Northeast Extension Systems

Total Page:16

File Type:pdf, Size:1020Kb

Northeast Extension Systems Northeast Extension Systems Northeast VEGETABLE & STRAWBERRY PEST IDENTIFICATION GUIDE Weeds • Insects • Diseases • Physiological Disorders 2016 Edition UNITED STATES DEPARTMENT OF AGRICULTURE COOPERATING. $15.00 Northeast Vegetable & Strawberry Pest Identification Guide Co-Editors: A. Richard Bonanno, University of Massachusetts Ruth Hazzard, University of Massachusetts Assistant Editors: Kate Everts, University of Maryland and University of Delaware David Handley, University of Maine Cathy Heidenreich, Cornell University John Howell, University of Massachusetts Bradley Majek, Rugers University Joanne Whalen, University of Delaware Robert Wick, University of Massachusetts Jude Boucher, University of Connecticutt Susan Scheufele, University of Massachusetts Partial funding for this document was provided by the U.S. E.P.A., Region 1, Strategic Agricultural Initiative Program Funds. Grant Number: X8971450010 USDA CSREES The Vegetable IPM Working Group 2 Northeastern IPM Center UMass Extension Weeds t Common Name Latin Name Plate Page Common Name Latin Name Plate Page Barnyardgrass Echinochloa crusgalli W-1 10 Nutsedge, Yellow Cyperus esculentum W-35 13 Bedstraw, Catchweed Galium aparine W-2 10 Oats Avena fatua L W-36 13 Bindweed, Field Convolvulus arvensis W-3 10 Orchardgrass Dactylis glomerata W-37 14 Campion, White Silene alba W-4 10 Panicum, Fall Panicum dichotomiflorum W-38 14 Canada Thistle Cirsium arvense W-5 10 Pansy, Field Viola arvensis W-39 14 Carolina Geranium (Cranesbill) Geranium carolinianum L W-6 10 Pennycress, Field Thlaspi arvense W-40 14 Carpetweed Mollugo verticillata W-7 10 Pepperweed, Virginia Lepidium virginicum W-41 14 Chickweed Stellaria media W-8 10 Pigweed, Redroot Amaranthus retroflexus W-42 14 Clover Trifolium sp. W-9 10 Pimpernel, Scarlet Anagallis arvensis L. W-43 14 Clover, Red Trifolium pretense W-10 11 Pimpernel, Scarlet (2 images) W-44 14 Cocklebur Xanthium strumarium W-11 11 Pineapple-weed Matricaria discoidea W-45 14 Crabgrass Digitaria sanguinalis W-12 11 Purslane, Common Portulaca oleracea W-46 15 Crabgrass (2 images) W-13 11 Quackgrass Elymus repens W-47 15 Curly Dock Rumex crispus W-14 11 Quackgrass (2 images) W-48 15 Dandelion Taraxacum officinale W-15 11 Ragweed, Common Ambrosia artemisifolium W-49 15 Foxtail, Green Setaria viridis W-16 11 Rye, Annual Lolium multiflorum Lam. W-50 15 Foxtail, Yellow Setaria glauca W-17 11 Rye, Annual (2 images) W-51 15 Galinsoga Galinsoga ciliata W-18 11 Shepherdspurse Capsella bursa-pastoris W-52 15 Goldenrod Solidago sp. W-19 12 Shepherdspurse (2 images) W-53 15 Goosegrass Eleusine indica W-20 12 Smartweed, Pennsylvania Polygonum pensylvanicum W-54 15 Groundsel, Common Senecio vulgaris W-21 12 Sorrel, Red Rumex acetosella W-55 16 Groundsel, Common (2 images) W-22 12 Sorrel, Red (2 images) W-56 16 Horsetail, Field Equisetum arvence W-21 12 Sorrel, Yellow Wood (Oxalis) Oxalis stricta W-57 16 Jimsonweed Datura stramonium W-24 12 Sowthistle, Perennial Sonchus arvensis W-58 16 Johnsongrass Sorghum halpense W-25 12 Speedwell, Common Veronica officinalis L W-59 16 Lambsquarters, Common Chenopodium album W-26 12 Speedwell, Corn Veronica arvensis L W-60 16 Lettuce, Prickly Lactuca serriola W-27 12 Terbacil pesticide injury W-61 16 Mallow, Common Malva neglecta W-28 13 Toadflax, Yellow Marestail (horseweed) Conyza canadensis W-29 13 (Butter & Eggs) Linaria vulgaris W-62 16 Morningglory Ipomea sp. W-30 13 Velvetleaf Abutilon theophrasti W-63 16 Mustard, Wild Brassica kaber W-31 13 Nettle, Purple Dead Lamium purpureum W-32 13 Nightshade Solanum sp. W-33 13 Nightshade, Eastern Black Solanum ptycanthum W-34 13 Insects t Common Name Latin Name Plate Page Common Name Latin Name Plate Page Aphid, Cabbage Brevicoryne brassicae I-1 17 Cucumber Beetle, Spotted Diabrotica undecimpunctata I-33 20 Aphid, Corn Leaf Rhopalosiphum maidis I-2 17 Cucumber Beetle, Striped Acalymma vittatum I-34 20 Aphid, Green Peach Myzus persicae I-3 17 Cutworm, Black Agrotis ipsilon I-35 20 Aphid, Melon Aphis gossypii I-4 17 Cutworm Damage I-36 20 Aphid, Pea Acyrthosiphon pisum I-5 17 Cutworm, Variegated Peridroma saucia I-37 21 Aphid, Potato Macrosiphum euphorbiae I-6 17 Diamondback Moth Plutella xylostella I-38 21 Asiatic Garden Beetle Maladera castanea I-7 17 Diamondback Moth (2 images) I-39 21 Asiatic Garden Beetle (3 images) I-8 17 European Corn Borer Ostrinia nubilalis I-40 21 Asiatic Garden Beetle I-9 17 European Corn Borer (3 images) I-41 21 Asparagus Beetle, Common Crioceris duodecimpuntata I-10 18 European Corn Borer I-42 21 Asparagus Beetle, Common (2 images) I-11 18 Fall Armyworm Spodoptera frugiperda I-43 21 Asparagus Beetle, Spotted Creoceris duodecimpunctata I-12 18 Fall Armyworm (2 images) I-44 21 Asparagus Miner Ophiomyia simplex I-13 18 Flea Beetle, Corn Chaetocnema pulicaria I-45 21 Asparagus Miner (2 images) I-14 18 Flea Beetle, Crucifer Phyllotreta cruciferae I-46 22 Asparagus Miner Ophiomyia simplex I-15 18 Flea Beetle, Crucifer (2 images) I-47 22 Bean Leaf Beetle Cerotoma trifurcata I-16 18 Flea Beetle, Eggplant Epitrix fuscula I-48 22 Beet Armyworm Spodoptera exigua I-17 18 Flea Beetle, Striped Phyllotreta striolata I-49 22 Beet Armyworm (2 images) I-18 18 Fungus Gnat, Darkwinged Bradysia spp. I-50 22 Blister Beetle, Margined Epicauta funebris I-19 19 Fungus Gnat, Darkwinged (2 images) I-51 22 Cabbage Looper Trichoplusia ni I-20 19 Harlequin Bug Murgantia histrionica I-52 22 Cabbage Maggot Delia radicum I-21 19 Harlequin Bug (2 images) I-53 22 Cabbage Maggot (3 images) I-22 19 Hornworm, Tomato Manduca quinquemaculata I-54 22 Cabbage Maggot I-23 19 Imported Cabbageworm Pieris rapae I-55 23 Carrot Rust Fly Psila rosae I-24 19 Imported Cabbageworm (2 images) I-56 23 Carrot Weevil Listronotus oregonensis I-25 19 Imported Cabbageworm Pieris rapae I-57 23 Colorado Potato Beetle Leptinotarsa decemlineata I-26 19 Japanese Beetle Popillia japonica I-58 23 Colorado Potato Beetle (2 images) I-27 19 Japanese Beetle (2 images) I-59 23 Corn Earworm Helicoverpa zea I-28 20 Leafhopper, Aster Macrosteles quadralineatis I-60 23 Corn Earworm (3 images) I-29 20 Leafhopper, Potato Empoasca fabae I-61 23 Corn Earworm & Fall Armyworm I-30 20 Leafhopper, Potato (3 images) I-62 23 Cross-striped Cabbageworm Evergestis rimosalis I-31 20 Leafhopper, Potato I-63 23 Cross-striped Cabbageworm (2 images) I-32 20 Leafminer, Beet Pegomya betae I-64 24 4 Common Name Latin Name Plate Page Common Name Latin Name Plate Page Leafminer, Vegetable Liriomyza sativae I-65 24 Stink bug, Green Acrosernum hilare I-97 27 Mexican Bean Beetle Epilachna varivestis I-66 24 Stink bug, Marmorated Halyomorpha halys I-98 27 Mite, Twospotted Spider Tetranychus urticae I-67 24 Swede Midge Contarinia nasturtii I-99 27 Mite, Twospotted Spider (2 images) I-68 24 Swede Midge (2 images) I-100 28 Northern Corn Rootworm Diabrotica barberi I-69 24 Tarnished Plant Bug Lygus lineolaris I-101 28 Onion Maggot Delia antiqua I-70 24 Tarnished Plant Bug (2 images) I-102 28 Oriental Beetle Exomala orientalis I-71 24 Thrips, Onion Thrips tabaci I-103 28 Pepper Maggot Zonosemata electa I-72 24 Thrips, Onion (3 images) I-104 28 Pepper Maggot (3 images) I-73 25 Thrips, Onion I-105 28 Pepper Maggot I-74 25 Thrips, Western Flower Frankliniella occidentalis I-106 28 Pepper Weevil adult Anthonomus eugenii I-75 25 Thrips, Western Flower (2 images) I-107 28 Pepper Weevil larva (2 images) I-76 25 Tomato Fruitworm Helicoverpa zea I-108 28 Saltmarsh Caterpillar Estigmene acrea I-77 25 Tomato Pinworm Keiferia lycopersicella I-109 29 Sap Beetle, Dusky Carpophilus lugubris I-78 25 Tortoise Beetle, Clavate Plagiometriona clavata I-110 29 Sap Beetle, Fourspotted Glischrochilus quadrisignatus I-79 25 Tortoise Beetle, Clavate (2 images) I-111 29 Sap Beetle, Fourspotted (2 images) I-80 25 True Armyworm Pseudaletia unipunctata I-112 29 Seedcorn Maggot Delia platura I-81 25 Webworm, Garden Achyra rantalis I-113 29 Slug, Grey Garden Decroceras reticultatum I-82 26 Webworm, Hawaiian Beet & Garden Spoladea recurvalis I-114 29 Slug, Grey Garden (2 images) I-83 26 Western Corn Rootworm Diabrotica vergifera I-115 29 Soybean Looper Pseudoplusia includens I-84 26 Whitefly, Greenhouse Trialeurodes vaporariorum I-116 29 Spotted Wing Drosophila Drosophila suzukii I-85 26 Wireworm Melanotus spp. I-117 29 Spotted Wing Drosophila (4 images) I-86 26 Wireworm (2 images) I-118 30 Spotted Wing Drosophila I-87 26 Spotted Wing Drosophila I-88 26 Beneficial Insects: Squash Bug Anasa tristis I-89 26 Insidious Flower Bug Orius insidiosus I-119 30 Squash Bug (3 images) I-90 26 Ladybeetle larva species unknown I-120 30 Squash Bug I-91 27 Ladybeetle, Multicolored Asian Harmonia axyridis I-121 30 Squash Vine Borer Melittia cucurbitae I-92 27 Ladybeetle, Twelve Spotted Coleomegilla maculata I-124 30 Squash Vine Borer (2 images) I-93 27 Spined Soldier Bug Podisus maculiventris I-123 30 Stalk Borer, Common Papaipema nebris I-94 27 Syrphid Fly larvae Syrphid species I-124 30 Stink Bug Euschistus spp. I-95 27 Predatory Midge Aphidoletes aphidimyza I-125 30 Stink Bug, Brown Euschistus servus I-96 27 Parasite of imported cabbageworm Cotesia rubecula species I-126 30 Diseases & Disorders t Vegetable & Disease/Disorder Plate Page Vegetable & Disease/Disorder Plate Page Vegetable & Disease/Disorder Plate Page Alliums, Downy Mildew D-1 31 Brassicas, Black Rot D-28 34 Cucurbits, Anthracnose D-55 37 Alliums, Leaf Blight D-2 31 Brassicas, Boron Deficiency D-29 34 Cucurbits, Bacterial Fruit Blotch D-56 37 Alliums, Purple Blotch D-3 31 Brassicas, Clubroot D-30 34 Cucurbits, Bacterial Wilt D-57 37 Asparagus,
Recommended publications
  • Effects of Different Types of Organic Fertilizers on Growth Performance, Nutrients and Toxicological Composition of Amaranthus Caudatus and Amaranthus Cruentus
    EFFECTS OF DIFFERENT TYPES OF ORGANIC FERTILIZERS ON GROWTH PERFORMANCE, NUTRIENTS AND TOXICOLOGICAL COMPOSITION OF AMARANTHUS CAUDATUS AND AMARANTHUS CRUENTUS BY JERRY CHECHET KAHU DEPARTMENT OF BIOCHEMISTRY, FACULTY OF LIFE SCIENCES AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA JUNE, 2017 EFFECTS OF DIFFERENT TYPES OF ORGANIC FERTILIZERS ON GROWTH PERFORMANCE, NUTRIENTS AND TOXICOLOGICAL COMPOSITION OF AMARANTHUS CAUDATUS AND AMARANTHUS CRUENTUS BY KAHU CHECHET JERRY, B.Sc (ABU) 2010 MSc/SCI/44499/2012-2013 A THESIS SUBMITTED TO THE POSTGRADUATE SCHOOL, AHMADUBELLO UNIVERSITY, ZARIA, NIGERIA IN PARTIAL FULFILLMENT FOR THE AWARD OF DEGREE OF MASTERS OF SCIENCE IN NUTRITION DEPARTMENT OF BIOCHEMISTRY, FACULTY OF LIFE SCIENCES AHMADU BELLO UNIVERSITY, ZARIA, NIGERIA JUNE, 2017 ii Declaration I declare that the work in this Dissertation entitled ‗EFFECTS OF DIFFERENT TYPES OF ORGANIC FERTILIZERS ON GROWTH PERFORMANCE, NUTRIENTS AND TOXICOLOGICAL COMPOSITION OF AMARANTHUS CAUDATUS AND AMARANTHUS CRUENTUS‘ has been carried out by me in the Department of Biochemistry. The information derived from the literature has been duly acknowledged in the text and a list of references provided. No part of this dissertation was previously presented for another degree or diploma at this or any other institution. Mr. Kahu Jerry Chechet ………………………………. ……………………….. Name of Student Signature Date iii Certification This Dissertation entitled ‗EFFECTS OF DIFFERENT TYPES OF ORGANIC FERTILIZERS ON GROWTH PERFORMANCE, NUTRIENTS AND TOXICOLOGICAL COMPOSITION OF AMARANTHUS CAUDATUS AND AMARANTHUS CRUENTUS’ by Jerry Chechet KAHU, meets the regulations governing the award of the degree of masters of Science in Nutrition of the Ahmadu Bello University, and is approved for its contribution to knowledge and literary presentation. Prof.
    [Show full text]
  • Amaranth Seed Oil Composition Parisa Nasirpour-Tabrizi, Sodeif Azadmard-Damirchi, Javad Hesari and Zahra Piravi-Vanak
    Chapter Amaranth Seed Oil Composition Parisa Nasirpour-Tabrizi, Sodeif Azadmard-Damirchi, Javad Hesari and Zahra Piravi-Vanak Abstract In this chapter, amaranth seed oil composition will be presented. The main component of this oil is triacylglycerols (TAGs). TAGs are composed of fatty acids, which have an important effect on oil stability, application, and nutritional proper- ties. POL, PLL, POO, OLL, and LOO are the predominant TAGs in the amaranth seed oil. Linoleic acid (C18:2), oleic acid (C18:1), and palmitic acid (C16:0) are the predominant fatty acids present in the amaranth oil. Minor components of this oil are squalene, sterols, tocopherols, carotenoids, phospholipids, etc. Growth condi- tions of amaranth and extraction conditions can influence oil composition, which will be discussed in this chapter as well. Oil stability and quality parameters will be also discussed. The stability of this oil during different conditions of storage will be a part of this chapter. Keywords: triacylglycerol, fatty acid, squalene, tocopherol, sterol 1. Introduction Grain amaranth is considered as a gluten-free pseudocereal, which is a non-grass but cereal-like grain (true cereals are classified as grasses). It is suitable to be used as the celiac disease patient diet as it contains no gluten [1]. Among more than 60 spe- cies, the grain of Amaranthus caudatus, Amaranthus hypochondriacus, Amaranthus cruentus, Amaranthus hybridus, and Amaranthus mantegazzianus can be used as flour in some industries, such as bakery and confectionery. However, species of Amaranthus retroflexus, Amaranthus viridis, and Amaranthus spinosus are not safe to be consumed [2]. The amaranth grain is mainly composed of about 61.3–76.5% carbohydrate (mostly starch), 13.1–21.5% crude protein, 5.6–10.9% crude fat, 2.7–5% crude fiber, and 2.5–4.4% ash [3].
    [Show full text]
  • Assessing Potential Biological Control of the Invasive Plant, Tree-Of-Heaven, Ailanthus Altissima
    This article was downloaded by: [USDA National Agricultural Library] On: 11 August 2009 Access details: Access Details: [subscription number 741288003] Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Biocontrol Science and Technology Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713409232 Assessing potential biological control of the invasive plant, tree-of-heaven, Ailanthus altissima Jianqing Ding a; Yun Wu b; Hao Zheng a; Weidong Fu a; Richard Reardon b; Min Liu a a Institute of Biological Control, Chinese Academy of Agricultural Sciences, Beijing, P.R. China b Forest Health Technology Enterprise Team, USDA Forest Service, Morgantown, USA Online Publication Date: 01 June 2006 To cite this Article Ding, Jianqing, Wu, Yun, Zheng, Hao, Fu, Weidong, Reardon, Richard and Liu, Min(2006)'Assessing potential biological control of the invasive plant, tree-of-heaven, Ailanthus altissima',Biocontrol Science and Technology,16:6,547 — 566 To link to this Article: DOI: 10.1080/09583150500531909 URL: http://dx.doi.org/10.1080/09583150500531909 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date.
    [Show full text]
  • HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S
    HAWAII and SOUTH PACIFIC ISLANDS REGION - 2016 NWPL FINAL RATINGS U.S. ARMY CORPS OF ENGINEERS, COLD REGIONS RESEARCH AND ENGINEERING LABORATORY (CRREL) - 2013 Ratings Lichvar, R.W. 2016. The National Wetland Plant List: 2016 wetland ratings. User Notes: 1) Plant species not listed are considered UPL for wetland delineation purposes. 2) A few UPL species are listed because they are rated FACU or wetter in at least one Corps region. Scientific Name Common Name Hawaii Status South Pacific Agrostis canina FACU Velvet Bent Islands Status Agrostis capillaris UPL Colonial Bent Abelmoschus moschatus FAC Musk Okra Agrostis exarata FACW Spiked Bent Abildgaardia ovata FACW Flat-Spike Sedge Agrostis hyemalis FAC Winter Bent Abrus precatorius FAC UPL Rosary-Pea Agrostis sandwicensis FACU Hawaii Bent Abutilon auritum FACU Asian Agrostis stolonifera FACU Spreading Bent Indian-Mallow Ailanthus altissima FACU Tree-of-Heaven Abutilon indicum FAC FACU Monkeybush Aira caryophyllea FACU Common Acacia confusa FACU Small Philippine Silver-Hair Grass Wattle Albizia lebbeck FACU Woman's-Tongue Acaena exigua OBL Liliwai Aleurites moluccanus FACU Indian-Walnut Acalypha amentacea FACU Alocasia cucullata FACU Chinese Taro Match-Me-If-You-Can Alocasia macrorrhizos FAC Giant Taro Acalypha poiretii UPL Poiret's Alpinia purpurata FACU Red-Ginger Copperleaf Alpinia zerumbet FACU Shellplant Acanthocereus tetragonus UPL Triangle Cactus Alternanthera ficoidea FACU Sanguinaria Achillea millefolium UPL Common Yarrow Alternanthera sessilis FAC FACW Sessile Joyweed Achyranthes
    [Show full text]
  • Pathological Studies on Subacute Toxicity of Amaranthus Retroflexus
    The Pharma Innovation Journal 2021; SP-10(8): 177-179 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.23 Pathological studies on subacute toxicity of Amaranthus TPI 2021; SP-10(8): 177-179 © 2021 TPI retroflexus and its amelioration of Ficus religiosa in www.thepharmajournal.com Received: 25-06-2021 wistar rats Accepted: 27-07-2021 AR Chaure AR Chaure, GR Gangane, SD Moregaonkar, HJ Shete and AN Choudhari College of Veterinary and Animal Sciences, Parbhani, Maharashtra, India Abstract Background: In India, mixed farming, combining crops and livestock activities have been a way of life GR Gangane since the dawn of civilization. Animals are mostly reared on the basis of low feed cost ratio, hence, for College of Veterinary and Animal feeding to livestock, grazing is preferred. In some parts of Maharashtra state, there has been drought Sciences, Parbhani, condition due to this situation; scarcity of fodder for animal is common problem. During grazing, in such Maharashtra, India situation, animal voraciously eat harmful plants, producing adverse effects on their health and ultimately on production. SD Moregaonkar Methods: The subacute toxicopathological study was conducted to note toxic effect of Amaranthus College of Veterinary and Animal retroflexus and its amelioration by Ficus religiosa treatment in Wistar rats. The study was conducted for Sciences, Parbhani, 28 days and evaluated through histopathological changes 28th day of trial. Maharashtra, India Result: At the end of trial, histopathological investigation in organs such as Liver, Kidneys, Intestine, HJ Shete Spleen, Brain, Testes, Lungs, Adrenals and Heart of all experimental rats were attempted. On gross College of Veterinary and Animal examination, none organ could show remarkable gross pathological change in toxicated as well as other Sciences, Parbhani, treatment and control group except, minimal hepatomegaly and necrotic foci in female and male rats of Maharashtra, India group II.
    [Show full text]
  • Fungi Occurring on the Plants of the Genus Amaranthus L
    Turkish Journal of Botany Turk J Bot (2015) 39: 147-161 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1403-106 Fungi occurring on the plants of the genus Amaranthus L. 1 1 2, 3 Wojciech PUSZ , Elzbieta PLĄSKOWSKA , İsmet YILDIRIM *, Ryszard WEBER 1 Department of Plant Protection, Plant Pathology and Mycology Division, Wrocław University of Environmental and Life Sciences, Wroclaw, Poland 2 Department of Plant Protection, Faculty of Agriculture, Çanakkale Onsekiz Mart University, Çanakkale, Turkey 3 Institute of Soil Science and Plant Cultivation, National Research Institute, Wroclaw, Poland Received: 31.03.2014 Accepted: 24.07.2014 Published Online: 02.01.2015 Printed: 30.01.2015 Abstract: A study of fungi on Amaranthus spp. was performed in 2007–2009. The following forms of the genus were taken under consideration: cultivated amaranth (A. cruentus) and a wild form (A. retroflexus) growing as a weed on amaranth and sugar beet plantations and growing as a ruderal weed. The aim of the work was to determine which fungi communities occur in the phyllosphere, roots, rhizoplane, and rhizosphere of Amaranthus spp. To investigate the phyllosphere fungi communities, 5 plants were taken in the seed formation phase. From each plant, 3 healthy, symptomless leaves were taken. In addition, the isolation of fungi communities from the roots, rhizoplane, and rhizosphere was performed in the seed formation phase. Ten plants from each location were taken along the diagonal of the plot. In total, 38 species of fungi were isolated from the phyllosphere of Amaranthus spp., and of that number, 30 were collected from A.
    [Show full text]
  • Amaranthus Retroflexus
    34 (2): 137-145 (2010) Original Scientifi c Paper Biology, life-strategy and invasiveness of Amaranthus retrofl exus L. (Amaranthaceae) in central Italy: preliminary remarks Duilio Iamonico Via dei Colli Albani 170, 00179 Roma, Italy ABSTRACT: A review of biological, ecological and chorological information is provided for Amaranthus retrofl exus L. (Amaranthaceae). Th e species is a noxious weed introduced in Italy from North America. It exhibits a high phenotypic plasticity and easily adapts to a multitude of agricultural and ruderal habitats. A. retrofl exus has variable degrees of dormancy and germination rates as a result of environmental factors. Growth is rapid and plants produce a large number of viable seeds. Th e species has developed resistance to several herbicides and other chemicals. It is alternate host to nematodes, viruses, bacteria and fungi that usually aff ect cultivated plants. Key words: Alien species, Amaranthus, biology, invasiveness, life-strategies Received 26 January 2009 Revision accepted 29 July 2010 UDK 582.661.21(450) INTRODUCTION In this paper, ecological, morphological and choro- logical informations on A. retrofl exus in central Italy are Amaranthus L. (Amaranthaceae) is a genus of about 70 given, in order to highlight the characters that allow the species of monoecious and dioecious usually annual naturalization and invasion of this species. species of worldwide distribution, about 40 of which are native to America, while the remaining ones are native STUDY AREA to the other continents (Costea et al. 2001a). Th is genus is represented in the Italian fl ora by 21 species (23 taxa if Th e study area includes the fi ve regions of central Italy: we consider species and subspecies) (Conti et al.
    [Show full text]
  • An Update of the Host Range of Tomato Spotted Wilt Virus Giuseppe Parrella, Patrick Gognalons, Kahsay Gebre Selassie, C
    An update of the host range of tomato spotted wilt virus Giuseppe Parrella, Patrick Gognalons, Kahsay Gebre Selassie, C. Vovlas, Georges Marchoux To cite this version: Giuseppe Parrella, Patrick Gognalons, Kahsay Gebre Selassie, C. Vovlas, Georges Marchoux. An update of the host range of tomato spotted wilt virus. Journal of Plant Pathology, Springer, 2003, 85 (4), pp.227-264. hal-02682821 HAL Id: hal-02682821 https://hal.inrae.fr/hal-02682821 Submitted on 1 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License Journal of Plant Pathology (2003), 85 (4, Special issue), 227-264 Edizioni ETS Pisa, 2003 227 INVITED REVIEW AN UPDATE OF THE HOST RANGE OF TOMATO SPOTTED WILT VIRUS G. Parrella1, P. Gognalons2, K. Gebre-Selassiè2, C. Vovlas3 and G. Marchoux2 1 Istituto per la Protezione delle Piante del CNR, Sezione di Portici, Via Università 133, 80055 Portici (NA), Italy 2 Institute National de la Recherche Agronomique, Station de Pathologie Végétale, BP 94 - 84143 Montfavet Cedex, France 3 Dipartimento di Protezione delle Piante e Microbiologia Applicata, Università degli Studi and Istituto di Virologia Vegetale del CNR, Sezione di Bari, Via G.
    [Show full text]
  • Current Knowledge on Amaranthus Spp.: Research Avenues for Improved Nutritional Value and Yield in Leafy Amaranths in Sub-Saharan Africa
    Euphytica DOI 10.1007/s10681-014-1081-9 REVIEW Current knowledge on Amaranthus spp.: research avenues for improved nutritional value and yield in leafy amaranths in sub-Saharan Africa Enoch G. Achigan-Dako • Olga E. D. Sogbohossou • Patrick Maundu Received: 2 December 2013 / Accepted: 14 February 2014 Ó Springer Science+Business Media Dordrecht 2014 Abstract In the past 20 years, very little progress has current knowledge on taxonomy, ecology, nutritional been achieved in reducing food insecurity, child and nutraceutical value, production and cultivation malnutrition and hunger in Africa. Under-nutrition systems, reproductive biology, genetic resources and and micronutrients deficiencies are widespread and breeding of amaranths. Species of interest include: A. affect mainly women and children. To address these blitum, A. caudatus, A. cruentus, A. dubius, A. hypo- problems, increased consumption of African leafy chondriacus, A. spinosus, A. thunbergii, A. tricolor, vegetables is promoted as sources of both micronutri- and A. viridis. Research and development opportuni- ents and bio-active compounds. Widely promoted ties on nutritive and nutraceutical properties, produc- African leafy vegetables include Amaranthus spp., a tion and commercialization, taxonomic evaluation and taxonomic group cultivated worldwide. Species of this breeding perspectives were explored. genus are used as pseudo-cereals in Europe and America, and are mostly planted as vegetables in Keywords Amaranthus Á Leafy vegetables Á Africa. Amaranthus has been rediscovered as a prom- Nutrients Á Nutraceutical properties Á ising food crop mainly due to its resistance to heat, Genetic resources drought, diseases and pests, and the high nutritional value of both seeds and leaves. Leaves are rich in proteins and micronutrients such as iron, calcium, zinc, Introduction vitamin C and vitamin A.
    [Show full text]
  • Essential Oils As Potential Alternative Biocontrol Products Against Plant Pathogens and Weeds: a Review
    foods Review Essential Oils as Potential Alternative Biocontrol Products against Plant Pathogens and Weeds: A Review Robin Raveau , Joël Fontaine and Anissa Lounès-Hadj Sahraoui * Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV, UR 4492), Université du Littoral Côte d’Opale, SFR Condorcet FR CNRS 3417, 50 rue Ferdinand Buisson, 62228 Calais cedex, France; [email protected] (R.R.); [email protected] (J.F.) * Correspondence: [email protected]; Tel.: +33-032-146-3658; Fax: +33-032-146-3642 Received: 23 February 2020; Accepted: 17 March 2020; Published: 21 March 2020 Abstract: Naturally produced by aromatic plants, essential oils (EO) contain a wide range of volatile molecules, including mostly secondary metabolites, which possess several biological activities. Essential oils properties such as antioxidant, antimicrobial and anti-inflammatory activities are known for a long time and hence widely used in traditional medicines, cosmetics and food industries. However, despite their effects against many phytopathogenic fungi, oomycetes and bacteria as well as weeds, their use in agriculture remains surprisingly scarce. The purpose of the present review is to gather and discuss up-to-date biological activities of EO against weeds, plant pathogenic fungi, oomycetes and bacteria, reported in the scientific literature. Innovative methods, potentially valuable to improve the efficiency and reliability of EO, have been investigated. In particular, their use towards a more sustainable agriculture has been discussed, aiming at encouraging the use of alternative products to substitute synthetic pesticides to control weeds and plant diseases, without significantly affecting crop yields. An overview of the market and the recent advances on the regulation of these products as well as future challenges to promote their development and wider use in disease management programs is described.
    [Show full text]
  • Allelopathy: How Plants Suppress Other Plants1 James J
    HS944 Allelopathy: How Plants Suppress Other Plants1 James J. Ferguson, Bala Rathinasabapathi, and Carlene A. Chase2 What Is Allelopathy? weed-free zones, and other related changes in vegetation patterns. Our purpose here is to introduce the concept Allelopathy refers to the beneficial or harmful effects of of allelopathy, to cite specific examples, and to mention one plant on another plant, both crop and weed species, potential applications as an alternative weed management from the release of biochemicals, known as allelochemicals, strategy. from plant parts by leaching, root exudation, volatilization, residue decomposition, and other processes in both natural and agricultural systems. Allelochemicals are a subset Nature of Allelopathy of secondary metabolites not required for metabolism Commonly cited effects of allelopathy include reduced seed (growth and development) of the allelopathic organism. germination and seedling growth. Like synthetic herbicides, Allelochemicals with negative allelopathic effects are an there is no common mode of action or physiological target important part of plant defense against herbivory (i.e., site for all allelochemicals. However, known sites of action animals eating plants as their primary food) (Fraenkel 1959; for some allelochemicals include cell division, pollen Stamp 2003). germination, nutrient uptake, photosynthesis, and specific enzyme function. For example, one study that examined The term allelopathy is from the Greek-derived compounds the effect of an allelochemical known in velvetbean, allelo and pathy (meaning “mutual harm” or “suffering”) 3-(3’,4’-dihydroxyphenyl)-l-alanine (l-DOPA), indicated and was first used in 1937 by Austrian scientist Hans that the inhibition by this compound is due to adverse Molisch in the book Der Einfluss einer Pflanze auf die effects on amino acid metabolism and iron concentration andere - Allelopathie (The Effect of Plants on Each Other) equilibrium.
    [Show full text]
  • Native Grasses and Flowers of Dauphin County PA
    Grasses and flowers considered native to Dauphin County, PA (based on historic records; might not necessarily reflect what currently grows in the county) source: USDA Search instructions: click on one the filter buttons and input a genus or common name phrase Scientific Name Common Name Acalypha gracilens slender threeseed mercury Acalypha rhomboidea common threeseed mercury Acalypha virginica Virginia threeseed mercury Achillea millefolium common yarrow Actaea pachypoda white baneberry Actaea racemosa black baneberry Actaea racemosa var. racemosa black bugbane Adiantum pedatum northern maidenhair Adlumia fungosa allegheny vine Agalinis purpurea purple false foxglove Agalinis tenuifolia slenderleaf false foxglove Agastache nepetoides yellow giant hyssop Ageratina altissima white snakeroot Ageratina altissima var. altissima white snakeroot Agrimonia gryposepala tall hairy agrimony Agrimonia microcarpa smallfruit agrimony Agrimonia parviflora harvestlice Agrimonia pubescens soft agrimony Agrimonia rostellata beaked agrimony Agrimonia striata roadside agrimony Agrostis hyemalis winter bentgrass Agrostis perennans upland bentgrass Agrostis scabra rough bentgrass Alisma subcordatum American water plantain Allium canadense meadow garlic Allium canadense var. canadense meadow garlic Allium tricoccum ramp Amaranthus hybridus slim amaranth Amaranthus powellii Powell's amaranth Amaranthus retroflexus redroot amaranth Amaranthus spinosus spiny amaranth Ambrosia artemisiifolia annual ragweed Ambrosia trifida great ragweed Ambrosia trifida var. trifida
    [Show full text]