An Overview of Vehicle Sales and Fuel Consumption Through 2025
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vehicle Conversions, Retrofits, and Repowers ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, and REPOWERS
What Fleets Need to Know About Alternative Fuel Vehicle Conversions, Retrofits, and Repowers ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, AND REPOWERS Acknowledgments This work was supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308 with Alliance for Sustainable Energy, LLC, the Manager and Operator of the National Renewable Energy Laboratory. This work was made possible through funding provided by National Clean Cities Program Director and DOE Vehicle Technologies Office Deployment Manager Dennis Smith. This publication is part of a series. For other lessons learned from the Clean Cities American Recovery and Reinvestment (ARRA) projects, please refer to the following publications: • American Recovery and Reinvestment Act – Clean Cities Project Awards (DOE/GO-102016-4855 - August 2016) • Designing a Successful Transportation Project – Lessons Learned from the Clean Cities American Recovery and Reinvestment Projects (DOE/GO-102017-4955 - September 2017) Authors Kay Kelly and John Gonzales, National Renewable Energy Laboratory Disclaimer This document is not intended for use as a “how to” guide for individuals or organizations performing a conversion, repower, or retrofit. Instead, it is intended to be used as a guide and resource document for informational purposes only. VEHICLE TECHNOLOGIES OFFICE | cleancities.energy.gov 2 ALTERNATIVE FUEL VEHICLE CONVERSIONS, RETROFITS, AND REPOWERS Table of Contents Introduction ...............................................................................................................................................................5 -
Alternative Fuels, Vehicles & Technologies Feasibility
ALTERNATIVE FUELS, VEHICLES & TECHNOLOGIES FEASIBILITY REPORT Prepared by Eastern Pennsylvania Alliance for Clean Transportation (EP-ACT)With Technical Support provided by: Clean Fuels Ohio (CFO); & Pittsburgh Region Clean Cities (PRCC) Table of Contents Analysis Background: .................................................................................................................................... 3 1.0: Introduction – Fleet Feasibility Analysis: ............................................................................................... 3 2.0: Fleet Management Goals – Scope of Work & Criteria for Analysis: ...................................................... 4 Priority Review Criteria for Analysis: ........................................................................................................ 4 3.0: Key Performance Indicators – Existing Fleet Analysis ............................................................................ 5 4.0: Alternative Fuel Options – Summary Comparisons & Conclusions: ...................................................... 6 4.1: Detailed Propane Autogas Options Analysis: ......................................................................................... 7 Propane Station Estimate ......................................................................................................................... 8 (Station Capacity: 20,000 GGE/Year) ........................................................................................................ 8 5.0: Key Recommended Actions – Conclusion -
Using Biodiesel Fuel in Your Engine
RENEWABLE AND ALTERNATIVE ENERGY FACT SHEET Using Biodiesel Fuel in Your Engine Introduction Biodiesel is an engine fuel that is created by chemically reacting fatty acids and alcohol. Practically speaking, this usually means combining vegetable oil with methanol in the presence of a cata- lyst (usually sodium hydroxide). Biodiesel is much more suitable for use as an engine fuel than straight vegetable oil for a number of reasons, the most notable one being its lower viscosity. Many large and small producers have begun producing biodiesel, and the fuel can now be found in many parts of Pennsylvania and beyond either as “pure biodiesel” or a blended mixture with tradi- tional petroleum diesel (e.g., B5 is 5 percent biodiesel, 95 percent petroleum diesel). The process of making biodiesel is simple enough that farm- ers can consider producing biodiesel to meet their own needs by growing and harvesting an oil crop and converting it into biodiesel. In this way, farmers are able to “grow” their own fuel (see the Penn State Cooperative Extension publication Biodiesel Safety and Best Management Practices for Small-Scale Noncom- biodiesel fuel has less energy per unit volume than traditional mercial Production). There are many possible reasons to grow or diesel fuel. use biodiesel, including economics, support of local industry, and environmental considerations. • Fuel efficiency: fuel efficiency tends to be slightly lower when However, there is also a great deal of concern about the effect using biodiesel due to the lower energy content of the fuel. of biodiesel on engines. Many stories have been circulating about Typically, the drop-off is in the same range as the reduction in reduced performance, damage to key components, or even engine peak engine power (3–5 percent). -
Reducing Air Emissions Through Alternative Transportation Strategies
Reducing Air Emissions Through Alternative Transportation Strategies New Jersey Clean Air Council Public Hearing April 8, 2014 Hearing Chair: Sara Bluhm Clean Air Council Chair: Joseph Constance Editor: Melinda Dower NJ CAC 2014 Hearing Report Page | 1 New Jersey Clean Air Council Members Joseph Constance, Chairman Kenneth Thoman,Vice-Chairman Leonard Bielory, M.D. Sara Bluhm Manuel Fuentes-Cotto, P.E. Michael Egenton Mohammad “Ferdows” Ali, Ph.D. Howard Geduldig, Esq. Toby Hanna, P.E. Robert Laumbach, M.D. Pam Mount Richard E. Opiekun, Ph.D. James Requa, Ed.D. Nicky Sheats, Esq., Ph.D. Joseph Spatola, Ph.D. New Jersey Clean Air Council Website http://www.state.nj.us/dep/cleanair NJ CAC 2014 Hearing Report Page | 2 Table of Contents Page I. INTRODUCTION ……………………………………………………………………… 4 II. OVERVIEW ……………………………………………………………………………. 4 III. RECOMMENDATIONS ……………………………………………………….……… 10 IV. SUMMARY OF TESTIMONY† ………………………………………………….…… 14 A. Jim Appleton ………………………………………………..……….…… 14 B. Daniel Birkett ………………………………………………………….… 14 C. Andy Swords ……………………………………….…………………... 14 D. Matt Solomon ……………………………………………………………. 15 E. Julie Becker …………………………………………………..……..…... 16 F. Robert Gibbs, Esq. ………………………………….………………..….. 16 G. William Wells ………………………………………..………………..…. 17 H. Mark Giuffre …………………………………………………………….. 17 I. Jane Kozinski, Asst. Commissioner, NJDEP ……………………………. 18 J. Chuck Feinberg …………………………………………………………. 19 K. Raymond Albrecht, P.E. …………………………………………………. 19 L. Nicky Sheats, Ph.D., Esq.………………………………………………… 20 M. John Iannarelli ……………………………………………………….…. -
DOE Transportation Strategy: Improve Internal Combustion Engine Efficiency
DOE Transportation Strategy: Improve Internal Combustion Engine Efficiency Gurpreet Singh, Team Leader Advanced Combustion Engine Technologies Vehicle Technologies Program U.S. Department of Energy Presented at the ARPA-E Distributed Generation Workshop Alexandria, VA June 2, 2011 Program Name or Ancillary Text eere.energy.gov Outline Current state of vehicle engine technology and performance trends (efficiency and emissions) over time Headroom to improve vehicle engine efficiency Future technical pathways and potential impact DOE’s current strategy and pathways eere.energy.gov Passenger Vehicle Fuel Economy Trends Significant fuel economy increases (in spite of increases in vehicle weight, size and performance) can be largely attributed to increase in internal combustion engine efficiency. Source: Light-Duty Automotive Technology, Carbon Dioxide Emissions, and Fuel Economy Trends: 1975 through 2010, EPA. eere.energy.gov Progress In Heavy-Duty Diesel Engine Efficiency and Emissions Historical progress in heavy-duty engine efficiency and the challenge of simultaneous emissions reduction, illustrate positive impact from DOE R&D support. (Adapted from DEER presentation, courtesy of Detroit Diesel Corporation). 20 Steady State 2.0 hr) - Test NOx + HC Particulate Matter 15 1.5 g/bhp NOx Transient Test (Unregulated) 90% NOx NO + HC 10 x 1.0 Oil savings from heavy-duty vehicles alone PM (Unregulated) 2002 (1997 – 2005) represent an over 35:1 return NOx on investment (ROI) of government funds for 5 0.5 heavy-duty combustion engine R&D. PM NOx + NMHC 90% Oxides ofOxides Nitrogen ( Urban Bus PM 0 0.0 Source: Retrospective Benefit-Cost Evaluation of U.S. DOE 1970 1975 1980 1985 1990 1995 2000 2005 2010 Vehicle Advanced Combustion Engine R&D Investments: Model Year 2007 Impacts of a Cluster of Energy Technologies, U.S. -
Morgan Ellis Climate Policy Analyst and Clean Cities Coordinator DNREC [email protected] 302.739.9053
CLEAN TRANSPORTATION IN DELAWARE WILMAPCO’S OUR TOWN CONFERENCE THE PRESENTATION 1) What are alterative fuels? 2) The Fuels 3) What’s Delaware Doing? WHAT ARE ALTERNATIVE FUELED VEHICLES? • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THERE’S A FUEL FOR EVERY FLEET! DELAWARE’S ALTERNATIVE FUELS • “Vehicles that run on a fuel other than traditional petroleum fuels (i.e. gas and diesel)” • Propane • Natural Gas • Electricity • Biodiesel • Ethanol • Hydrogen THE FUELS PROPANE • By-Product of Natural Gas • Compressed at high pressure to liquefy • Domestic Fuel Source • Great for: • School Busses • Step Vans • Larger Vans • Mid-Sized Vehicles COMPRESSED NATURAL GAS (CNG) • Predominately Methane • Uses existing pipeline distribution system to deliver gas • Good for: • Heavy-Duty Trucks • Passenger cars • School Buses • Waste Management Trucks • DNREC trucks PROPANE AND CNG INFRASTRUCTURE • 8 Propane Autogas Stations • 1 CNG Station • Fleet and Public Access with accounts ELECTRIC VEHICLES • Electricity is considered an alternative fuel • Uses electricity from a power source and stores it in batteries • Two types: • Battery Electric • Plug-in Hybrid • Great for: • Passenger Vehicles EV INFRASTRUCTURE • 61 charging stations in Delaware • At 26 locations • 37,000 Charging Stations in the United States • Three types: • Level 1 • Level 2 • D.C. Fast Charging TYPES OF CHARGING STATIONS Charger Current Type Voltage (V) Charging Primary Use Time Level 1 Alternating 120 V 2 to 5 miles Current (AC) per hour of Residential charge Level 2 AC 240 V 10 to 20 miles Residential per hour of and charge Commercial DC Fast Direct Current 480 V 60 to 80 miles (DC) per 20 min. -
Open PDF File, 176.5 KB, for 2018 Mass Clean Cities Annual Report
2018 Transportation Technology Deployment Report: Massachusetts Clean Cities Expanded Edition March 2019 DRAFT The U.S. Department of Energy's (DOE) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to reduce petroleum use in transportation. A national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge. Every year, each Clean Cities coalition submits to DOE an annual report of its activities and accomplishments for the previous calendar year. Coalition coordinators, who lead the local coalitions, provide information and data via an online database managed by the National Renewable Energy Laboratory (NREL). The data characterize membership, funding, projects, and activities of the coalitions. The coordinators also submit data on the sales of alternative fuels, deployment of alternative fuel vehicles and hybrid electric vehicles, idle-reduction initiatives, fuel economy activities, and programs to reduce vehicle miles traveled. NREL and DOE analyze the data and translate them into petroleum-use and greenhouse gas reduction impacts for individual coalitions and the program as a whole. This report summarizes those impacts for Massachusetts Clean Cities. To view aggregated data for all local coalitions that participate in the Clean Cities program, visit cleancities.energy.gov/accomplishments. -
Vehicle Fuel Efficiency
Vehicle Fuel Efficiency Potential measures to encourage the uptake of more fuel efficient, low carbon emission vehicles Public Discussion Paper Prepared by Australian Transport Council (ATC) and Environment Protection and Heritage Council (EPHC) Vehicle Fuel Efficiency Working Group With support from The Australian Government September 2008 Closing date for comments: 7 November 2008 © Commonwealth of Australia 2008 This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, all other rights are reserved. Requests and inquiries concerning reproduction and rights should be addressed to Commonwealth Copyright Administration Attorney General’s Department Robert Garran Offices National Circuit Barton ACT 2600 or posted at http://www.ag.gov.au/cca Disclaimer The discussion paper has been prepared by the Australian Transport Council/Environment Protection & Heritage Council Vehicle Fuel Efficiency Working Group. The opinions, comments and analysis expressed in the discussion paper are for discussion purposes only and cannot be taken in any way as an expression of current or future policy of the Australian Government nor any state or territory government. The views and opinions expressed do not necessarily reflect those of the Australian Government or the Minister for the Environment, Heritage and the Arts, the Minister for Infrastructure, Transport, Regional Services and Local Government, or the Minister for Climate Change and Water. While reasonable efforts have been made to ensure that the contents of this publication are factually correct, the Commonwealth does not accept responsibility for the accuracy or completeness of the contents, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. -
How Practical Are Alternative Fuel Vehicles?
How Practical Are Alternative Fuel Vehicles? Many of us have likely considered an alternative fuel vehicle at some point in our lives. Balancing the positives and negatives is a tricky process and varies greatly based on our personal situations. However, many of the negatives that previously created hesitancy have changed in recent years. Below, we have outlined a few of the most commonly mentioned negatives regarding the two leading alternative fuel vehicle types: Flex Fuel vehicles and Electric/Hybrid vehicles. Then, you can decide for yourself whether one of these vehicle types are practical for you! Cost – How much does the vehicle cost to purchase and operate? Flex Fuel: Flex Fuel vehicles typically cost about the same as a gasoline vehicle.1 For fuel cost, E85 typically costs slightly less than gasoline, however, due to decreased efficiency has a slightly higher cost per mile than gasoline.2 Overall, a Flex Fuel vehicle is likely to be slightly more expensive than a gasoline counterpart. Electric/Hybrid: This situation varies quite a bit depending on where you live. Electric vehicles and hybrid vehicles often cost considerably more than a conventional gasoline vehicle. For example, a plug-in hybrid will cost around $4000-$8000 more than a conventional model.3 However, there are federal rebates and local rebates that can refund thousands of dollars from the purchase price. Electric/Hybrid vehicles also tend to save money on fuel, with the possibility of saving thousands of dollars over the lifetime of the vehicle.4 Whether these rebates and fuel cost savings will eventually account for the higher purchase price can be estimated with comparison tools. -
Air Quality Impacts of Biodiesel in the United States
WHITE PAPER MARCH 2021 AIR QUALITY IMPACTS OF BIODIESEL IN THE UNITED STATES Jane O’Malley, Stephanie Searle www.theicct.org [email protected] twitter @theicct BEIJING | BERLIN | SAN FRANCISCO | SÃO PAULO | WASHINGTON ACKNOWLEDGMENTS This study was generously funded by the David and Lucile Packard Foundation and the Norwegian Agency for Development Cooperation. International Council on Clean Transportation 1500 K Street NW, Suite 650, Washington, DC 20005 [email protected] | www.theicct.org | @TheICCT © 2021 International Council on Clean Transportation EXECUTIVE SUMMARY Since the passage of the Clean Air Act in 1970, the U.S. Environmental Protection Agency (EPA) has enacted standards to reduce vehicle exhaust emissions. These standards set emission limits for pollutants that contribute to poor air quality and associated health risks, including nitrous oxide (NOx), hydrocarbons (HC), carbon monoxide (CO), and particulate matter (PM). Although the majority of the on-road vehicle fleet in the United States is fueled by gasoline, diesel combustion makes up an overwhelming share of vehicle air pollution emissions. Air pollution emissions can be affected by blending biodiesel, composed of fatty acid methyl ester (FAME), into diesel fuel. Biodiesel increases the efficiency of fuel combustion due to its high oxygen content and high cetane number. Studies have found that biodiesel combustion results in lower emissions of PM, CO, and HC, likely for this reason. However, studies have consistently found that biodiesel blending increases NOx formation. Industry analysts, academic researchers, and government regulators have conducted extensive study on the emissions impacts of biodiesel blending over the last thirty years. The EPA concluded in a 2002 report that, on the whole, biodiesel combustion does not worsen air quality compared to conventional diesel and reaffirmed that conclusion in a 2020 proposal and subsequent rulemaking. -
Making Markets for Hydrogen Vehicles: Lessons from LPG
Making Markets for Hydrogen Vehicles: Lessons from LPG Helen Hu and Richard Green Department of Economics and Institute for Energy Research and Policy University of Birmingham Birmingham B15 2TT United Kingdom Hu: [email protected] Green: [email protected] +44 121 415 8216 (corresponding author) Abstract The adoption of liquefied petroleum gas vehicles is strongly linked to the break-even distance at which they have the same costs as conventional cars, with very limited market penetration at break-even distances above 40,000 km. Hydrogen vehicles are predicted to have costs by 2030 that should give them a break-even distance of less than this critical level. It will be necessary to ensure that there are sufficient refuelling stations for hydrogen to be a convenient choice for drivers. While additional LPG stations have led to increases in vehicle numbers, and increases in vehicles have been followed by greater numbers of refuelling stations, these effects are too small to give self-sustaining growth. Supportive policies for both vehicles and refuelling stations will be required. 1. Introduction While hydrogen offers many advantages as an energy vector within a low-carbon energy system [1, 2, 3], developing markets for hydrogen vehicles is likely to be a challenge. Put bluntly, there is no point in buying a vehicle powered by hydrogen, unless there are sufficient convenient places to re-fuel it. Nor is there any point in providing a hydrogen refuelling station unless there are vehicles that will use the facility. What is the most effective way to get round this “chicken and egg” problem? Data from trials of hydrogen vehicles can provide information on driver behaviour and charging patterns, but extrapolating this to the development of a mass market may be difficult. -
The Future of Transportation Alternative Fuel Vehicle Policies in China and United States
Clark University Clark Digital Commons International Development, Community and Master’s Papers Environment (IDCE) 12-2016 The uturF e of Transportation Alternative Fuel Vehicle Policies In China and United States JIyi Lai [email protected] Follow this and additional works at: https://commons.clarku.edu/idce_masters_papers Part of the Environmental Studies Commons Recommended Citation Lai, JIyi, "The uturF e of Transportation Alternative Fuel Vehicle Policies In China and United States" (2016). International Development, Community and Environment (IDCE). 163. https://commons.clarku.edu/idce_masters_papers/163 This Research Paper is brought to you for free and open access by the Master’s Papers at Clark Digital Commons. It has been accepted for inclusion in International Development, Community and Environment (IDCE) by an authorized administrator of Clark Digital Commons. For more information, please contact [email protected], [email protected]. The Future of Transportation Alternative Fuel Vehicle Policies In China and United States Jiyi Lai DECEMBER 2016 A Masters Paper Submitted to the faculty of Clark University, Worcester, Massachusetts, in partial fulfillment of the requirements for the degree of Master of Arts in the department of IDCE And accepted on the recommendation of ! Christopher Van Atten, Chief Instructor ABSTRACT The Future of Transportation Alternative Fuel Vehicle Policies In China and United States Jiyi Lai The number of passenger cars in use worldwide has been steadily increasing. This has led to an increase in greenhouse gas emissions and other air pollutants, and new efforts to develop alternative fuel vehicles to mitigate reliance on petroleum. Alternative fuel vehicles include a wide range of technologies powered by energy sources other than gasoline or diesel fuel.