SPSU Math 1113: Precalculus Cheat Sheet §5.1FunctionsandModels(review) StepstoAnalyzeGraphofPolynomial tan 2α = 1. yintercepts: f(0) 2. xintercept: f(x)=0 3. f crosses/touchesaxis@xintercepts sin = ± cos = ± 4. Endbehavior: likeleadingterm 5. Findmaxnumturningptsof f: (n–1) tan = ± = = 6. Behaviornearzerosforeachxintercept §9.2LawofSines 7. Mayneedfewextraptstodrawfcn. = = §9.3LawofCosines a2=b 2+c 2–2bccosA §5.2RationalFunctions c2=a 2+b 2–2abcosC b2=a 2+c 2–2accosB FindingHorizontal/ObliqueAsymptotesofR wheredegreeofnumer.=nanddegreeofdenom.=m §9.4AreaofTriangle 1. Ifn<m,horizontalasymptote: y=0 (thexaxis). K= = = 2. Ifn=m,line isahorizontalasymptote. Heron’sFormula sin sin sin 3. Ifn=(m+1),quotientfromlongdivis = ax+b andline y=ax +b isobliqueasymptote. K= = + + 4. Ifn>(m+1), Rhasnoasymptote. − − − §9.5Simple&DampedHarmonicMotion §7.6GraphingSinusoidals SimpleHarmonicMotion Graphingy=Asin(ωx)&y=Acos(ωx) d=acos(ωt) or d=asin(ωt) |A|=amplitude(stretch/shrinkvertically) |A|<1shrink|A|>1stretchA<0reflect DampedHarmonicMotion Distancefrommintomax=2A − ⁄ 2 = − ω=frequency(stretch/shrinkhorizontally) wherea,b,mconstants: cos |ω|<1stretch|ω|>1shrinkω<0reflect b= dampingfactor(dampingcoefficient) period= T= m=massofoscillatingobject |a|=displacementatt=0 =periodifnodamping §7.8PhaseShift= y=Asin(ωx–φ)+B y=Acos(ωx–φ)+B §10.1PolarCoordinates ConvertPolartoRectangularCoordinates §8.1InverseSin,Cos,TanFcns x=rcosθ y=rsinθ y=sin 1(x) Restrictrangeto[π/2,π/2] ConvertRectangulartoPolarCoordinates y=cos 1(x) Restrictrangeto If x=y=0 then r=0,θ canhaveanyvalue 1 0, y=tan (x) Restrictrangeto else , − = + −1 §8.2InverseTrigFcns(con’t) tan Q Q 1 y=sec x where|x|≥1and0≤y≤π, y≠ −1 = tan + Q Q y=csc 1x where|x|≥1and ≤y≤ , y≠0 = 0, > 0 ⁄ 2 1 y=cot x where∞<x<∞and0<y<π− − ⁄ 2 = 0, < 0 §10.3 Complex Plane & De Moivre’s Theorem §8.3TrigIdentities Conjugate of z=x+yi is =x+yi Modulus of z: tan = cot = Products&QuotientsofComplexbs(Polar)|| = √ = + 2 2 z1=r 1(cosθ 1+isinθ 1) z2=r 2(cosθ 2+isinθ 2) Pythagorean:csc = sin θ+cossec =θ=1 cot = tan 2 θ+1=sec 2 θ cot 2 θ+1=csc 2θ = cos + + sin + §8.4Sum&DifferenceFormulae z2 ≠0 DeMoire’sTheorem = cos − +z=r(cosθ+isinθ) sin − cos α ± β = cosα cosβ∓sinα sin β n≥1 sin α ± β = sinα cosβ±cosα sin β ± = cos n≥2,k + sin = 0,1,2,…, (n–1)) tan α ± β = ∓ §8.5DoubleAngle&HalfAngleFormulae where = k√=0,1,2,…,cos + (n–1) + sin + sin 2α = 2sinα cosα cos 2α = cos α − sin α cos 2α = 1 − 2 sin α = 2 cos α −1 Dr.Adler SPSUMath1113 CheatSheet:Page1 §10.4Vectors §12.3SystemsofLinearEqns:Determinants UnitVectors D= =(ad–bc)≠0 unitvectors: i, j,kindirectionxaxis,yaxis,zaxis + = Add&SubtractVectorsAlgebraically + = Dx= Dy= v = (a ,b )= a i+b j w = (a ,b )= a i+b j 1 1 1 1 2 2 2 2 v + w =( a1 +a2)i+ (b1 +b2)j= (a1 +a2,b1 +b2) Cramer’sRule: etc. v – w =( a1 –a2)i+ (b1 –b2)j= (a1 –a2,b1 –b2) = = v α = (αa 1)i+ (αb 1)j= (αa 1,αb 1) + + = || v|| = + + = + + = + §10.5TheDotProduct D= v=a i+b jw =a i+b j ≠ 0 1 1 2 2 theuniquesolnofsystemgivenby v·w= a1a2+b 1b2 Anglebetween2Vectors ∙ = = = DecomposeaVectorintoOrthogonalVectorscos = PropertiesofDeterminates Vectorprojection of vonto w ValueofDchangessignif2rowsinterchanged. ∙ ValueofDchangessignif2columnsinterchanged. Draw v& wwithsameinitialpt = Ifallentriesinanyrowarezero,thenD=0 Fromterminalptof vdrop┴to w = − Ifallentriesinanycolumnarezero,thenD=0 Thiscreatesrttrianglewith v ashypotenuse. Ifany2rowshaveidenticalcorrespondingvaluesthenD=0 Legsoftrianglearedecomposition Ifany2columnshaveidenticalcorrespondingvaluesthenD=0 Ifanyrowmultipliedby(nonzero)numberk,Dismultipliedbyk. §12.1SysofLinearEqns;Substitution/Elimination Ifanycolumnmultipliedby(nonzero)k,Dismultipliedbyk. SolveSystemsofEquationsbySubstitution Ifentriesofanyrowmultipliedbynonzerokandresultaddedto 1. Solve1eqnfor1intermsofothers. correspondingentriesofanotherrow,valueofDisunchanged. 2. Substituteresultinremainingeqns. Ifentriesofanycolumnmultipliedbynonzerokandresultadded 3. Ifhaveeqnin1variable,solveit,otherwiseloopbackto1 tocorrespondingentriesofanothercolumn,Disunchanged. above. 4. Solveremainingvariables,ifany,bysubstitutingknownvalues §12.4 inremainingeqns. ProductofRowxColumn: 5. Checksolninoriginalsystemofeqns. SolveSystemsofEqnsbyElimination 1. Interchangeany2eqns. = … … = + + ⋯ + 2. Multiply(ordivide)eachsideofeqnbysamenonzero Productofrectangularmatrices: constant. Aismxrmatrix, Bisrxnmatrix. 3. Replaceanyeqninsystembysum(ordifference)ofthateqn& Aij = ΣkAik Bkj nonzeromultipleofanothereqninsystem. FindingInverseofonsingularMatrix §12.2SystemsofLinearEqns:Matrices Tofindinverseof nxn nonsingularmatrix A: RowOperationsontheMatrix: 1. Formthematrix[ A|I n]. 1. Interchangeany2rows. 2. Transform[ A|I n]into reduced rowechelonform. 2. Replacearowbynonzeromultipleofthatrow. 3. Reducedrowechelonformof[ A|I n]willcontainidentity 3. Replacearowbysumofthatrowandanonzeromultipleof matrix Inleftofverticalbar;the nxn matrixonrightofvertical someotherrow. barisinverseofA. MatrixMethodforSolvingSystemLinearEqns SolveSystemLinearEqnsUsingInverseMatrix 1. Writeaugmentedmatrixthatrepresentsthesystem. CanwritesystemofeqnsasAX=B. 2. Performrowoperationsthatplace“1”inlocn1,1:Perform IfhaveinverseA 1thenmultiplybyit. rowoperationsthatplace“0”belowthis. 1 3. Performrowoperationsthatplace“1”inlocn2,1,leaving X=A B entriestoleftunchanged.Ifthisisnotpossible,move1cellto §12.6MatrixAlgebra rightandtryagain.Performrowoperationsthatplace“0” belowit&toleft. SolvingbySubstitution 4. Repeatstep4,movingonerowdownand1colright.Repeat Forsystemofeqns,ptswhosecoordinatessatisfyalleqnsare untilbottomroworverticalbarreached. representedbyintersectionsofthegraphsofeqns. 5. Nowinrowechelonform.Analyzeresultingsystemofeqnsfor Canalsousesubstitution&oreliminationjustlikesystemsof solnstooriginalsystemofeqns. lineareqns. Bewareofextraneoussolns.

Page2:CheatSheet SPSUMath1113 Dr.Adler