Branching Pattern of External Carotid Artery in Human Cadavers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ascending Pharyngeal Artery Arising from a Hypoplastic Internal Carotid Artery
Published online: 2021-08-09 CASE REPORT Ascending pharyngeal artery arising from a hypoplastic internal carotid artery Charif A. Sidani, Rami Sulaiman1, Amr Rahal2, Danea J. Campbell Department of Radiology, University of Miami Miller School of Medicine, Jackson Memorial Hospital, Miami, Fl 33136, USA, 1 Department of Radiology, Cairo University Faculty of Medicine, Cairo, Egypt, 2 School of Medicine, Saba University School of Medicine, Saba, Dutch Caribbean, Netherlands Access this article online ABSTRACT Website: www.avicennajmed.com DOI: 10.4103/2231-0770.160251 Normal vascular variants often have clinical/surgical significance and can be misinterpreted for Quick Response Code: pathology. We report a case ascending pharyngeal artery arising from a hypoplastic internal carotid artery. We provide clues to differentiate between dysgenesis and disease/thrombosis of the internal carotid artery. Key words: Carotid canal, dysgenesis of internal carotid artery, hypopharyngeal artery, vascular variants INTRODUCTION carotid artery (ECA) as well as the proximal 1 cm of the right ICA. After the normal first centimeter, the ICA became of Dysgenesis of the ICA is a rare developmental anomaly seen in narrow caliber, without evidence of thrombus or dissection, <0.01% of the population.[1,2] The term incorporates agenesis and remained of homogeneous small caliber all the way (no carotid canal or vascular remnant), aplasia (vascular into a hypoplastic carotid canal. Findings confirmed the remnant and hypoplastic carotid canal), or hypoplasia congenital nature of the small ICA [Figure 2]. (small caliber, patent lumen). These abnormalities often have clinical/surgical significance and can be misinterpreted for Arising from the medial aspect of the proximal ICA was pathology. -
Neurovascular Anatomy (1): Anterior Circulation Anatomy
Neurovascular Anatomy (1): Anterior Circulation Anatomy Natthapon Rattanathamsakul, MD. December 14th, 2017 Contents: Neurovascular Anatomy Arterial supply of the brain . Anterior circulation . Posterior circulation Arterial supply of the spinal cord Venous system of the brain Neurovascular Anatomy (1): Anatomy of the Anterior Circulation Carotid artery system Ophthalmic artery Arterial circle of Willis Arterial territories of the cerebrum Cerebral Vasculature • Anterior circulation: Internal carotid artery • Posterior circulation: Vertebrobasilar system • All originates at the arch of aorta Flemming KD, Jones LK. Mayo Clinic neurology board review: Basic science and psychiatry for initial certification. 2015 Common Carotid Artery • Carotid bifurcation at the level of C3-4 vertebra or superior border of thyroid cartilage External carotid artery Supply the head & neck, except for the brain the eyes Internal carotid artery • Supply the brain the eyes • Enter the skull via the carotid canal Netter FH. Atlas of human anatomy, 6th ed. 2014 Angiographic Correlation Uflacker R. Atlas of vascular anatomy: an angiographic approach, 2007 External Carotid Artery External carotid artery • Superior thyroid artery • Lingual artery • Facial artery • Ascending pharyngeal artery • Posterior auricular artery • Occipital artery • Maxillary artery • Superficial temporal artery • Middle meningeal artery – epidural hemorrhage Netter FH. Atlas of human anatomy, 6th ed. 2014 Middle meningeal artery Epidural hematoma http://www.jrlawfirm.com/library/subdural-epidural-hematoma -
Anomalous Origin of the Middle Meningeal Artery
The Internet Journal of Radiology ISPUB.COM Volume 4 Number 2 Anomalous Origin of the Middle Meningeal Artery from the Petrous Segment of the Internal Carotid Artery Associated with Multiple Cerebrovascular Abnormalities I Omeis, M Crupain, M Tenner, R Murali Citation I Omeis, M Crupain, M Tenner, R Murali. Anomalous Origin of the Middle Meningeal Artery from the Petrous Segment of the Internal Carotid Artery Associated with Multiple Cerebrovascular Abnormalities. The Internet Journal of Radiology. 2005 Volume 4 Number 2. Abstract A 25-year-old male with a history of seizure disorder was found incidentally on cerebral angiography to have numerous congenital anomalies of the cerebral vascular system. Among these anomalies were the derivation of the left middle meningeal artery from the petrous portion of the internal carotid artery, the presence of a left cavernous angioma, cavernous origin of the left ophthalmic artery, and an accessory middle cerebral artery. Awareness of cerebral circulatory anatomical anomalies of this nature is of importance to all physicians who plan surgical and endovascular interventions. INTRODUCTION resonance imaging (MRI) with and without gadolinium The middle meningeal artery in most individuals arises from revealed a left temporal lobe cavernoma and associated the maxillary branch of the external carotid artery and enters developmental venous anomaly in the region of the collateral the skull through the foramen spinosum. It then divides into gyrus that were unchanged from of first diagnosis (Fig. 2). anterior and posterior branches to supply the dura and An electroencephalogram (EEG) showed some mild cerebral adjacent calvarium. A few instances have been reported of dysfunction over the left temporal region with no the aberrant origin of the middle meningeal artery from epileptiform abnormality. -
Clinical Importance of the Middle Meningeal Artery
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Jagiellonian Univeristy Repository FOLIA MEDICA CRACOVIENSIA 41 Vol. LIII, 1, 2013: 41–46 PL ISSN 0015-5616 Przemysław Chmielewski1, Janusz skrzat1, Jerzy waloCha1 CLINICAL IMPORTANCE OF THE MIDDLE MENINGEAL ARTERY Abstract: Middle meningeal artery (MMA)is an important branch which supplies among others cranial dura mater. It directly attaches to the cranial bones (is incorporated into periosteal layer of dura mater), favors common injuries in course of head trauma. This review describes available data on the MMA considering its varability, or treats specific diseases or injuries where the course of MMA may have clinical impact. Key words: Middle meningeal artery (MMA), aneurysm of the middle meningeal artery, epidural he- matoma, anatomical variation of MMA. TOPOGRAPHY OF THE MIDDLE MENINGEAL ARTERY AND ITS BRANCHES Middle meningeal artery (MMA) [1] is most commonly the strongest branch of maxillary artery (from external carotid artery) [2]. It supplies blood to cranial dura mater, and through the numerous perforating branches it nourishes also periosteum of the inner aspect of cranial bones. It enters the middle cranial fossa through the foramen spinosum, and courses between the dura mater and the inner aspect of the vault of the skull. Next it divides into two terminal branches — frontal (anterior) which supplies blood to bones forming anterior cranial fossa and the anterior part of the middle cranial fossa; parietal branch (posterior), which runs more horizontally toward the back and supplies posterior part of the middle cranial fossa and supratentorial part of the posterior cranial fossa. -
The Variations of the Subclavian Artery and Its Branches Ahmet H
Okajimas Folia Anat. Jpn., 76(5): 255-262, December, 1999 The Variations of the Subclavian Artery and Its Branches By Ahmet H. YUCEL, Emine KIZILKANAT and CengizO. OZDEMIR Department of Anatomy, Faculty of Medicine, Cukurova University, 01330 Balcali, Adana Turkey -Received for Publication, June 19,1999- Key Words: Subclavian artery, Vertebral artery, Arterial variation Summary: This study reports important variations in branches of the subclavian artery in a singular cadaver. The origin of the left vertebral artery was from the aortic arch. On the right side, no thyrocervical trunk was found. The two branches which normally originate from the thyrocervical trunk had a different origin. The transverse cervical artery arose directly from the subclavian artery and suprascapular artery originated from the internal thoracic artery. This variation provides a short route for posterior scapular anastomoses. An awareness of this rare variation is important because this area is used for diagnostic and surgical procedures. The subclavian artery, the main artery of the The variations of the subclavian artery and its upper extremity, also gives off the branches which branches have a great importance both in blood supply the neck region. The right subclavian arises vessels surgery and in angiographic investigations. from the brachiocephalic trunk, the left from the aortic arch. Because of this, the first part of the right and left subclavian arteries differs both in the Subjects origin and length. The branches of the subclavian artery are vertebral artery, internal thoracic artery, This work is based on a dissection carried out in thyrocervical trunk, costocervical trunk and dorsal the Department of Anatomy in the Faculty of scapular artery. -
The Ascending Pharyngeal Artery: a Collateral Pathway in Complete
AJNR :8, January/February 1987 CORRESPONDENCE 177 cavernous sinuses acute inflammation, granulation tissue, and throm which it partiCipates. This report describes two cases in which bus surrounded the nerves and internal carotid arteries. The left common carotid angiography showed complete occlu sion of the carotid artery was intact, but focally inflammed. The right internal internal carotid artery at its origin. Subsequent vertebral angiography carotid artery was focally necrotic, acutely inflammed and ruptured, in both cases showed reconstitution of thi s vessel several millimeters with hemorrhage emanating from the defect. above the origin by the ascending ph aryngeal artery , which had an unusual origin from the internal carotid artery [2]. Endarterectomy as a technical option was feasible in both cases becau se the occluded Discussion segments were only millimeters in length . The first patient, a 59-year-old man , presented 5 days before We are not aware of any instances of air within the cavernous admission with a sudden pareS is of the right arm and leg. Angiograph y sinus in a normal patient or after trauma. Our case demonstrates revealed complete occlusion of the left internal carotid artery with a several of the reported findings in cavernous sinus thrombosis includ small , smooth stump (Fig. 1 A) . A left vertebral arteriogram demon ing bulging of the lateral walls , irregular low-attenuation filling defects strated reconstitution of the left internal carotid artery just above the within the cavernous sinus, and proptosis (Fig . 1). occlusion (Fig . 1 B). Collateral supply was from mu scular branches of It is unclear whether the air within the sinus originated from a gas the vertebral artery, which anastomosed with muscular branches of forming organism or via direct extension from one of the sinuses via the ascending pharyngeal artery. -
Anatomical Considerations of the Superior Thyroid Artery: Its Origins, Variations, and Position Relative to the Hyoid Bone and Thyroid Cartilage
Original Article http://dx.doi.org/10.5115/acb.2016.49.2.138 pISSN 2093-3665 eISSN 2093-3673 Anatomical considerations of the superior thyroid artery: its origins, variations, and position relative to the hyoid bone and thyroid cartilage Sung-Yoon Won Department of Occupational Therapy, Semyung University, Jecheon, Korea Abstract: The aim of this study was to provide accurate anatomical descriptions of the overall anatomy of the superior thyroid artery (STA), its relationship to other structures, and its driving patterns. Detailed dissection was performed on thirty specimens of adult’s cadaveric neck specimens and each dissected specimen was carefully measured the following patterns and distances using digital and ruler. The superior thyroid, lingual, and facial arteries arise independently from the external carotid artery (ECA), but can also arise together, as the thyrolingual or linguofacial trunk. We observed that 83.3% of STAs arose independently from the major artery, while 16.7% of the cases arose from thyrolingual or linguofacial trunk. We also measured the distance of STA from its major artery. The origin of the STA from the ECA was 0.9±0.4 mm below the hyoid bone. The STA was 4.4±0.5 mm distal to the midline at the level of the laryngeal prominence and 3.1±0.6 mm distal to the midline at the level of the inferior border of thyroid cartilage. The distance between STA and the midline was similar at the level of the hyoid bone and the thyroid cartilage. Also, when the STA is near the inferior border of the thyroid cartilage, it travels at a steep angle to the midline. -
Lingual Perimandibular Vessels Associated with Life-Threatening Bleeding: an Anatomic Study
Mardinger.qxd 1/25/07 2:55 PM Page 127 Lingual Perimandibular Vessels Associated with Life-Threatening Bleeding: An Anatomic Study Ofer Mardinger, DMD1/Yifat Manor, DMD2/Eitan Mijiritsky, DMD3/Abraham Hirshberg, MD, DMD4 Purpose: To describe the anatomy of the lingual perimandibular vessels and emphasize the distance to the bone. Materials and Methods: The hemifacial lower third was dissected in 12 human cadavers. The blood vessels in the floor of the mouth were exposed using sagittal incisions at the canine, mental foramen, and second molar areas. Results: The diameter of the dissected vessels ranged from 0.5 to 3 mm (mean, 1.5 mm). Most vessels were found superior to the mylohyoid muscle in the canine area and beneath the muscle in the mental and second molar areas. The smallest median vertical distance from blood vessel to bone was in the canine area (14.5 mm), followed by the mental foramen area (15.5 mm) and the second premolar area (19 mm). The median horizontal distance of the vessels from the lingual plate was 2 mm at the canine and second molar areas and 4 mm at the mental area. Discussion: Lingual plate perforation, especially anterior to the canine area, can easily injure blood vessels in the floor of the mouth and cause life-threatening hemorrhage following implant placement. Bleeding can occur when the mandibular lingual plate is perforated. Care should be taken to recognize situations where this complication may occur. Conclusions: Based on the study of human cadavers, it appears that vessels in the floor of the mouth are sometimes in close proximity to the site of implant placement. -
Penetrating Vascular Injuries of the Face and Neck: Clinical and Angiographic Correlation
855 Penetrating Vascular Injuries of the Face and Neck: Clinical and Angiographic Correlation Charles M. North 1. 2 A retrospective review was made of 139 clinically stable patients who had sustained Jamshid Ahmadi penetrating trauma to the face and neck. The study was done to learn more about the Hervey D. Segall indications for angiography and the impact of angiography upon patient management. Chi-Shing Zee Some relationship between the physical examination and the angiographic findings was found. In the presence of anyone of four physical signs or symptoms (absent pulse, bruit, hematoma, or alteration of neurologic status) there was a 30% incidence of vascular injury. However, it is unlikely that a clinically significant traumatic vascular lesion will be missed if angiography is not obtained when these clinical signs and symptoms are not present. In the group of 78 patients who presented with only a wound penetrating the ' platysma and no other findings or symptoms, just two had vascular injuries on angiograms; one of these lesions was minor and the other did not affect the patient's management. There was a substantially higher rate (50%) of vascular injury in patients with trauma cephalad to the angle of the mandible compared with 11 % of patients who had neck trauma. Gunshot wounds were associated with vascular damage more frequently than were stab wounds. Angiography is often performed in penetrating trauma to the head and neck to evaluate the possibility of vascular injury and to aid in planning appropriate management [1]. Nonetheless, the role of angiography in penetrating head and neck trauma has remained controversial. -
Dural Arteriovenous Malformation of the Major Venous Sinuses: an Acquired Lesion
13 Dural Arteriovenous Malformation of the Major Venous Sinuses: An Acquired Lesion Mohammad Y. Chaudhary,1.2 Arteriovenous malformations of the dura are thought to be congenital. However, Ved P. Sachdev3 arteriographic investigations of four patients who, after a head injury, developed dural Soo H. Ch01 arteriovenous fistulae with features of congenital malformations suggest that these Imre Weitzner, Jr.1 abnormal communications may also be acquired. Thrombosis or thrombophlebitis in Smiljan Puljic2 the dural sinus or vein may be the primary event in their formation. The pathogenesis Yun Peng Huang 1 is probably " growth" of the dural arteries normally present in the walls of the sinuses during the organization of an intraluminal thrombus. This may result in a direct communication between artery and vein or sinus, establishing an abnormal shunt. Ultimate fibrosis of the sinus wall and intraluminal thrombus may be the factors responsible for the spontaneous disappearance of such malformations. Most dural arteriovenous malformations (AVMs) that involve th e major venous sinuses present either spontaneously or as incidental findings during arteriog raphy performed for other reasons. They occur predominantly in women over age 40 years [1]. The angiomatous network, multiple feeding arteries, numerous arteriovenous (A V) shunts, and occasional association with cerebral angiomas [2], as well as a few cases reported in children [3], suggest that these AVM s are congenital. Thrombosis of the draining sinus or vein is thought to be responsible for the occasional spontaneous disappearance of these lesions [4, 5]. Our experience with four patients who, after a head injury, developed dural AV fistulae with features of congenital malformations prompted a review of th e literature and this report. -
Branches of the External Carotid Artery of the Dromedary, Camelus Dromedarius Artery Origin Course Distribution
Table 3.4: Branches of the External Carotid Artery of the Dromedary, Camelus dromedarius Artery Origin Course Distribution Originates at the bifurcatio of the occipital artery from the common carotid artery. Superficial Occipital region, lateral face, pharynx, Common Carotid External Carotid course is throughout occipital and posteroinferior tongue, hyoid musculature, and Artery facial regions; deeper course is throughout sublingual glands. pharyngeal, lingual, and hyoid regions. The proper occipital artery is the first dorsal branch of the ECA. It arises near the caudal border of the wing of the atlas, traverses the atlantal fossa, and then splits into: 1. Multitude External Carotid of muscular branches; 2. Anastomosis with Collateral circulation with vertebral Occipital Artery vertebral artery (through alar foramen); 3. arteries; neck and occipital muscles Superior termination continues to course toward the external occipital protuberance, supplying the parenchyma of the occipital region inferior to and surrounding the foramen magnum. Variable origin: from the ECA or the "ascending pharyngeal." Condylar and ascending pharyngeal External Carotid may share a short common trunk. An anterior Artery (var: branch of the condylar artery follows the Inferior meninges and inferolateral Condylar Ascending hypoglossal nerve into the hypoglossal canal to occipital region. Pharyngeal) supply the inferior meninges. A posterior branch of the condylar provides collateral circulation to the occipital region. External Carotid Small, tortuous division from medial wall of Cranial Thyroid Thyroid Artery ECA From posteromedial surface of ECA Descending External Carotid immediately posterior to the jugular process. Extensive distribution throughout the Pharyngeal Artery Convoluted and highly dendritic throughout the pharynx lateral and posterior wall of the pharynx. -
Curving and Looping of the Internal Carotid Artery in Relation to the Pharynx: Frequency, Embryology and Clinical Implications
J. Anat. (2000) 197, pp. 373–381, with 5 figures Printed in the United Kingdom 373 Curving and looping of the internal carotid artery in relation to the pharynx: frequency, embryology and clinical implications 1 1 1 FRIEDRICH PAULSEN , BERNHARD$ TILLMANN , CHRISTOS CHRISTOFIDES , WALBURGA RICHTER2 AND JURGEN KOEBKE2 " # Department of Anatomy, Christian Albrecht University of Kiel and Department of Anatomy II, Albertus Magnus University of Cologne, Germany (Accepted 29 February 2000) Variations of the course of the internal carotid artery in the parapharyngeal space and their frequency were studied in order to determine possible risks for acute haemorrhage during pharyngeal surgery and traumatic events, as well as their possible relevance to cerebrovascular disease. The course of the internal carotid artery showed no curvature in 191 cases, but in 74 cases it had a medial, lateral or ventrocaudal curve, and 17 preparations showed kinking (12) or coiling (5) out of a total of 265 dissected carotid sheaths and 17 corrosion vascular casts. In 6 cases of kinking and 2 of coiling, the internal carotid artery was located in direct contact with the tonsillar fossa. No significant sex differences were found.Variations of the internal carotid artery leading to direct contact with the pharyngeal wall are likely to be of great clinical relevance in view of the large number of routine procedures performed. Whereas coiling is ascribed to embryological causes, curving is related to ageing and kinking is thought to be exacerbated by arteriosclerosis or fibromuscular dysplasia with advancing age and may therefore be of significance in relation to the occurrence of cerebrovascular symptoms.