989; Hettler, 1989; Ley et al., 1994). To our knowl- edge, there have been no published studies of the distribution and diet of fishes in estua- rine creeks, and associated seagrass or mangrove areas, in the Bahamian Islands. The purpose of our study was twofold: (1) identify fish species utilizing five major habitat types (sandflat, mangrove, seagrass, rocky structure and artificial structure) of an estuarine creek on Andros Island, Bahamas, and (2) provide a preliminary diet analysis of common juvenile fishes.
    [Show full text]
  • Edge Effect on a Neritina Virginea (Neritimorpha, Neritinidae
    Edge effect on a Neritina virginea (Neritimorpha, Neritinidae) population in a black mangrove stand (Magnoliopsida, Avicenniaceae: Avicennia germinans) in the Southern Caribbean * VIVIANA AMORTEGUI-TORRES , ALEXANDER TABORDA-MARIN & JUAN F. BLANCO *University of Antioquia, Faculty of Natural Sciences, Institute of Biology. *Corresponding author: [email protected] Abstract. Mangroves in the Caribbean and particularly in the Urabá Gulf (Colombia) are strongly threatened by selective logging and conversion to pastures and croplands. Specifically, extensive Avicennia germinans- basin stands were converted to pastures during the twentieth century, thus exposing benthic fauna to an edge effect. We measured this effect on the population of a numerically dominant gastropod (Neritina virginea). Despite its resistance to natural disturbances, it is sensitive to extreme anthropogenic disturbances, and it would therefore be a good biological indicator of basin-mangrove conversion to pastures. Forest structure variables, soil texture, porewater properties and snail density and size were measured in quadrats placed in pastures, pasture-mangrove edges, and mangrove interiors. Snail abundance sharply decreased from the mangrove interior to the edge and then gradually towards the pastures. Individuals in the pasture were predominantly >10mm, and they frequently exhibited shell corrosion compared to individuals found in the interior. There were increases in soil temperature and pH (but oxygen) from interior to pasture consistent with canopy openness. The occurrence of the mangrove edges has led to a marked ecosystem-wide deterioration; however, N. virginea (abundance, size, shell corrosion) could be used as a reliable short to midterm indicator of microhabitat and microclimatic differences observed across mangrove-pasture edge. Key words: basin mangrove, pasture, gastropods, Urabá Gulf Resumen.
    [Show full text]
  • MOLECULAR PHYLOGENY of the NERITIDAE (GASTROPODA: NERITIMORPHA) BASED on the MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI) and 16S Rrna
    ACTA BIOLÓGICA COLOMBIANA Artículo de investigación MOLECULAR PHYLOGENY OF THE NERITIDAE (GASTROPODA: NERITIMORPHA) BASED ON THE MITOCHONDRIAL GENES CYTOCHROME OXIDASE I (COI) AND 16S rRNA Filogenia molecular de la familia Neritidae (Gastropoda: Neritimorpha) con base en los genes mitocondriales citocromo oxidasa I (COI) y 16S rRNA JULIAN QUINTERO-GALVIS 1, Biólogo; LYDA RAQUEL CASTRO 1,2 , Ph. D. 1 Grupo de Investigación en Evolución, Sistemática y Ecología Molecular. INTROPIC. Universidad del Magdalena. Carrera 32# 22 - 08. Santa Marta, Colombia. [email protected]. 2 Programa Biología. Universidad del Magdalena. Laboratorio 2. Carrera 32 # 22 - 08. Sector San Pedro Alejandrino. Santa Marta, Colombia. Tel.: (57 5) 430 12 92, ext. 273. [email protected]. Corresponding author: [email protected]. Presentado el 15 de abril de 2013, aceptado el 18 de junio de 2013, correcciones el 26 de junio de 2013. ABSTRACT The family Neritidae has representatives in tropical and subtropical regions that occur in a variety of environments, and its known fossil record dates back to the late Cretaceous. However there have been few studies of molecular phylogeny in this family. We performed a phylogenetic reconstruction of the family Neritidae using the COI (722 bp) and the 16S rRNA (559 bp) regions of the mitochondrial genome. Neighbor-joining, maximum parsimony and Bayesian inference were performed. The best phylogenetic reconstruction was obtained using the COI region, and we consider it an appropriate marker for phylogenetic studies within the group. Consensus analysis (COI +16S rRNA) generally obtained the same tree topologies and confirmed that the genus Nerita is monophyletic. The consensus analysis using parsimony recovered a monophyletic group consisting of the genera Neritina , Septaria , Theodoxus , Puperita , and Clithon , while in the Bayesian analyses Theodoxus is separated from the other genera.
    [Show full text]
  • ASPECTOS DA DINÂMICA POPULACIONAL DO GASTRÓPODE Neritina Virginea EM REGIÃO ESTUARINA DO RIO GRANDE DO NORTE, BRASIL*
    ASPECTOS DA DINÂMICA POPULACIONAL DO GASTRÓPODE Neritina virginea EM REGIÃO ESTUARINA DO RIO GRANDE DO NORTE, BRASIL* Carlina Pinheiro CRUZ-NETA 1 e Gustavo Gonzaga HENRY-SILVA 2 RESUMO O gastrópode Neritina virginea (Linnaeus, 1758) é abundante no litoral nordestino e apesar da sua grande incidência, são poucos os estudos sobre aspectos relacionados à sua ecologia populacional. Neste contexto, verificou-se os padrões de distribuição, densidade e estrutura etária de N. virginea, relacionando-os com a salinidade e temperatura da água, granulometria do sedimento e biomassa vegetal de Ruppia maritima. Mensalmente, durante 13 meses (maio/2007 a maio/2008), foram realizadas coletas de moluscos, biomassa vegetal e sedimento em um transcecto de 180 m, perpendicular a linha da praia, na região estuarina do Rio Apodi/Mossoró. Foram obtidos os valores de temperatura e salinidade da água, além dos dados de pluviosidade. Neritina virginea apresentou um padrão agregado de distribuição espacial e densidade elevada quando comparada com a de outras espécies que habitam a região, como o bivalve Anomalocardia brasiliana. A maior densidade média de N. virginea foi de 7.310 indivíduos m-², em maio/2008, e a menor, em dezembro/2007, com média de 765 indivíduos m-². Os valores de densidade de N. virginea e salinidade apresentaram correlação negativa. No entanto, não foram constatadas correlações com a temperatura e a granulometria do sedimento. A densidade de N. virginea apresentou correlação positiva com a biomassa R. marítima, sendo mais abundante em locais com a presença deste vegetal. Nos meses de fevereiro a junho os indivíduos menores foram mais frequentes, podendo ser considerada a principal época de recrutamento desta espécie na região.
    [Show full text]
  • Shelled Molluscs
    Encyclopedia of Life Support Systems (EOLSS) Archimer http://www.ifremer.fr/docelec/ ©UNESCO-EOLSS Archive Institutionnelle de l’Ifremer Shelled Molluscs Berthou P.1, Poutiers J.M.2, Goulletquer P.1, Dao J.C.1 1 : Institut Français de Recherche pour l'Exploitation de la Mer, Plouzané, France 2 : Muséum National d’Histoire Naturelle, Paris, France Abstract: Shelled molluscs are comprised of bivalves and gastropods. They are settled mainly on the continental shelf as benthic and sedentary animals due to their heavy protective shell. They can stand a wide range of environmental conditions. They are found in the whole trophic chain and are particle feeders, herbivorous, carnivorous, and predators. Exploited mollusc species are numerous. The main groups of gastropods are the whelks, conchs, abalones, tops, and turbans; and those of bivalve species are oysters, mussels, scallops, and clams. They are mainly used for food, but also for ornamental purposes, in shellcraft industries and jewelery. Consumed species are produced by fisheries and aquaculture, the latter representing 75% of the total 11.4 millions metric tons landed worldwide in 1996. Aquaculture, which mainly concerns bivalves (oysters, scallops, and mussels) relies on the simple techniques of producing juveniles, natural spat collection, and hatchery, and the fact that many species are planktivores. Keywords: bivalves, gastropods, fisheries, aquaculture, biology, fishing gears, management To cite this chapter Berthou P., Poutiers J.M., Goulletquer P., Dao J.C., SHELLED MOLLUSCS, in FISHERIES AND AQUACULTURE, from Encyclopedia of Life Support Systems (EOLSS), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford ,UK, [http://www.eolss.net] 1 1.
    [Show full text]
  • Molluscs Gastropods
    Group/Genus/Species Family/Common Name Code SHELL FISHES MOLLUSCS GASTROPODS Dentalium Dentaliidae 4500 D . elephantinum Elephant Tusk Shell 4501 D . javanum 4502 D. aprinum 4503 D. tomlini 4504 D. mannarense 450A D. elpis 450B D. formosum Formosan Tusk Shell 450C Haliotis Haliotidae 4505 H. varia Variable Abalone 4506 H. rufescens Red Abalone 4507 H. clathrata Lovely Abalone 4508 H. diversicolor Variously Coloured Abalone 4509 H. asinina Donkey'S Ear Abalone 450G H. planata Planate Abalone 450H H. squamata Scaly Abalone 450J Cellana Nacellidae 4510 C. radiata radiata Rayed Wheel Limpet 4511 C. radiata cylindrica Rayed Wheel Limpet 4512 C. testudinaria Common Turtle Limpet 4513 Diodora Fissurellidae 4515 D. clathrata Key-Hole Limpets 4516 D. lima 4517 D. funiculata Funiculata Limpet 4518 D. singaporensis Singapore Key-Hole Limpet 4519 D. lentiginosa 451A D. ticaonica 451B D. subquadrata 451C Page 1 of 15 Group/Genus/Species Family/Common Name Code D. pileopsoides 451D Trochus Trochidae 4520 T. radiatus Radiate Top 4521 T. pustulosus 4522 T. stellatus Stellate Trochus 4523 T. histrio 4524 T. maculatus Maculated Top 452A T. niloticus Commercial Top 452B Umbonium Trochidae 4525 U. vestiarium Common Button Top 4526 Turbo Turbinidae 4530 T. marmoratus Great Green Turban 4531 T. intercostalis Ribbed Turban Snail 4532 T. brunneus Brown Pacific Turban 4533 T. argyrostomus Silver-Mouth Turban 4534 T. petholatus Cat'S Eye Turban 453A Nerita Neritidae 4535 N. chamaeleon Chameleon Nerite 4536 N. albicilla Ox-Palate Nerite 4537 N. polita Polished Nerite 4538 N. plicata Plicate Nerite 4539 N. undata Waved Nerite 453E Littorina Littorinidae 4540 L. scabra Rough Periwinkle 4541 L.
    [Show full text]