Management of Bone Sarcoma

Total Page:16

File Type:pdf, Size:1020Kb

Management of Bone Sarcoma Management of Bone Sarcoma a b c,d, Christina J. Gutowski, MD , Atrayee Basu-Mallick, MD , John A. Abraham, MD * KEYWORDS Bone sarcoma Osteosarcoma Ewing sarcoma Chondrosarcoma Endoprosthetic reconstruction KEY POINTS Advancements in chemotherapy have been the primary reason for improvements in sur- vival from bone sarcoma in the past 20 years. There are currently no chemotherapy agents effective against conventional chondrosarcoma. Local recurrence of bone sarcoma is likely related to aggressive tumor biology, but rela- tionship with survival is not fully understood. Multiple methods of reconstruction after bone sarcoma resection are available, each with its own benefits and drawbacks. Emerging technologies, such as computer-aided surgery, improved imaging, and improved implant design, have potential to improve results of treatment even further in the future. INTRODUCTION Incidence and Epidemiology Bone sarcomas account for approximately 0.2% of new cancer cases in the United States each year. The vast majority of these are either osteosarcoma, Ewing sarcoma, or chondrosarcoma. In 2016, it is estimated that 3300 new cases will be diagnosed; this incidence has been rising on average 0.4% annually over the past decade.1 More than 27% of new diagnoses are made in patients younger than 20 years; osteosarcoma spe- cifically is reported to be the third most common cancer in adolescence, and eighth We have no funding sources, or commercial/financial conflicts of interest to disclose. a Department of Orthopedic Surgery, Sidney Kimmel Medical College at Thomas Jefferson Uni- versity, 1025 Walnut Street, Room 516 College, Philadelphia, PA 19107, USA; b Department of Medical Oncology, Sarcoma and Bone Tumor Center at Sidney Kimmel Cancer Center, Thomas Jefferson University Hospital, 1025 Walnut Street, Suite 700, Philadelphia, PA 19107; c Department of Orthopedic Surgery, Rothman Institute at Jefferson University Hospital, 925 Chestnut Street, Philadelphia, PA 19107, USA; d Department of Surgical Oncology, Fox Chase Cancer Center, 333 Cottman Ave, Philadelphia, PA 19111, USA * Corresponding author. E-mail address: [email protected] Surg Clin N Am 96 (2016) 1077–1106 http://dx.doi.org/10.1016/j.suc.2016.06.002 surgical.theclinics.com 0039-6109/16/$ – see front matter Ó 2016 Elsevier Inc. All rights reserved. 1078 Gutowski et al most common cancer in children overall.2 Unlike osteosarcoma and Ewing sarcoma, which peak in adolescent age groups, chondrosarcoma incidence increases with age.3 It is estimated that 1490 patients will die of bone sarcoma in 2016, representing 0.3% of all cancer deaths.1 For osteosarcoma, the implementation of multimodal treatment with chemotherapy and surgery has led to a considerable improvement in overall survival, but since that time, survival rates have remained relatively stable. In 2015, cause-specific 10-year survival for patients with localized disease at the time of osteosarcoma diagnosis was 65.8%.4 Metastatic disease at presentation, which is seen in approximately 24% of patients, lowers this survival rate to 24%.4,5 Despite improvement in survival of localized disease with modern management, patients with recurrence or metastasis after initial treatment is still associated with a poor prognosis. Pretreatment Evaluation and Staging The goal of the preoperative evaluation is to determine the extent of the disease, and allow for optimum treatment planning. Local imaging usually includes orthogonal plain radiographs and MRI of the affected area (Figs. 1 and 2). Computed tomography (CT) scan may be helpful in identifying cortical involvement. Imaging of the entire affected bone should be included to identify any skip metastases, the presence of which worsens prognosis.6 Evaluation of distant disease is done by using chest CT scan to evaluate for pulmo- nary metastasis, and Technicium-99 whole-body bone scan and/or PET with fludeox- yglucose F 18 (F18-FDG PET)/CT to evaluate for bony metastases7,8 (Fig. 3). Recent studies have demonstrated that PET/CT is more sensitive than bone scan for detect- ing metastatic bone lesions, while specificity and diagnostic accuracy were similar. The combination of bone scan and PET/CT provides the highest sensitivity, specificity, and diagnostic accuracy, but this must be balanced with the additional cost. PET/CT scan may have the additional benefit of demonstrating correlation with the aggressive- ness of a bone lesion, although is not completely reliable for this purpose.9,10 Once biopsy is completed, various staging systems exist. The American Joint Com- mittee on Cancer (AJCC) is most commonly used. For bone sarcoma specifically, an alternative system frequently used is the Musculoskeletal Tumor Society (MSTS) sys- tem, described by Enneking in 198011 (Tables 1 and 2). Biopsy When performed appropriately, diagnostic accuracy of surgical incisional biopsy has been shown to be 98%,12 and as such, surgical biopsy is the preferred method of Fig. 1. Orthogonal radiographs and coronal short tau inversion recovery (STIR) MRI scan of conventional osteosarcoma of the right distal femur. Management of Bone Sarcoma 1079 Fig. 2. Anteroposterior radiograph and coronal STIR MRI scan of chondrosarcoma of the left proximal femur. obtaining tissue by most surgical pathologists. However, from a technical standpoint, open biopsy is associated with a complication rate of 16% and therefore must be per- formed by an experienced center. Mankin and colleagues13,14 demonstrated that biopsy-related problems occurred with 3 to 5 times greater frequency at centers inex- perienced with sarcoma treatment, when compared with sarcoma treatment centers. Several principles to minimize risk of contamination and complication while maintain- ing adequate yield and accuracy have been described (Box 1). Currently, percuta- neous needle biopsy has replaced open surgical biopsy in most experienced centers as the primary method of biopsy due to low complication rate and a high level Fig. 3. Technicium-99 whole-body bone scan of patient with localized osteosarcoma of the right distal femur. 1080 Gutowski et al Table 1 American Joint Committee on Cancer staging system for bone sarcomas Stage Tumor Size Lymph Involvement Grade IA <8 cm No lymph node involvement or metastasis Low IB 8 cm No lymph node involvement or metastasis Low IIA <8 cm No lymph node involvement or metastasis High IIB >8 cm No lymph node involvement or metastasis High III Skip metastasis No lymph node involvement or metastasis Any IVA Any size No lymph node involvement, metastasis to the lung Any IVB Any size Any lymph node involvement or any metastasis to site Any other than the lung Adapted from Edge SB, Byrd DR, Compton CC, eds. AJCC Cancer Staging Manual. 7th ed. New York: Springer, 2010. of accuracy, but relies heavily on the acumen of the bone pathologist given the low yield of tissue from this procedure. Percutaneous needle biopsy With complication rates of approximately 1%, percutaneous needle biopsy with or without image guidance represents a safe, cost-effective, minimally invasive alterna- tive to surgical biopsy.16–19 Diagnostic accuracy rates range from 74% to 93% when imaging modalities are used.19–21 Major disadvantages of needle biopsies, in general, relate to the small amount of tissue obtained, and the potential for sampling error. For these reasons, fine needle aspirate (FNA) is usually insufficient for primary bone sarcoma. However, core needle biopsy (CNB) has consistently been shown to facili- tate accurate histopathologic interpretation and achieve favorable patient out- comes.17,19,22 The difference in hospital charges associated with percutaneous biopsies and open biopsies was found to be approximately $6000.23 Furthermore, recent data suggest that seeding of the needle biopsy tract may not occur as it does in open surgical biopsy.24 Many studies have attempted to identify risk factors for poor diagnostic capability or patient outcome after CNB. Increased sensitivity, diagnostic accuracy, and ability to differentiate between benign and malignant lesions are seen in needle biopsy of bone sarcomas compared with soft tissue sarcomas.17,21,23 In general, malignant bone tumors are associated with higher diagnostic yield than benign lesions.24,25 Biopsies of necrotic areas of a tumor are likely to produce nondiagnostic tissue, so im- age guidance is critical in determining the optimal target of the biopsy needle. Highly Table 2 Musculoskeletal Tumor Society staging system for bone sarcomas Stage Grade Site IA Low Intracompartmental IB Low Extracompartmental IIA High Intracompartmental IIB High Extracompartmental III Any regional/distal metastases Any From Enneking WF, Spanier SS, Goodman MA. A system for the surgical staging of musculoskeletal sarcoma. Clin Orthop 1980;153:106–20. Management of Bone Sarcoma 1081 Box 1 Principles of safe and effective surgical biopsy of musculoskeletal lesions Principles of surgical biopsy Plan the biopsy as carefully as the definitive resection procedure Carry out procedure with minimal contamination of normal tissues Drain tract must be clearly marked and close to and in line with surgical biopsy incision, to be resected at definitive procedure Pay careful attention to antiseptic technique, skin sterilization, hemostasis, and wound closure Avoid transverse incisions, and place skin incision in such a matter so as to not compromise subsequent definitive surgery Ensure adequate amount of representative tissue is obtained, communicate confirmation with pathologist
Recommended publications
  • Advances in Immune Checkpoint Inhibitors for Bone Sarcoma Therapy T Pichaya Thanindratarna,B, Dylan C
    Journal of Bone Oncology 15 (2019) 100221 Contents lists available at ScienceDirect Journal of Bone Oncology journal homepage: www.elsevier.com/locate/jbo Review Article Advances in immune checkpoint inhibitors for bone sarcoma therapy T Pichaya Thanindratarna,b, Dylan C. Deana, Scott D. Nelsonc, Francis J. Horniceka, ⁎ Zhenfeng Duana, a Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, 615 Charles E. Young. Dr. South, Los Angeles, CA 90095, USA b Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Bangkok, Thailand c Department of Pathology, University of California, Los Angeles, CA, USA ARTICLE INFO ABSTRACT Keywords: Bone sarcomas are a collection of sporadic malignancies of mesenchymal origin. The most common subtypes Immune checkpoint include osteosarcoma, Ewing sarcoma, chondrosarcoma, and chordoma. Despite the use of aggressive treatment Immunotherapy protocols consisting of extensive surgical resection, chemotherapy, and radiotherapy, outcomes have not sig- Bone sarcoma nificantly improved over the past few decades for osteosarcoma or Ewing sarcoma patients. In addition, chon- Anti-PD-1/PD-L1 drosarcoma and chordoma are resistant to both chemotherapy and radiation therapy. There is, therefore, an Anti-CTLA-4 urgent need to elucidate which novel new therapies may affect bone sarcomas. Emerging checkpoint inhibitors have generated considerable attention for their clinical success in a variety of human cancers, which has led to works assessing their potential in bone sarcoma management. Here, we review the recent advances of anti-PD-1/ PD-L1 and anti-CTLA-4 blockade as well as other promising new immune checkpoint targets for their use in bone sarcoma therapy.
    [Show full text]
  • Malignant Bone Tumors (Other Than Ewing’S): Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up by Spanish Group for Research on Sarcomas (GEIS)
    Cancer Chemother Pharmacol DOI 10.1007/s00280-017-3436-0 ORIGINAL ARTICLE Malignant bone tumors (other than Ewing’s): clinical practice guidelines for diagnosis, treatment and follow-up by Spanish Group for Research on Sarcomas (GEIS) Andrés Redondo1 · Silvia Bagué2 · Daniel Bernabeu1 · Eduardo Ortiz-Cruz1 · Claudia Valverde3 · Rosa Alvarez4 · Javier Martinez-Trufero5 · Jose A. Lopez-Martin6 · Raquel Correa7 · Josefina Cruz8 · Antonio Lopez-Pousa9 · Aurelio Santos10 · Xavier García del Muro11 · Javier Martin-Broto10 Received: 7 July 2017 / Accepted: 15 September 2017 © The Author(s) 2017. This article is an open access publication Abstract Primary malignant bone tumors are uncommon of a localized bone tumor, with various techniques available and heterogeneous malignancies. This document is a guide- depending on the histologic type, grade and location of the line developed by the Spanish Group for Research on Sar- tumor. Chemotherapy plays an important role in some che- coma with the participation of different specialists involved mosensitive subtypes (such as high-grade osteosarcoma). in the diagnosis and treatment of bone sarcomas. The aim is In other subtypes, historically considered chemoresistant to provide practical recommendations with the intention of (such as chordoma or giant cell tumor of bone), new targeted helping in the clinical decision-making process. The diag- therapies have emerged recently, with a very significant effi- nosis and treatment of bone tumors requires a multidiscipli- cacy in the case of denosumab. Radiation therapy is usually nary approach, involving as a minimum pathologists, radi- necessary in the treatment of chordoma and sometimes of ologists, surgeons, and radiation and medical oncologists. other bone tumors. Early referral to a specialist center could improve patients’ survival.
    [Show full text]
  • Sclerostin Inhibition Alleviates Breast Cancer–Induced Bone Metastases and Muscle Weakness
    Sclerostin inhibition alleviates breast cancer–induced bone metastases and muscle weakness Eric Hesse, … , Hiroaki Saito, Hanna Taipaleenmäki JCI Insight. 2019. https://doi.org/10.1172/jci.insight.125543. Research In-Press Preview Bone biology Oncology Breast cancer bone metastases often cause a debilitating non-curable condition with osteolytic lesions, muscle weakness and a high mortality. Current treatment comprises chemotherapy, irradiation, surgery and anti-resorptive drugs that restrict but do not revert bone destruction. In metastatic breast cancer cells, we determined the expression of sclerostin, a soluble Wnt inhibitor that represses osteoblast differentiation and bone formation. In mice with breast cancer bone metastases, pharmacological inhibition of sclerostin using an anti-sclerostin antibody (Scl-Ab) reduced metastases without tumor cell dissemination to other distant sites. Sclerostin inhibition prevented the cancer-induced bone destruction by augmenting osteoblast-mediated bone formation and reducing osteoclast-dependent bone resorption. During advanced disease, NF-κB and p38 signaling was increased in muscles in a TGF-β1-dependent manner, causing muscle fiber atrophy, muscle weakness and tissue regeneration with an increase in Pax7-positive satellite cells. Scl-Ab treatment restored NF-κB and p38 signaling, the abundance of Pax7-positive cells and ultimately muscle function. These effects improved the overall health condition and expanded the life span of cancer-bearing mice. Together, these results demonstrate that pharmacological
    [Show full text]
  • Primary Bone Cancer a Guide for People Affected by Cancer
    Cancer information fact sheet Understanding Primary Bone Cancer A guide for people affected by cancer This fact sheet has been prepared What is bone cancer? to help you understand more about Bone cancer can develop as either a primary or primary bone cancer, also known as secondary cancer. The two types are different and bone sarcoma. In this fact sheet we this fact sheet is only about primary bone cancer. use the term bone cancer, and include general information about how bone • Primary bone cancer – means that the cancer cancer is diagnosed and treated. starts in a bone. It may develop on the surface, in the outer layer or from the centre of the bone. As a tumour grows, cancer cells multiply and destroy The bones the bone. If left untreated, primary bone cancer A typical healthy person has over 200 bones, which: can spread to other parts of the body. • support and protect internal organs • are attached to muscles to allow movement • Secondary (metastatic) bone cancer – means • contain bone marrow, which produces that the cancer started in another part of the body and stores new blood cells (e.g. breast or lung) and has spread to the bones. • store proteins, minerals and nutrients, such See our fact sheet on secondary bone cancer. as calcium. Bones are made up of different parts, including How common is bone cancer? a hard outer layer (known as cortical or compact Bone cancer is rare. About 250 Australians are bone) and a spongy inner core (known as trabecular diagnosed with primary bone cancer each year.1 or cancellous bone).
    [Show full text]
  • What Is Bone Cancer?
    cancer.org | 1.800.227.2345 About Bone Cancer Overview and Types If you have been diagnosed with bone cancer or are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Is Bone Cancer? Research and Statistics See the latest estimates for new cases of bone cancer and deaths in the US and what research is currently being done. ● Key Statistics About Bone Cancer ● What’s New in Bone Cancer Research? What Is Bone Cancer? The information here focuses on primary bone cancers (cancers that start in bones) that most often are seen in adults. Information on Osteosarcoma1, Ewing Tumors (Ewing sarcomas)2, and Bone Metastases3 is covered separately. Cancer starts when cells begin to grow out of control. Cells in nearly any part of the body can become cancer, and can then spread (metastasize) to other parts of the body. To learn more about cancer and how it starts and spreads, see What Is Cancer?4 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 Bone cancer is an uncommon type of cancer that begins when cells in the bone start to grow out of control. To understand bone cancer, it helps to know a little about normal bone tissue. Bone is the supporting framework for your body. The hard, outer layer of bones is made of compact (cortical) bone, which covers the lighter spongy (trabecular) bone inside. The outside of the bone is covered with fibrous tissue called periosteum. Some bones have a space inside called the medullary cavity, which contains the soft, spongy tissue called bone marrow(discussed below).
    [Show full text]
  • Immunological Status of Peripheral Blood Is Associated with Prognosis in Patients with Bone and Soft-Tissue Sarcoma
    ONCOLOGY LETTERS 21: 212, 2021 Immunological status of peripheral blood is associated with prognosis in patients with bone and soft-tissue sarcoma YOUNGJI KIM1‑3, EISUKE KOBAYASHI1, YOSHIYUKI SUEHARA2, AYUMU ITO4, DAISUKE KUBOTA1,2, YOSHIKAZU TANZAWA1, MAKOTO ENDO1, FUMIHIKO NAKATANI1, TETSUYA NAKATSURA3, AKIRA KAWAI1, KAZUO KANEKO2 and SHIGEHISA KITANO3,5,6 1Division of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo 104‑0045; 2Department of Orthopedic Surgery, Juntendo University School of Medicine, Tokyo 113‑8431; 3Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital, Tokyo 104‑0045; Departments of 4Hematopoietic Stem Cell Transplantation, and 5Experimental Therapeutics, National Cancer Center Hospital, Tokyo 104‑0045; 6Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo 135‑8550, Japan Received June 27, 2020; Accepted October 23, 2020 DOI: 10.3892/ol.2021.12473 Abstract. Immune‑checkpoint inhibitors have shown Multivariate Cox regression analysis demonstrated that the promising antitumor effects against certain types of cancer. number of Tim‑3+ CD8+ T cells was associated with lower However, specific immune‑checkpoint inhibitors for patients DFS time. A significant association was also found between with sarcoma have yet to be identified, whereas the immu‑ the number of M‑MDSCs and progression‑free survival (PFS) nological status of peripheral blood in patients with bone time in patients with metastasis. The results suggested the sarcoma and soft‑tissue sarcoma (STS) remains unknown. occurrence of immune surveillance, which indicated that the In addition, it is unclear whether the immunological status host immune reaction against cancer existed in patients with from the peripheral blood could be used as a prognostic bone sarcoma and STS.
    [Show full text]
  • Conventional Chondrosarcoma James C
    Conventional Chondrosarcoma James C. Wittig, MD SSSarcoma Surgeon Orthopedic Oncologist General Information Ma lignant mesenc hyma l tumor o f cart ilag inous different iat ion. Conventional Chondrosarcoma is the most common type of chondrosarcoma (malignant cartilage tumor) Neoplastic cells form hyaline type cartilage or chondroid type tissue (Chondroid Matrix) but not osteoid If lesion arises de novo, it is a primary chondrosarcoma If superimposed on a preexisting benign neoplasm, it is considered a secondary chondrosarcoma Central chondrosarcomas arise from an intramedullary location. They may grow, destroy the cortex and form a soft tissue component. Peripheral chondrosarcomas extend outward from the cortex of the bone and can invade the medullary cavity. Peripheral chondrosarcomas most commonly arise from preexisting osteochondromas. Juxtacortical chondrosarcomas arise from the inner layer of the periosteum on the surface of the bone. It is technically considered a peripheral chondrosarcoma. Chondrosarcoma Heterogeneous group of tumors with varying biological behavior depending on grade, size and location Cartilage tumors can have similar histology and behave differently depending on location. For instance a histologically benign appearing cartilage tumor in the pelvis will behave aggressively as a low grade chondrosarcoma. Likewise, a histologically more aggressive hypercellular cartilag e tumor localized in a p halanx of a dig it may behave in an indolent, non aggressive or benign manner. There are low (grade I), intermediate (grade II) and high grade (grade III) types of conventional chondrosarcoma. Low grade lesions are slow growing and rarely metastasize . Low grade chondrosarcomas can be difficult to differentiate from benign tumors histologically. Clinical features and radiographic studies are important to help differentiate.
    [Show full text]
  • A Rare Case of Brain Metastasis
    Open Access Journal of Neurology & Neurosurgery . key to the Researchers Case Report Open Access J Neurol Neurosurg Volume 1 Issue 2 - September 2016 Copyright © All rights are reserved by Katarina Matic A Rare Case of Brain Metastasis Amit Kumar Ghosh*, Rafit Deb Barma, TN Sharma and Malay Chakrabarty Calcutta University, India Submission: September 19, 2016; Published: September 28, 2016 *Corresponding author: Calcutta University, India, Tel: ; Email: Abstract Intracerebral metastasis from chondrosarcoma is rare. This is a case report of 46 year old man with intracerebral metastasis from rib chondrosarcoma who was operated and literature was reviewed. Keywords: Chondrosarcoma; Intracerebral metastasis Introduction A 46 years old man presented with generalised tonic clonic seizure followed by drowsiness and admitted in the hospital. History revealed that he had developed right sided weakness over the last 2 weeks but ignored. He underwent left 7-9th rib resection for chondrosarcoma of 8th rib 13 years ago. No other detailed data regarding the type and grade of the lesion was available. Chest X-ray was done (Figure 1). Figure 3: Showing resected tumor with evidence of intratumoral bleed. Figure 1: Showing left 7-9th rib resected status. Figure 4: Post-operative CT scan of brain showing complete excision of tumor with decompresive craniectomised status. Figure 2: Non-contrast CT scan showing left sided hyperdense lesion with edema involving posterior frontal and parietal region. Figure 5A: Histopathology showing malignant cartilage. Open Access J Neurol Neurosurg 1(2): OAJNN.MS.ID.55560 (2016) 001 Open Access Journal of Neurology & Neurosurgery differentiated chondrosarcoma (Figure 5A, 5B, 5C, 5D, 5E).
    [Show full text]
  • Bone & Soft Tissue
    14A ANNUAL MEETING ABSTRACTS and testicular atrophy with aspermatogenia (negative OCT3/OCT4 stain). There was 47 Comparison of Autopsy Findings of 2009 Pandemic Influenza evidence of acute multifocal bronchopneumonia and congestive heart failure. He carried A (H1N1) with Seasonal Influenza in Four Pediatric Patients two heterozygous mutations in ALMS1: 11316_11319delAGAG; R3772fs in exon 16 B Xu, JJ Woytash, D Vertes. State University of New York at Buffalo, Buffalo, NY; Erie and 8164C>T ter; R2722X in exon 10. County Medical Examiner’s Office, Buffalo, NY. Conclusions: This report describes previously undefined cardiac abnormalities in this Background: The swine-origin influenza A (H1N1) virus that emerged in humans rare multisystem disorder. Myofibrillar disarray is probably directly linked to ALMS1 in early 2009 has reached pandemic proportions and cause over 120 pediatric deaths mutation, while fibrosis in multiple organs may be a secondary phenomenon to gene nationwide. Studies in animal models have shown that the 2009 H1N1 influenza virus alteration. Whether and how intracellular trafficking or related signals lead to cardiac is more pathogenic than seasonal A virus, with more extensive virus replication and dysfunction is a subject for further research. shedding occurring the respiratory tract. Design: We report four cases of influenza A-associated deaths (two pandemic and two 45 Sudden Cardiac Death in Young Adults: An Audit of Coronial seasonal) in persons less than fifteen years of age who had no underlying health issues. Autopsy Findings Autopsy finding on isolation of virus from various tissue specimen, cocurrent bacterial A Treacy, A Roy, R Margey, JC O’Keane, J Galvin, A Fabre.
    [Show full text]
  • Spectrum of Bone Tumors in Chiang Mai University Hospital, Thailand According to WHO Classification 2002: a Study of 1,001 Cases
    Spectrum of Bone Tumors in Chiang Mai University Hospital, Thailand According to WHO Classification 2002: A Study of 1,001 Cases Jongkolnee Settakorn MD*, Suree Lekawanvijit MD*, Olarn Arpornchayanon MD**, Samreung Rangdaeng MD*, Pramote Vanitanakom MD*, Sarawut Kongkarnka MD*, Ruangrong Cheepsattayakorn MD*, Charin Ya-In MD*, Paul S Thorner MD*** * Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai ** Department of Orthopedic Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai *** Department of Laboratory Medicine, Hospital for Sick Children and University of Toronto, Toronto, Canada Objective: The aim of the present study was to determine the spectrum, frequency and demographics of bone tumors. Material and Method: A retrospective study of the 1,001 bone tumor specimens from the files at the Pathology Department of the Chiang Mai University Hospital, Thailand from 2000 to 2004. Results: From the study, 41 were non-neoplastic mass lesions, and 960 were neoplastic, with 856 (89%) as primary and 104 (11%) as metastatic tumors. In the primary tumor group, 654 (76%) cases were of hemato- logic origin, and 202 (24%) were non-hematologic. The most common benign bone tumors were giant cell tumor (n = 37), osteochondroma (n = 25), and chondroma (n = 15). The most common malignant bone tumors were lymphoma-leukemia (n = 583), metastatic malignancy (n = 104), plasma cell myeloma (n = 71), and osteosarcoma (n = 58). Conclusion: The present study showed a higher frequency of osteosarcoma (68%), lower frequencies of chondrosarcoma (12%) and Ewing sarcoma (4%) among primary non-hematologic malignant bone tumors when compared with similar studies based on Western patients. Whether these differences reflect differences in the ethnic population or in practice patterns remains to be determined.
    [Show full text]
  • 507 High Dimensional Flow Cytometry Analysis in Newly Diagnosed Acute
    J Immunother Cancer: first published as 10.1136/jitc-2020-SITC2020.0507 on 9 November 2020. Downloaded from Abstracts LAG-3, and CSF1R at the PM interface were associated with made R code, we performed dimensionality reduction, cluster- worse progression-free survival (PFS), while gene sets associ- ing, and pseudotime analysis. ated with productive T cell immune response were associated Results The IR-score discriminated NR and CR (p = 3e-02, with improved PFS (figure 4). AUC 0.84) after treatment with CD57 and KLRG1 accounting Conclusions In contrast to primary bone osteosarcoma for most of this difference (p = 2e-02, AUC = 0.79). Next ‘immune deserts,’ osteosarcoma PMs represent an ‘immune- we investigated CD8+ T cell populations that best correlated excluded’ TME where immune cells are present but are halted with response to chemotherapy. FlowSOM revealed seven at the PM interface. TILs can produce effector cytokines, sug- major clusters: naive and naive-like, CD28+KLRG1+ acti- gesting their capability of activation and recognition of tumor vated-effector, CD28+KLRG1+PD1+ dysfunctional, PD1 antigens. Our findings suggest cooperative immunosuppressive +CD57+ senescent effector-memory and two clusters of ter- mechanisms in osteosarcoma PMs that prevent TILs from pen- minally differentiated CD45RA+KLRG1+ cells. Since the acti- etrating into the PM interior, including immune checkpoint vation and differentiation states accounted for most of the molecule expression and the presence of immunosuppressive subpopulation variability, we grouped the clusters into resting myeloid cells. We identify cellular and molecular signatures (naive, naive-like), activated (activated-effector, dysfunctional), that are associated with PFS of patients, which could be and terminally differentiated cells (senescent effector-memory, potentially manipulated for successful immunotherapy.
    [Show full text]
  • Osteosarcoma
    disease • canine lymphoma • brain tumor • congestive heart failure • feline lymphoma • primary lung tumor • mast cell tumor • kidney disease • transitional cell carcinoma • degenerative myelopathy • cognitive dysfunction syndrome • liver disease • seizures • osteosarcoma • hemangiosarcoma • nasal tumorsdiabetes • Common Signs of Pain • hyperadrenocorticism • hyperthyroidism • osteoarthritis • vestibular disease • canine lymphoma • brain tumor • congestive heart failure • feline lymphoma • Panting • Licking sore spot • primary lung tumor • mast cell tumor • kidney disease • transitional cell • Lameness • Muscle atrophy carcinoma • degenerative myelopathy • cognitive dysfunction syndrome • liver • Difficulty sleeping • Decreased appetite disease • seizures • osteosarcoma • hemangiosarcoma • nasal tumorsdiabetes • • Pacing • Vocalizing/yowling • hyperadrenocorticism • hyperthyroidism • osteoarthritis • vestibular disease • canine lymphoma • brain tumor • congestive heart failure • feline lymphoma • Abnormal posture • Reclusive Behavior • primary lung tumor • mast cell tumor • kidney disease • transitional cell • Body tensing • Aggressive Behavior carcinoma • degenerative myelopathy • cognitive dysfunction syndrome • liver • Poor grooming habits • Avoiding stairs/jumping disease • seizures • osteosarcoma • hemangiosarcoma • nasal tumorsdiabetes • • Tucked tail • Depressed • hyperadrenocorticism • hyperthyroidism • osteoarthritis • vestibular disease • Dilated Pupils • Unable to stand • canine lymphoma • brain tumor • congestive heart failure
    [Show full text]