Erdc/Crrel Tr-08-14

Total Page:16

File Type:pdf, Size:1020Kb

Erdc/Crrel Tr-08-14 ERDC/CRREL TR-08-14 ERDC/CRREL TR-08-14 Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety Problems, Hazards, Needs, and Potential Transfer Technologies Charles C. Ryerson September 2008 Cold Regions Research and Engineering Laboratory Approved for public release; distribution is unlimited. COVER: Superstructure ice on Coast Guard Cutter Midgett, Bering Sea, 1990. ERDC/CRREL TR-08-14 September 2008 Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety Problems, Hazards, Needs, and Potential Transfer Technologies Charles C. Ryerson Cold Regions Research and Engineering Laboratory US Army Engineer Research and Development Center 72 Lyme Road Hanover, New Hampshire 03755-1290 Report 1 Approved for public release; distribution is unlimited. Prepared for US Department of the Interior Minerals Management Service Herndon, VA 20170 ERDC/CRREL TR-08-14 ii Abstract: Superstructure sea spray icing and atmospheric icing from snow, freezing rain, freezing drizzle, rime, sleet, and frost reduce the safety of offshore platform and supply boat operations. Though icing reduces safety and reduces operational efficiency, it has not caused the loss of off- shore platforms. Supply boats are at greater risk of loss from icing than are platforms. Platforms operating in cold regions are protected primarily by designs that reduce ice accretion, coupled with the selective use of heat. A variety of deicing and anti-icing technologies have been tested on offshore platforms and boats, but with little overall success. New technologies and modern versions of old technologies, now used successfully in aviation, the electric power industry, and on transportation systems in general, may be transferable to the offshore environment. Fifteen classes of deicing and anti-icing technologies are identified, explained, and reviewed, as are nu- merous ice detection technologies for controlling deicing and anti-icing systems. These technologies are the population from which new marine ice protection systems may be selected. DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents. US Minerals Management Service (MMS) staff has reviewed this report for technical adequacy according to contractual specifications. The opinions, conclusions, and recommendations contained in this report are those of the author and do not necessarily reflect views and policies of the US MMS. The mention of any trade name or commercial product in this report does not constitute an endorsement for use by the US MMS. Finally, this report does not contain any commer- cially sensitive, classified, or proprietary data release restrictions and may be freely copied and widely distributed. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE ORIGINATOR. ERDC/CRREL TR-08-14 iii Contents Figures ...................................................................................................................................................vii Preface....................................................................................................................................................ix 1 Introduction..................................................................................................................................... 1 2 Critical Superstructure Icing Needs.............................................................................................3 Types of Icing ............................................................................................................................ 3 3 Icing of Rigs ..................................................................................................................................11 Snow .......................................................................................................................................12 Location ......................................................................................................................................12 Magnitude ..................................................................................................................................13 Safety..........................................................................................................................................13 Glaze Ice .................................................................................................................................15 Location ......................................................................................................................................15 Magnitude ..................................................................................................................................15 Safety..........................................................................................................................................15 Rime Ice..................................................................................................................................16 Location ......................................................................................................................................16 Magnitude ..................................................................................................................................16 Safety..........................................................................................................................................16 Frost ........................................................................................................................................16 Location ......................................................................................................................................16 Magnitude ..................................................................................................................................17 Safety..........................................................................................................................................17 Sleet........................................................................................................................................ 17 Location ......................................................................................................................................17 Magnitude ..................................................................................................................................17 Safety..........................................................................................................................................17 Sea Spray Icing.......................................................................................................................18 Location ......................................................................................................................................18 Magnitude ..................................................................................................................................18 Safety..........................................................................................................................................19 Rig Structures.........................................................................................................................20 Rig Design...................................................................................................................................20 Open Derricks.............................................................................................................................22 Antennas ....................................................................................................................................22 Flare Booms ...............................................................................................................................22 Air Intakes...................................................................................................................................22 Decks, Stairs, and Catwalks ......................................................................................................23 Moon Pool...................................................................................................................................24 Cellardeck...................................................................................................................................24 ERDC/CRREL TR-08-14 iv Legs and Bracing .......................................................................................................................25 4 Accident Reports..........................................................................................................................26 5 Current and Previous Rig Deicing and Anti-Icing Technologies .............................................28 Design.....................................................................................................................................28 Thermal Methods ................................................................................................................... 31 Coatings and Chemicals
Recommended publications
  • A New Ice Accretion Model for Aircraft Icing Based on Phase-Field Method
    applied sciences Article A New Ice Accretion Model for Aircraft Icing Based on Phase-Field Method Hao Dai 1, Chunling Zhu 1,*, Huanyu Zhao 2 and Senyun Liu 3 1 College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; [email protected] 2 Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang 110034, China; [email protected] 3 Key Laboratory of Icing and Anti/De-Icing, China Aerodynamics Research and Development Center, Mianyang 621000, China; [email protected] * Correspondence: [email protected] Abstract: Aircraft icing presents a serious threat to the aerodynamic performance and safety of aircraft. The numerical simulation method for the accurate prediction of icing shape is an important method to evaluate icing hazards and develop aircraft icing protection systems. Referring to the phase-field method, a new ice accretion mathematical model is developed to predict the ice shape. The mass fraction of ice in the mixture is selected as the phase parameter, and the phase equation is established with a freezing coefficient. Meanwhile, the mixture thickness and temperature are determined by combining mass conservation and energy balance. Ice accretions are simulated under typical ice conditions, including rime ice, glaze ice and mixed ice, and the ice shape and its characteristics are analyzed and compared with those provided by experiments and LEWICE. The results show that the phase-field ice accretion model can predict the ice shape under different icing conditions, especially reflecting some main characteristics of glaze ice. Keywords: numerical simulation; phase-field method; aircraft icing; ice accretion model Citation: Dai, H.; Zhu, C.; Zhao, H.; Liu, S.
    [Show full text]
  • FAA Advisory Circular AC 91-74B
    U.S. Department Advisory of Transportation Federal Aviation Administration Circular Subject: Pilot Guide: Flight in Icing Conditions Date:10/8/15 AC No: 91-74B Initiated by: AFS-800 Change: This advisory circular (AC) contains updated and additional information for the pilots of airplanes under Title 14 of the Code of Federal Regulations (14 CFR) parts 91, 121, 125, and 135. The purpose of this AC is to provide pilots with a convenient reference guide on the principal factors related to flight in icing conditions and the location of additional information in related publications. As a result of these updates and consolidating of information, AC 91-74A, Pilot Guide: Flight in Icing Conditions, dated December 31, 2007, and AC 91-51A, Effect of Icing on Aircraft Control and Airplane Deice and Anti-Ice Systems, dated July 19, 1996, are cancelled. This AC does not authorize deviations from established company procedures or regulatory requirements. John Barbagallo Deputy Director, Flight Standards Service 10/8/15 AC 91-74B CONTENTS Paragraph Page CHAPTER 1. INTRODUCTION 1-1. Purpose ..............................................................................................................................1 1-2. Cancellation ......................................................................................................................1 1-3. Definitions.........................................................................................................................1 1-4. Discussion .........................................................................................................................6
    [Show full text]
  • Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications”
    UNIVERSITY OF NAPLES “FEDERICO II” PhD course in Aerospace, Naval and Quality Engineering PhD Thesis in Aerospace Engineering “ELECTRICALLY HEATED COMPOSITE LEADING EDGES FOR AIRCRAFT ANTI-ICING APPLICATIONS” by Francesco De Rosa 2010 To my girlfriend Tiziana for her patience and understanding precious and rare human virtues University of Naples Federico II Department of Aerospace Engineering DIAS PhD Thesis in Aerospace Engineering Author: F. De Rosa Tutor: Prof. G.P. Russo PhD course in Aerospace, Naval and Quality Engineering XXIII PhD course in Aerospace Engineering, 2008-2010 PhD course coordinator: Prof. A. Moccia ___________________________________________________________________________ Francesco De Rosa - Electrically Heated Composite Leading Edges for Aircraft Anti-Icing Applications 2 Abstract An investigation was conducted in the Aerospace Engineering Department (DIAS) at Federico II University of Naples aiming to evaluate the feasibility and the performance of an electrically heated composite leading edge for anti-icing and de-icing applications. A 283 [mm] chord NACA0012 airfoil prototype was designed, manufactured and equipped with an High Temperature composite leading edge with embedded Ni-Cr heating element. The heating element was fed by a DC power supply unit and the average power densities supplied to the leading edge were ranging 1.0 to 30.0 [kW m-2]. The present investigation focused on thermal tests experimentally performed under fixed icing conditions with zero AOA, Mach=0.2, total temperature of -20 [°C], liquid water content LWC=0.6 [g m-3] and average mean volume droplet diameter MVD=35 [µm]. These fixed conditions represented the top icing performance of the Icing Flow Facility (IFF) available at DIAS and therefore it has represented the “sizing design case” for the tested prototype.
    [Show full text]
  • Pilots Can Minimize the Likelihood of Aircraft Roll Upset in Severe Icing
    FLIGHT SAFETY FOUNDATION JANUARY 1996 FLIGHT SAFETY DIGEST Pilots Can Minimize the Likelihood of Roll Upset in Severe Icing FLIGHT SAFETY FOUNDATION For Everyone Concerned Flight Safety Digest With the Safety of Flight Vol. 15 No. 1 January 1996 Officers/Staff In This Issue Stuart Matthews Chairman, President and CEO Pilots Can Minimize the Likelihood of Board of Governors Roll Upset in Severe Icing 1 Robert Reed Gray, Esq. Under unusual conditions associated with General Counsel and Secretary Board of Governors supercooled large droplets, roll upset can result from ice accretion on a sensitive area of the wing, ADMINISTRATIVE aft of the deicing boots. Pilots must be sensitive Nancy Richards to cues — visual, audible and tactile — that Executive Secretary identify severe icing conditions, and then promptly exit the icing conditions before control FINANCIAL of the airplane is degraded to a hazardous level. Brigette Adkins Accountant Approach-and-landing Accidents TECHNICAL Accounted for Majority of Commercial 10 Robert H. Vandel Director of Technical Projects Jet Hull Losses, 1959–1994 MEMBERSHIP The flight crew was the primary causal factor in the largest number of commercial jet hull-loss J. Edward Peery Director of Membership and Development accidents, according to Boeing statistics. Ahlam Wahdan Assistant to the Director of Membership and Development Report Disputes Commission’s Findings on Mt. Erebus Accident 14 PUBLICATIONS Book offers guidance on successful corporate Roger Rozelle aviation management. Director of Publications Girard Steichen Assistant Director of Publications Airbus A300 Crew Anticipates Clearance, Rick Darby Makes Unauthorized Takeoff 18 Senior Editor Helicopter strikes electrical wires, with two Karen K.
    [Show full text]
  • A “Short Course” on Ice and the TBM
    A “Short Course” on Ice and the TBM. Icing is topical at the present time as a result of a recent accident in a TBM. I have had a number of conversations with pilots who I would consider knowledgeable and it is apparent that there is a lot of confusion surrounding this subject. Also noting on line posts this confusion is not limited to owner pilots. I have had occasion to be a victim of my own stupidity in a serious icing condition years ago and I can vouch that icing is a deadly serious situation in more ways than one. Before going on with the subject we want to stipulate that the data we are about to provide is a summary of information that is to be found on line, along with narrative and data provided from knowledgeable instructors, if any of the data provided conflicts with anything you have been taught we urge you to satisfy yourself as to which data is correct. TBM operators fly in the same airspace where we find Part 25 aircraft (Commercial Category) aircraft. There is a big difference in how these two categories of aircraft are affected by icing conditions. A 767 will often be climbing at over 300 kts and 4000+ ft/min at typical icing altitudes. This creates two very distinct advantages for the 767: first, their icing exposure time may be less than 1/3 of ours. Second, icing conditions are a function of TAT (Total Air Temperature), not SAT (static air temp). TAT is warmer than SAT because of the effects of compressibility as the airplane operates at faster and faster speeds.
    [Show full text]
  • Overview of Icing Research at NASA Glenn
    Overview of Icing Research at NASA Glenn Eric Kreeger NASA Glenn Research Center Icing Branch 25 February, 2013 Glenn Research Center at Lewis Field Outline • The Icing Problem • Types of Ice • Icing Effects on Aircraft Performance • Icing Research Facilities • Icing Codes Glenn Research Center at Lewis Field 2 Aircraft Icing Ground Icing Ice build-up results in significant changes to the aerodynamics of the vehicle This degrades the performance and controllability of the aircraft In-Flight Icing Glenn Research Center at Lewis Field 3 3 Aircraft Icing During an in-flight encounter with icing conditions, ice can build up on all unprotected surfaces. Glenn Research Center at Lewis Field 4 Recent Commercial Aircraft Accidents • ATR-72: Roselawn, IN; October 1994 – 68 fatalities, hull loss – NTSB findings: probable cause of accident was aileron hinge moment reversal due to an ice ridge that formed aft of the protected areas • EMB-120: Monroe, MI; January 1997 – 29 fatalities, hull loss – NTSB findings: probable cause of accident was loss-of-control due to ice contaminated wing stall • EMB-120: West Palm Beach, FL; March 2001 – 0 fatalities, no hull loss, significant damage to wing control surfaces – NTSB findings: probable cause was loss-of-control due to increased stall speeds while operating in icing conditions (8K feet altitude loss prior to recovery) • Bombardier DHC-8-400: Clarence Center, NY; February 2009 – 50 fatalities, hull loss – NTSB findings: probable cause was captain’s inappropriate response to icing condition 5 Glenn Research
    [Show full text]
  • Guidelines for Meteorological Icing Models, Statistical Methods and Topographical Effects
    291 GUIDELINES FOR METEOROLOGICAL ICING MODELS, STATISTICAL METHODS AND TOPOGRAPHICAL EFFECTS Working Group B2.16 Task Force 03 April 2006 GUIDELINES FOR METEOROLOGICAL ICING MODELS, STATISTICAL METHODS AND TOPOGRAPHICAL EFFECTS Task Force B2.16.03 Task Force Members: André Leblond – Canada (TF Leader) Svein M. Fikke – Norway (WG Convenor) Brian Wareing – United Kingdom (WG Secretary) Sergey Chereshnyuk – Russia Árni Jón Elíasson – Iceland Masoud Farzaneh – Canada Angel Gallego – Spain Asim Haldar – Canada Claude Hardy – Canada Henry Hawes – Australia Magdi Ishac – Canada Samy Krishnasamy – Canada Marc Le-Du – France Yukichi Sakamoto – Japan Konstantin Savadjiev – Canada Vladimir Shkaptsov – Russia Naohiko Sudo – Japan Sergey Turbin – Ukraine Other Working Group Members: Anand P. Goel – Canada Franc Jakl – Slovenia Leon Kempner – Canada Ruy Carlos Ramos de Menezes – Brasil Tihomir Popovic – Serbia Jan Rogier – Belgium Dario Ronzio – Italy Tapani Seppa – USA Noriyoshi Sugawara – Japan Copyright © 2006 “Ownership of a CIGRE publication, whether in paper form or on electronic support only infers right of use for personal purposes. Are prohibited, except if explicitly agreed by CIGRE, total or partial reproduction of the publication for use other than personal and transfer to a third party; hence circulation on any intranet or other company network is forbidden”. Disclaimer notice “CIGRE gives no warranty or assurance about the contents of this publication, nor does it accept any responsibility, as to the accuracy or exhaustiveness of the
    [Show full text]
  • Flight Safety Digest June-September 1997
    FLIGHT SAFETY FOUNDATION JUNE–SEPTEMBER 1997 FLIGHT SAFETY DIGEST SPECIAL ISSUE Protection Against Icing: A Comprehensive Overview Report An Urgent Safety FLIGHT SAFETY FOUNDATION For Everyone Concerned Flight Safety Digest With the Safety of Flight Vol. 16 No. 6/7/8/9 June–September 1997 Officers/Staff In This Issue Protection Against Icing: A Comprehensive Stuart Matthews Chairman, President and CEO Overview Board of Governors An Urgent Safety Report James S. Waugh Jr. The laws of aerodynamics, which make flight possible, can Treasurer be subverted in moments by a build-up of ice that in some Carl Vogt situations is barely visible. During icing conditions, ground General Counsel and Secretary deicing and anti-icing procedures become an essential Board of Governors element in safe operations. Moreover, in-flight icing issues continue to be made more complex by a growing body of ADMINISTRATIVE new knowledge, including refinements in our understanding Nancy Richards of aerodynamics and weather. Executive Secretary This unprecedented multi-issue Flight Safety Digest brings Ellen Plaugher together a variety of informational and regulatory documents Executive Support–Corporate Services from U.S. and European sources. Collectively, they offer an overview of the knowledge concerning icing-related accident FINANCIAL prevention. Brigette Adkins Documents included in this special report are from such Controller widely divergent sources as the International Civil Aviation Organization (ICAO), the Association of European Airlines TECHNICAL (AEA), the U.S. Federal Aviation Administration (FAA), the Robert H. Vandel European Joint Aviation Authorities (JAA) and the Air Line Director of Technical Projects Pilots Association, International (ALPA). In addition, pertinent articles from FSF publications have MEMBERSHIP been reprinted here.
    [Show full text]
  • The Harsh-Environment Initiative – Meeting the Challenge of Space-Technology Transfer
    r bulletin 99 — september 1999 The Harsh-Environment Initiative – Meeting the Challenge of Space-Technology Transfer P. Kumar Director of Space Systems and Applications, C-CORE, Memorial University of Newfoundland, St. John’s, Canada P. Brisson & G. Weinwurm Technology Transfer Programme, ESA Directorate for Industrial Matters and Technology Programmes, ESTEC, Noordwijk, The Netherlands J. Clark Principal Consultant, C-CORE, St. John’s, Canada Introduction The key issues relating to oil & gas and mining ESA awarded the Harsh Environments Initiative operations were identified through specialist (HEI) contract to C-CORE in August 1997 workshops as well as one-on-one meetings following an open bidding process in Canada. with potential industry users. New technologies Supported by the Canadian Space Agency that could enable the targeted sectors to (CSA) also, C-CORE undertook ‘The enhance operations in harsh environments, to Application of Space Technologies to develop capabilities for more automated Operations in Harsh Terrestrial and Marine operations and provide the ability to operate Environments’. Phase-1 of the Initiative ended year round, were determined. Oil & gas and in February 1999 and was followed by a mining development in remote regions such as the Arctic require safe, reliable and efficient ESA’s Harsh Environments Initiative (HEI) is a programme aimed at operations. Likewise, offshore oil & gas transferring space technologies to terrestrial operations in harsh development, particularly in areas invaded by environments. C-CORE is the prime contractor to ESA for sea ice or icebergs, requires subsea systems implementing the programme, and the Canadian Space Agency is a that integrate such technologies as robotics programme sponsor.
    [Show full text]
  • Proceedings of the Thirteenth International Seminar of the International Society of Air Safety Investigator
    The International Society ofAirSafety Investigators Volume 15 1982 Proceedings of the Thirteenth International Seminar of the International Society of Air Safety Investigator. Dan Hotel Tel Aviv, Israel October II-October 15, 1982 Call for Papers forum The 1983 ISASI International Seminar of the International Society of Air Safety Investigators Published Quarterly by the will be held at the Chicago Marriott Hotel in International Society of Air Safety Investigators Chicago, Illinois Volume 15 #2,1982 October 11-14, 1983 Editor-Ira J . Rimson The theme of the seminar will be: The Editorial objective is to "report developments and ad­ vanced techniques of particular interest to the professional "The Air Safety Investigator: aircraft accident investigator. Opinions and conclusions Meeting the Future Challenge of Aerospace Technology" expressed herein are those of the writers and are not of­ ficial positions of The Society. The Editorial Staff reserves (Presenta tions on other topics will be considered) the right to reject any article that, in its opinion, is not in Authors wishing to present papers are invited to keeping with the ideas and!or objectives of the Society. It submit a 200-300 word abstract to: further reserves the righ t to delete, summarize or edit por­ tions of any article when such action is indicated by prin­ J ack J. Eggspuehler ting space limitations. 24 N. High Street Dublin, Ohio 43017 Phone: (614) 889-0715 Editorial Offi ce: Abstracts must be received by April 30, 1983. c/o Editor, ISASI forum Final Papers will be required by August 15, 1983. 4507 Wakefield Drive Annandale, VA 22003 CHANGE OF ADDRESS isasi West Building, Room 259 The Jerome F.
    [Show full text]
  • In-Flight Icing Encounter and Loss of Control, Simmons Airlines, D.B.A
    F PB96-91040I NTSB/AAR-96/01 DCA95MA001 NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORT IN-FLIGHT ICING ENCOUNTER AND LOSS OF CONTROL SIMMONS AIRLINES, d.b.a. AMERICAN EAGLE FLIGHT 4184 AVIONS de TRANSPORT REGIONAL (ATR) MODEL 72-212, N401AM ROSELAWN, INDIANA OCTOBER 31,1994 VOLUME 1: SAFETY BOARD REPORT 6486C The National Transportation Safety Board is an independent Federal agency dedicated to promoting aviation, railroad, highway, marine, pipeline, and hazardous materials safety. Established in 1967, the agency is mandated by Congress through the Independent Safety Board Act of 1974 to investigate transportation accidents, determine the probable causes of the accidents, issue safety recommendations, study transportation safety issues, and evaluate the safety effectiveness of government agencies involved in transportation. The Safety Board makes public its actions and decisions through accident reports, safety studies, special investigation reports, safety recommendations, and statistical reviews. Information about available publications may be obtained by contacting: National Transportation Safety Board Public Inquiries Section, RE-51 490 L’Enfant Plaza, S.W. Washington, D.C. 20594 (202)382-6735 (800)877-6799 Safety Board publications may be purchased, by individual copy or by subscription, from: National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 (703)487-4600 NTSB/AAR-96/01 PB96-910401 NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORT IN-FLIGHT ICING ENCOUNTER AND LOSS OF CONTROL SIMMONS AIRLINES, d.b.a. AMERICAN EAGLE FLIGHT 4184 AVIONS de TRANSPORT REGIONAL (ATR) MODEL 72-212, N401AM ROSELAWN, INDIANA OCTOBER 31, 1994 Adopted: July 9, 1996 Notation 6486C Abstract: Volume I of this report explains the crash of American Eagle flight 4184, an ATR 72 airplane during a rapid descent after an uncommanded roll excursion.
    [Show full text]
  • In-Flight Icing Encounter and Uncontrolled Collision with Terrain Comair Flight 3272 Embraer Emb-120Rt, N265ca Monroe, Michigan January 9, 1997
    PB98-910404 ‘I NTSB/AAR-98/04 DCA97MA017 NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORT IN-FLIGHT ICING ENCOUNTER AND UNCONTROLLED COLLISION WITH TERRAIN COMAIR FLIGHT 3272 EMBRAER EMB-120RT, N265CA MONROE, MICHIGAN JANUARY 9, 1997 6997A/B/C The National Transportation Safety Board is an independent Federal agency dedicated to promoting aviation, railroad, highway, marine, pipeline, and hazardous materials safety. Established in 1967, the agency is mandated by Congress through the Independent Safety Board Act of 1974 to investigate transportation accidents, determine the probable causes of the accidents, issue safety recommendations, study transportation safety issues, and evaluate the safety effectiveness of government agencies involved in transportation. The Safety Board makes public its actions and decisions through accident reports, safety studies, special investigation reports, safety recommendations, and statistical reviews. Recent publications are available in their entirety on the Web at http://www.ntsb.gov/. Other information about available publications may be obtained from the Web site or by contacting: National Transportation Safety Board Public Inquiries Section, RE-51 490 L’Enfant Plaza, S.W. Washington, D.C. 20594 (202)382-6735 (800)877-6799 Safety Board publications may be purchased, by individual copy or by subscription, from: National Technical Information Service 5285 Port Royal Road Springfield, Virginia 22161 (703)605-6000 (800)553-6847 NTSB/AAR-98/04 PB98-910404 NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. 20594 AIRCRAFT ACCIDENT REPORT IN-FLIGHT ICING ENCOUNTER AND UNCONTROLLED COLLISION WITH TERRAIN COMAIR FLIGHT 3272 EMBRAER EMB-120RT, N265CA MONROE, MICHIGAN JANUARY 9, 1997 Adopted: November 4, 1998 Notation 6997A/B/C Abstract: This report explains the accident involving an EMB-120RT, operated by COMAIR Airlines, Inc., as flight 3272, that crashed during a rapid descent after an uncommanded roll excursion near Monroe, Michigan, on January 9, 1997.
    [Show full text]