Graphics on the WWW
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(POSIX®)— Part 1: System Application Program Interface (API) [C Language]
International Standard ISO/IEC 9945-1: 1996 (E) IEEE Std 1003.1, 1996 Edition (Incorporating ANSI/IEEE Stds 1003.1-1990, 1003.1b-1993, 1003.1c-1995, and 1003.1i-1995) Information technology—Portable Operating System Interface (POSIX®)— Part 1: System Application Program Interface (API) [C Language] Sponsor Portable Applications Standards Committee of the IEEE Computer Society Adopted as an International Standard by the International Organization for Standardization and by the International Electrotechnical Commission Published by The Institute of Electrical and Electronics Engineers, Inc. Abstract: This standard is part of the POSIX series of standards for applications and user interfaces to open systems. It defines the applications interface to basic system services for input/output, file system access, and process management. It also defines a format for data interchange. When options specified in the Realtime Extension are included, the standard also defines interfaces appropriate for realtime applications. When options specified in the Threads Extension are included, the standard also defines interfaces appropriate for multithreaded applications. This standard is stated in terms of its C language binding. Keywords: API, application portability, C (programming language), data processing, information interchange, open systems, operating system, portable application, POSIX, programming language, realtime, system configuration computer interface, threads POSIX is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. Quote in 8.1.2.3 on Returns is taken from ANSI X3.159-1989, developed under the auspices of the American National Standards Accredited Committee X3 Technical Committee X3J11. The Institute of Electrical and Electronics Engineers, Inc. 345 East 47th Street, New York, NY 10017-2394, USA Copyright © 1996 by the Institute of Electrical and Electronics Engineers, Inc. -
The Use of VRML to Integrate Design and Solid Freeform Fabrication
The Use ofVRML to Integrate Design and Solid Freeform Fabrication Yanshuo Wang Jian Dong * Harris L. Marcus Solid Freeform Fabrication Laboratory University ofConnecticut Storrs, CT 06269 ABSTRACT The Virtual Reality Modeling Language (VRML) was created to put interconnected 3D worlds onto every desktop. The 3D VRML format has the potential for 3D fax and Tele Manufacture. An architecture and methodology ofusing VRML format to integrate a 3D model and Solid Freeform Fabrication system are described in this paper. The prototype software discussed in this paper demonstrates the use of VRML for Solid Freeform Fabrication process planning. The path used from design to part will be described. 1. INTRODUCTION The STL or Stereolithography format, established by 3D System, is an ASCn or binary file used in Solid Freeform Fabrication (SFF). It is a list of the triangular surfaces that approximate a computer generated solid model. This file format has become the de facto standard for rapid prototyping industries. But STL format has the limitation of visualization, communication and sharing information among different places. In the recent years, Tele Manufacture has become a new area in the design and manufacture research. Researchers try to create an automated rapid prototyping capability on the Internet (Bailey, 1995). In order to improve the communication and information exchange through Internet, a new data format is needed for SFF. Bauer and Joppe (1996) suggested to use Virtual Reality Modeling Language (VRML) data format as standard for rapid prototyping. VRML was created to put interconnected 3D worlds onto every desktop and it has become the standard language for 3D World Wide Web. -
SVG Tutorial
SVG Tutorial David Duce *, Ivan Herman +, Bob Hopgood * * Oxford Brookes University, + World Wide Web Consortium Contents ¡ 1. Introduction n 1.1 Images on the Web n 1.2 Supported Image Formats n 1.3 Images are not Computer Graphics n 1.4 Multimedia is not Computer Graphics ¡ 2. Early Vector Graphics on the Web n 2.1 CGM n 2.2 CGM on the Web n 2.3 WebCGM Profile n 2.4 WebCGM Viewers ¡ 3. SVG: An Introduction n 3.1 Scalable Vector Graphics n 3.2 An XML Application n 3.3 Submissions to W3C n 3.4 SVG: an XML Application n 3.5 Getting Started with SVG ¡ 4. Coordinates and Rendering n 4.1 Rectangles and Text n 4.2 Coordinates n 4.3 Rendering Model n 4.4 Rendering Attributes and Styling Properties n 4.5 Following Examples ¡ 5. SVG Drawing Elements n 5.1 Path and Text n 5.2 Path n 5.3 Text n 5.4 Basic Shapes ¡ 6. Grouping n 6.1 Introduction n 6.2 Coordinate Transformations n 6.3 Clipping ¡ 7. Filling n 7.1 Fill Properties n 7.2 Colour n 7.3 Fill Rule n 7.4 Opacity n 7.5 Colour Gradients ¡ 8. Stroking n 8.1 Stroke Properties n 8.2 Width and Style n 8.3 Line Termination and Joining ¡ 9. Text n 9.1 Rendering Text n 9.2 Font Properties n 9.3 Text Properties -- ii -- ¡ 10. Animation n 10.1 Simple Animation n 10.2 How the Animation takes Place n 10.3 Animation along a Path n 10.4 When the Animation takes Place ¡ 11. -
3D Visualization in Digital Library of Mathematical Function
Web-Based 3D Visualization in a Digital Library of Mathematical Functions Qiming Wang, Bonita Saunders National Institute of Standards and Technology [email protected], [email protected] Abstract High level, or special, mathematical functions such as the Bessel functions, gamma and beta functions, hypergeometric functions The National Institute of Standards and Technology (NIST) is and others are important for solving many problems in the developing a digital library of mathematical functions to replace mathematical and physical sciences. The graphs of many of these the widely used National Bureau of Standards Handbook of functions exhibit zeros, poles, branch cuts and other singularities Mathematical Functions [Abramowitz and Stegun 1964]. The that can be better understood if the function surface can be NIST Digital Library of Mathematical Functions (DLMF) will manipulated to show these features more clearly. A digital provide a wide range of information about high level functions for library offers a unique opportunity to create cutting-edge 3D scientific, technical and educational users in the mathematical and visualizations that not only help scientists and other technical physical sciences. Clear, concise 3D visualizations that allow users, but also make the library more accessible to educators, users to examine poles, zeros, branch cuts and other key features students and others interested in an introduction to the field of of complicated functions will be an integral part of the DLMF. special functions. Specially designed controls will enable users to move a cutting plane through the function surface, select the surface color After investigating web-based 3D graphics file formats, we mapping, choose the axis style, or transform the surface plot into a selected the Virtual Reality Modeling Language (VRML) to density plot. -
The Virtual Reality Modeling Language (VRML) and Java
The Virtual Reality Modeling Language and Java Don Brutzman Code UW/Br, Naval Postgraduate School Monterey California 93943-5000 USA [email protected] Communications of the ACM, vol. 41 no. 6, June 1998, pp. 57-64. http://www.web3D.org/WorkingGroups/vrtp/docs/vrmljava.pdf Abstract. The Virtual Reality Modeling Language (VRML) and Java provide a standardized, portable and platform- independent way to render dynamic, interactive 3D scenes across the Internet. Integrating two powerful and portable software languages provides interactive 3D graphics plus complete programming capabilities plus network access. Intended for programmers and scene authors, this paper provides a VRML overview, synopsizes the open development history of the specification, provides a condensed summary of VRML 3D graphics nodes and scene graph topology, describes how Java interacts with VRML through detailed examples, and examines a variety of VRML/Java future developments. Overview. The Web is being extended to three spatial dimensions thanks to VRML, a dynamic 3D scene description language that can include embedded behaviors and camera animation. A rich set of graphics primitives provides a common-denominator file format which can be used to describe a wide variety of 3D scenes and objects. The VRML specification is now an International Standards Organization (ISO) specification (VRML 97). Why VRML and Java together? Over twenty million VRML browsers have shipped with Web browsers, making interactive 3D graphics suddenly available for any desktop. Java adds complete programming capabilities plus network access, making VRML fully functional and portable. This is a powerful new combination, especially as ongoing research shows that VRML plus Java provide extensive support for building large-scale virtual environments (LSVEs). -
Design and Implementation of a 2D Graphics Package In
- DESIGN AND IMPLEMENTATION OF A 2D GRAPHICS PACKAGE IN ADA 95 By LAN LI Bachelor of Science ZheJiang University HangZhou, China 1987 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE December, 1996 - DESIGN AND IMPLEMENTATION OF A 2D GRAPHICS PACKAGE IN ADA 95 Thesis approved: H. ~< 11 - ACKNOWLEDGMENT I express my sincere gratitude to my advisor Dr. George for his constructive guidance, supervision, inspiration and financial support. Without his understanding and support, I could not have accomplished this project. Appreciation also extends to my committee members Dr. Chandler and Dr. Lu, their great help are invaluable when I was in difficult situation. I would also like to thank my husband who always gives me encouragement and support in the background. Thanks my son Eric, who was just born, for sharing my happiness and pain, tolerating my occasional inattention during this project. My special thanks also go to my parents who help me take care of my baby with their tremendous love that give me much time to finish this work. This project is supported by DISA Grant DCA 100-96-1-0007 iii L - TABLE OF CONTENTS Chapter Page 1. Introduction 1 2. Literature Review ..............................................................................•.............3 2.1. A Review of Standard Graphics Packages 3 2.1.1. GKS (Graphical Kernel System) 3 a) Logic3.1 Workstations ., 5 b) Graphics Primitives 6 c) logical Input Devices................................................................•...........•.............. 7 d) Mode of Interaction 7 e) Segmentation .....................................................................................•................. 7 f) Metafile '•...........•................................ 8 2.1.2. PHIGS (Programmer's Hierarchical Interactive Graphics System) 8 a) Graphics Output 9 b) Graphics Inpu.t 10 c) Interaction handling .............................................................................•.•........ -
GKS-94 to SVG: Some Reflections on the Evolution of Standards for 2D
EG UK Computer Graphics & Visual Computing (2015) Rita Borgo, Cagatay Turkay (Editors) GKS-94 to SVG: Some Reflections on the Evolution of Standards for 2D Graphics D. A. Duce1 and F.R.A. Hopgood2 1Department of Computing and Communication Technologies, Oxford Brookes University, UK 2Retired, UK Abstract Activities to define international standards for computer graphics, in particular through ISO/IEC, started in the 1970s. The advent of the World Wide Web has brought new requirements and opportunities for standardization and now a variety of bodies including ISO/IEC and the World Wide Web Consortium (W3C) promulgate standards in this space. This paper takes a historical look at one of the early ISO/IEC standards for 2D graphics, the Graph- ical Kernel System (GKS) and compares key concepts and approaches in this standard (as revised in 1994) with concepts and approaches in the W3C Recommendation for Scalable Vector Graphics (SVG). The paper reflects on successes as well as lost opportunities. Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Computer Graphics]: Methodology and Techniques—Standards 1. Introduction a W3C Recommendation early in 1999. The current (at the time of writing) revision was published in 2010 [web10]. The Graphical Kernel System (GKS) was the first ISO/IEC international standard for computer graphics and was pub- It was clear from the early days that a vector graphics for- lished in 1985 [GKS85]. This was followed by other stan- mat specifically for the web would be a useful addition to the dards including the Computer Graphics Metafile (CGM), then-available set of markup languages. -
COLLADA: an Open Standard for Robot File Formats
COLLADA: An Open Standard for Robot File Formats Rosen Diankov*, Ryohei Ueda*, Kei Okada*,Hajime Saito** *JSK Robotics System Laboratory, The University of Tokyo ** GenerarlRobotix Inc. Sept 8, 2011, 09:30-11:00 and 12:30-14:00 Introduction • Robotics Software Platforms – To share research tools between robots • Missing Link: Standard Robot File Format OpenRAVE for planning EusLisp ROS for PR2 Robot File Format OpenHRP for controllers DARwIn-OP Choregraphe for Nao Webots Standard Robot File Format • Define robot file format standards ? – Kinematics, Geometry, Physics – Sensors, Actuators – And more ???? • Content-scalable – There will always be information that another developer wants to insert – NOT adding new information to extend the original content, BUT adding new content. – Manage new content and allow extensibility of existing content with the scalability. COLLADA Features (1) • COLLADA:COLLAborative Design Activity – http://www.khronos.org/collada/ • XML-based open standard • Originally started as 3D model format Mimic joint • Most recent version(1.5) supports physics, kinematics and b-rep splines. • Supported by Blender, OpenSceneGraph and SolidWorks. Closed link COLLADA Specification • Core content management tags to dictate the referencing structures – Geometries, kinematics bodies, physics bodies and joints as libraries • Defines different type of scenes for graphics, physics and kinematics – Bind joints and links to form these scenes, not one- to-one relations between graphics and kinematics • COLLADA kinematics supports -
Implementation of Web 3D Tools for Creating Interactive Walk Through
INTRODUCTION OF SVG AS A DATA INTERCHANGE FORMAT FOR ARCHITECTURAL DOCUMENTATIONS Günter Pomaska Faculty of Architecture and Civil Engineering, Bielefeld University of Applied Sciences, Germany [email protected] CIPA Working Group VII - Photography Keywords: Architecture, Internet / Web, modelling, architectural heritage conservation, vector graphics Abstract: Web tools provide software for generating data formats and interactive viewing. Since the bandwidth of the Web is still limited, not by technology but accessibility of hardware, several companies introduced their own formats. Targeting to small file formats and speed. One can observe that since 1997 3D environments are published on the Web. Numerous software packages were released to the market. Lots of them escaped soon without reaching importance. Due to the proprietary formats and the limited bandwidth of the Internet connections most of them became failures. VRML, virtual modelling language, was introduced to create and model virtual environments. This standard, defined by the Web 3D consortium, is more used for off-line presentations instead of distributing 3D worlds via the Internet. SVG (scalable vector graphics) introduced in 2001 is limited to 2D and should be the answer of the Web community to Macrome- dia’s Flash. SVG is defined by the World Wide Web Consortium (W3C) for 2D vector graphics. The success of SVG lies in its standardisation and unification of this XML-based language. With SVG interactive viewing and animation of graphic content is possible. A visitor of a Web site can zoom through maps and drawings, containing a huge amount of data. The quality of the presen- tation is high and even loss-free despite very large-scale factors. -
Visualizing Information Using SVG and X3D Vladimir Geroimenko and Chaomei Chen (Eds) Visualizing Information Using SVG and X3D
Visualizing Information Using SVG and X3D Vladimir Geroimenko and Chaomei Chen (Eds) Visualizing Information Using SVG and X3D XML-based Technologies for the XML-based Web With 125 Figures including 86 Colour Plates 123 Vladimir Geroimenko, DSc, PhD, MSc School of Computing, University of Plymouth, Plymouth PL4 8AA, UK Chaomei Chen, PhD, MSc, BSc College of Information Science and Technology, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104-2875, USA British Library Cataloguing in Publication Data Visualizing information using SVG and X3D:XML-based technologies for the XML-based web 1. Information visualization 2. computer graphics 3. SVG (Document markup language) 4. XML (Document markup language) 5. Semantic Web I. Geroimenko,Vladimir, 1955– II. Chen, Chaomei, 1960– 005.2′76 ISBN 1852337907 CIP data available Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per- mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the pub- lishers, or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency.Enquiries concerning reproduction outside those terms should be sent to the publishers. ISBN 1-85233-790-7 Springer London Berlin Heidelberg Springer is a part of Springer Science Business Media springeronline.com © Springer-Verlag London Limited 2005 Printed in the United States of America The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant laws and regulations and therefore free for general use. -
Rapidauthor/Rapidauthor for Teamcenter 13.1 Supported 3D CAD Import Formats
RapidAuthor/RapidAuthor for Teamcenter 13.1 Supported 3D CAD Import Formats RapidAuthor Version 13.1 There are two different versions of the software: RapidAuthor and RapidAuthor for Teamcenter. RapidAuthor for Teamcenter is integrated with Teamcenter and imports JT data; RapidAuthor imports data in various CAD formats listed below. If the users of RapidAuthor for Teamcenter would like to import various CAD data listed in the RapidAuthor section of this document, they need to install RapidDataConverter for Teamcenter in addition to RapidAuthor for Teamcenter. Format Version Extensions I-deas Up to 13.x (NX 5), MF1, ARC, UNV, PKG NX I-deas 6 JT Up to 10.3 JT Parasolid Up to 32.0 X_B, X_T, XMT, XMT_TXT NX - Unigraphics Unigraphics V11.0 – PRT NX 12.0 and 1926 Solid Edge V19, V20, ST-ST10, ASM, PAR, PWD, PSM 2020 Format Version Extensions Creo Elements/Pro Pro/Engineer 19.0 ASM, NEU, PRT, XAS, XPR (earlier Pro/Engineer) to Creo 7.0 (c) 2011-2021 ParallelGraphics Ltd. All rights reserved. RapidAuthor/RapidAuthor for Teamcenter 13.1 Supported 3D CAD Import Formats Format Version Extensions Import of textures and texture coordinates Autodesk Inventor Up to 2021 IPT, IAM Supported AutoCAD Up to 2019 DWG, DXF Autodesk 3DS All versions 3ds Supported Autodesk DWF All versions DWF, DWFX Supported Autodesk FBX All binary versions, FBX Supported ASCII data 7100 – 7400 Format Version Extensions Import of textures and texture coordinates ACIS Up to 2020 SAT, SAB CATIA V4 Up to 4.2.5 MODEL, SESSION, DLV, EXP CATIA V5 Up to V5-6 R2020 CATDRAWING, (R29) CATPART, CATPRODUCT, CATSHAPE, CGR, 3DXML CATIA V6 / Up to V5-6 R2019 3DXML 3DExperience (R29) SolidWorks 97 – 2021 SLDASM, SLDPRT Supported (c) 2011-2021 ParallelGraphics Ltd. -
An Overview of 3D Data Content, File Formats and Viewers
Technical Report: isda08-002 Image Spatial Data Analysis Group National Center for Supercomputing Applications 1205 W Clark, Urbana, IL 61801 An Overview of 3D Data Content, File Formats and Viewers Kenton McHenry and Peter Bajcsy National Center for Supercomputing Applications University of Illinois at Urbana-Champaign, Urbana, IL {mchenry,pbajcsy}@ncsa.uiuc.edu October 31, 2008 Abstract This report presents an overview of 3D data content, 3D file formats and 3D viewers. It attempts to enumerate the past and current file formats used for storing 3D data and several software packages for viewing 3D data. The report also provides more specific details on a subset of file formats, as well as several pointers to existing 3D data sets. This overview serves as a foundation for understanding the information loss introduced by 3D file format conversions with many of the software packages designed for viewing and converting 3D data files. 1 Introduction 3D data represents information in several applications, such as medicine, structural engineering, the automobile industry, and architecture, the military, cultural heritage, and so on [6]. There is a gamut of problems related to 3D data acquisition, representation, storage, retrieval, comparison and rendering due to the lack of standard definitions of 3D data content, data structures in memory and file formats on disk, as well as rendering implementations. We performed an overview of 3D data content, file formats and viewers in order to build a foundation for understanding the information loss introduced by 3D file format conversions with many of the software packages designed for viewing and converting 3D files.