Nuclear Spins and Moments of the Actinides

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Spins and Moments of the Actinides APPENDIX I NUCLEAR SPINS AND MOMENTS OF THE ACTINIDES Nuclear spins and nuclear moments are used to test the single‐particle models and nuclear quadrupole moments provide the deformation of the nucleus. In the following table, we present measured values of ground state spin in units of h, magnetic dipole moment (m) in units of nuclear magneton, and spectroscopic quadrupole moment (Q) in units of barns. The data have been taken from Raghavan (1989) and Firestone and Shirley (1996). Nuclear Nuclear magnetic moment Electric quadrupole Nuclide spin (ħ) (nuclear magneton) moment (barns) 217Ac 9/2 þ3.825(45) 227Ac 3/2 þ1.1(1) þ1.7(2) 229Th 5/2 þ0.46(4) þ4.3(9) 228Pa 3 þ3.48(33) 230Pa 2 þ2.00(29) 231Pa 3/2 þ2.01(2) –1.72(5) 233Pa 3/2 þ3.39(70) À3.0 233U 5/2 0.59(5) 3.663(8) 235U 7/2 À0.38(3) 4.936(6) 237Np 5/2 þ3.14(4) þ3.886(6) 238Np 2 239Np 5/2 239Pu 1/2 þ0.203(4) 241Pu 5/2 À0.683(15) þ5.6(20) 241Am 5/2 þ1.61(3) þ4.2(13) 242Am 1 þ0.3879(15) À2.4(7) 242mAm 5 þ1.00(5) þ6.5(20) 243Am 5/2 þ1.61(4) þ4.30(3) 243Cm 5/2 0.41 245Cm 7/2 0.5 (1) 247Cm 9/2 0.37 249Bk 7/2 2.0(4) þ5.79 249Cf 9/2 À0.28 253Es 7/2 þ4.10(7) 6.7(8) 254mEs 2 2.90(7) 3.7(5) Firestone, R.B. and Shirley, V.S. (eds.) (1996). Table of Isotopes, 8th edn. John Wiley, New York. Raghavan, P. (1989) At. Nucl. Data Tables, 42, 189–291. 3441 APPENDIX II NUCLEAR PROPERTIES OF ACTINIDE AND TRANSACTINIDE NUCLIDES Irshad Ahmad DISCUSSION In this appendix, an elementary discussion of the nuclear properties of heavy elements is presented. For a better understanding of the subject, the reader should refer to nuclear chemistry textbooks (Krane, 1988; Choppin et al., 2002) and for the information on decay data, the Table of Isotopes (Firestone and Shirley, 1996) or the Table of Radioactive Isotopes (Browne and Firestone, 1986) or Nuclear Data Sheets (Tuli, 2004) should be consulted. Isotopes of all elements with Z 89 are radioactive. The most common mode of decay for these nuclei is by the emission of alpha particles (4He ions). Alpha decay energies have been experimentally measured (Browne and Firestone, 1986; Firestone and Shirley, 1996) for most nuclides and these can also be calculated from atomic masses (Wapstra et al., 2003). The a decay of a nucleus with atomic number Z and atomic mass A produces a daughter nucleus with atomic number Z–2 and atomic mass A–4. During the a decay, about 2% of the available decay energy is imparted to the recoiling daughter nucleus and the remaining energy is carried off by the fast moving a‐particle. Several groups of a‐particles are emitted by a sample of a nuclide, each with a definite energy. For the actinide nuclides, a‐particle energies range from about 4 to 11 MeV. As a rule, a‐particle energy increases with increasing Z, and for a given element, it decreases with increasing mass number. The a‐decay half‐life decreases exponentially with increasing energy. As a guide, every 50 keV increase in the decay energy reduces the half‐life by a factor of 2. The dependence of the a‐decay half‐life on the decay energy is given by the well‐known Geiger–Nuttall law and more recently by Viola–Seaborg for- mula. A very useful quantity that facilitates the understanding of the mecha- nism of a‐decay is the concept of hindrance factor. It is defined as the ratio of the experimental partial a‐decay half‐life to the theoretical half‐life calculated on the assumption that the a‐particle pre‐exists in the nucleus and during its emission, it carries no angular momentum. An alpha transition in which the 3442 Nuclear properties of actinide and transactinide nuclides 3443 ground state configuration of the parent nucleus remains unchanged is called ‘favored transition’. All alpha transitions between the ground states of even– even nuclei are favored transitions and are assigned a hindrance factor of one. Like elements of lower Z, each actinide element has one or more b‐stable isotopes. Isotopes heavier than the b‐stable isotope decay by the emission of bÀ particles (electrons) and isotopes lighter than the b‐stable isotopes decay by electron capture (EC). Electron capture decay is usually accompanied by the emission of K x‐rays of the daughter nuclide. These x‐rays provide a signature of the decaying nuclide. In heavy nuclei, bþ/EC ratio is very small and, as a consequence, positron (bþ) emission has been observed only in a few nuclei. The b‐decay energy increases as the mass of the isotope gets further away from the line of b‐stability. A quantity denoted by log ft is very useful in classifying the b transitions and estimating the b‐decay half‐lives of unknown nuclei. The ft value, also called the reduced b transition probability, is the energy‐independent transition rate. Spontaneous fission is a decay process in which a nucleus breaks up into two almost equal fragments. Each fission event is accompanied by the release of about 200 MeV energy and the emission of two to four neutrons. More than hundred nuclides are produced in fission of a nuclide sample and the mass yields and charge distributions have been measured for many fissioning systems (Wahl, 1989; Ahmad and Phillips, 1995). The fission half‐life depends on the fissility parameter Z2/A and is the major decay mode for many isotopes of element 100 and beyond. Nuclides with reasonable fission branch and available 248 5 252 for experiments and industrial use are Cm (t1/2 ¼ 3.40 Â 10 years) and Cf 252 (t1/2 ¼ 2.64 years). The isotope Cf is widely used as a neutron source in industry and research. Another rare mode of decay for heavy elements is the decay by the emission of intermediate mass fragments. These fragments are heavier than a particles but smaller than fission fragments. The branching ratio for this kind of radio- activity is extremely small (10À10). Examples of such radioactivity are the 24Ne emission by 231Pa and 232U (Price, 1989). Alpha and b transitions usually populate excited states in addition to the ground states of the daughter nuclei. The excited states then decay to the ground state by emission of g rays and conversion electrons. Typical half‐lives of the excited states range from 10À9 to 10À14 s. However, in some cases, the decay of an excited state is forbidden for fast magnetic dipole (M1), electric dipole (E1), or electric quadrupole (E2) transitions because of the angular momentum selection rule. Such states have half‐lives between nanoseconds and years. An excited state that has a half‐life value greater than a nanosecond is called a ‘metastable’ state or ‘isomer’. The isomeric state either de‐excites to the ground state of the same nucleus by an internal transition (IT) or it decays by the usual mode of disintegration. Most isomers occur because of the large difference between the spins of the excited state and the ground state. However, there are isomers which result not 3444 Discussion by the difference in the spins of the states but by the difference in the shapes. These isomers decay by fission and are called ‘fission isomers’ or ‘shape isomers’ and have half‐lives between 10À9 and 10À3 s. These isomers have deformations that are twice as large as the deformations of the ground states. More than 50 fission isomers have been discovered (Vandenbosch, 1977). Very neutron‐deficient nuclides decay predominantly by electron capture (EC). In some of these nuclei, the EC decay energy is quite large (> 4 MeV) and hence states at high excitation energy are populated in the daughter nucleus and a small fraction of these excited states decay by fission. Delayed fission of many nuclei has been observed (Hall and Hoffman, 1992). Nuclear structure studies of actinide nuclides have been performed using a variety of techniques. These include high‐resolution alpha, electron and gamma‐ray spectroscopy, charged‐particle transfer reaction spectroscopy, and Coulomb excitation studies. These investigations have provided significant information on the shape, size, and single‐particle potential of actinide nuclei. The available data establish a spheroidal shape for nuclei with A 225, with major to minor axes ratio of 1.25. The intrinsic quadrupole moments of actinide nuclei have been measured to be about 10–23 ecm2 and the nuclear radii are about 10À12 cm. Although most actinide nuclei have spheroidal shapes, there are indications that some neutron‐deficient Ac and Pa nuclei have small octupole deformation in their ground states. These nuclei are pear‐shaped and are axially symmetric but they are reflection asymmetric. Examples of such nuclei are 229Pa and 225Ac (Ahmad and Butler, 1993). In nuclei, nucleons (neutrons and protons) move in orbits under the influence of the central nuclear potential. Nilsson (1955) and others (Chasman et al., 1977) have calculated the eigenvalues and eigenfunctions of nucleons in a deformed potential as a function of the deformation b. Plots of the eigenvalues versus the deformation, commonly known as Nilsson diagrams, are extremely useful in understanding the single‐particle properties of actinide nuclei. Each Nilsson state is characterized by a set of quantum numbers O p, N, Nz, and L. The quantum number O is the projection of the single‐particle angular momen- tum on the nuclear symmetry axis and p is the parity of the wavefunction.
Recommended publications
  • Thermal Transport in Thorium Dioxide Nuclear Engineering and Technology
    Nuclear Engineering and Technology 50 (2018) 731e737 Contents lists available at ScienceDirect Nuclear Engineering and Technology journal homepage: www.elsevier.com/locate/net Original Article Thermal transport in thorium dioxide Jungkyu Park*, Eduardo B. Farfan, Christian Enriquez Kennesaw State University, Department of Mechanical Engineering, Kennesaw, GA 30144, USA article info abstract Article history: In this research paper, the thermal transport in thorium dioxide is investigated by using nonequilibrium Received 28 September 2017 molecular dynamics. The thermal conductivity of bulk thorium dioxide was measured to be 20.8 W/m-K, Received in revised form confirming reported values, and the phonon mean free path was estimated to be between 7 and 8.5 nm 20 December 2017 at 300 K. It was observed that the thermal conductivity of thorium dioxide shows a strong dependency Accepted 12 February 2018 on temperature; the highest thermal conductivity was estimated to be 77.3 W/m-K at 100 K, and the Available online 1 March 2018 lowest thermal conductivity was estimated to be 4.3 W/m-K at 1200 K. In addition, by simulating thorium dioxide structures with different lengths at different temperatures, it was identified that short Keywords: Molecular Dynamics Simulation wavelength phonons dominate thermal transport in thorium dioxide at high temperatures, resulting in Nuclear Fuel decreased intrinsic phonon mean free paths and minimal effect of boundary scattering while long Thermal Transport wavelength phonons dominate the thermal transport in thorium dioxide at low temperatures. Thorium Dioxide © 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
    [Show full text]
  • Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides Received: 22 January 2018 Batikan Koroglu1, Scott Wagnon 1, Zurong Dai1, Jonathan C
    www.nature.com/scientificreports OPEN Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides Received: 22 January 2018 Batikan Koroglu1, Scott Wagnon 1, Zurong Dai1, Jonathan C. Crowhurst1, Accepted: 19 June 2018 Michael R. Armstrong1, David Weisz1, Marco Mehl1,2, Joseph M. Zaug1, Harry B. Radousky1 & Published: xx xx xxxx Timothy P. Rose1 We use a recently developed plasma-fow reactor to experimentally investigate the formation of oxide nanoparticles from gas phase metal atoms during oxidation, homogeneous nucleation, condensation, and agglomeration processes. Gas phase uranium, aluminum, and iron atoms were cooled from 5000 K to 1000 K over short-time scales (∆t < 30 ms) at atmospheric pressures in the presence of excess oxygen. In-situ emission spectroscopy is used to measure the variation in monoxide/atomic emission intensity ratios as a function of temperature and oxygen fugacity. Condensed oxide nanoparticles are collected inside the reactor for ex-situ analyses using scanning and transmission electron microscopy (SEM, TEM) to determine their structural compositions and sizes. A chemical kinetics model is also developed to describe the gas phase reactions of iron and aluminum metals. The resulting sizes and forms of the crystalline nanoparticles (FeO-wustite, eta-Al2O3, UO2, and alpha-UO3) depend on the thermodynamic properties, kinetically-limited gas phase chemical reactions, and local redox conditions. This work shows the nucleation and growth of metal oxide particles in rapidly-cooling gas is closely coupled to the kinetically-controlled chemical pathways for vapor-phase oxide formation. Gas phase nucleation and growth of metal oxide nanoparticles is an important topic for many areas of chemistry, physics, material science, and engineering1–6.
    [Show full text]
  • Edinburgh Research Explorer
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Edinburgh Research Explorer Edinburgh Research Explorer Organometallic Neptunium Chemistry Citation for published version: Arnold, P, Dutkiewicz, MS & Walter, O 2017, 'Organometallic Neptunium Chemistry', Chemical Reviews. https://doi.org/10.1021/acs.chemrev.7b00192 Digital Object Identifier (DOI): 10.1021/acs.chemrev.7b00192 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Chemical Reviews General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 11. May. 2020 Organometallic Neptunium Chemistry Polly L. Arnold,*a Michał S. Dutkiewicz,a,b Olaf Walter,b [a] EaStCHEM School of Chemistry, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FJ, UK. E-mail: [email protected]. [b] European Commission, DG Joint Research Centre, Directorate G - Nuclear Safety and Security, Advanced Nuclear Knowledge – G.I.5, Postfach 2340, D-76125, Karlsruhe, Germany. ABSTRACT Fifty years have passed since the foundation of organometallic neptunium chemistry, and yet only a handful of complexes have been reported, and even fewer fully characterised.
    [Show full text]
  • Molecular Characterization of Uranium(VI) Sorption Complexes on Iron(III)-Rich Acid Mine Water Colloids
    Geochimica et Cosmochimica Acta 70 (2006) 5469–5487 www.elsevier.com/locate/gca Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids Kai-Uwe Ulrich a,*, Andre´ Rossberg a,b, Harald Foerstendorf a, Harald Za¨nker a, Andreas C. Scheinost a,b a Institute of Radiochemistry, FZ Rossendorf e.V., P.O. Box 510119, D-01314 Dresden, Germany b Rossendorf Beamline at ESRF, B.P. 220, F-38043 Grenoble, France Received 7 November 2005; accepted in revised form 21 August 2006 Abstract A mixing of metal-loaded acid mine drainage with shallow groundwater or surface waters usually initiates oxidation and/or hydrolysis of dissolved metals such as iron (Fe) and aluminum (Al). Colloidal particles may appear and agglomerate with increasing pH. Likewise chemical conditions may occur while flooding abandoned uranium mines. Here, the risk assessment of hazards requires reliable knowl- edge on the mobility of uranium (U). A flooding process was simulated at mesocosm scale by mixing U-contaminated acid mine water with near-neutral groundwater under oxic conditions. The mechanism of U-uptake by fresh precipitates and the molecular structure of U bonding were determined to estimate the mobility of U(VI). Analytical and spectroscopic methods such as Extended X-ray Absorption Fine-Structure (EXAFS) spectroscopy at the Fe K-edge and the U LIII-edge, and Attenuated Total Reflectance Fourier Transform Infra- red (ATR-FTIR) spectroscopy were employed. The freshly formed precipitate was identified as colloidal two-line ferrihydrite. It removed U(VI) from solution by sorption processes, while surface precipitation or structural incorporation of U was not observed.
    [Show full text]
  • INFORMATION O a a .Aoi Chemistry-Traniuranie Elements
    INFORMATION o a a .aoi Chemistry-Traniuranie Elements UNIVERSITY O r CALIFORNIA Radiation Laboratory Contract No. W-7405-eng~48 CUBSITIClTIOH CAKCBLUD IV. TT Ftv«Jbs Itti'.s fJ«cR'otsdLisV^ CRYSTAL STRUCTURES OF AMERICIUM COMPOUNDS D. H. Templeton and Carol H. Dauben February 3, 1953 RESTRICTEO^JCTA This document cqpm pLrw ricted data as defined in ttagSrarfic Energy Act of 1944. Its tsn fip rtfa l or disclosure of Its contents ^p*ny manner to an unautor- ised person is prohibited. Berkeley, California UNIVERSITY Of CALIFORNIA Rodiotiofl Loborotory 42RC8 Cover Shoot INDE X NO. Ill K£ ■ -10/ Do not rsrtovt Tbit document eo nto in t__ IL- pages Tbit is copy ^ of tor lot tL Glassification Eoch perton who rtcoivot thltdocument must tipn the cover thstt I Route to Notsd by Date Route to Noted by D aft OHO A im *[|S 5(M) CRYSTAL STRUCTURES OF AMERICIUM COMPOUNDS1 D. H. Templeton and Carol H. Dauben Department of Chemistry and Radiation Laboratory University of California, Berkeley, California February 3, 1953 ABSTRACT The crystal structures of several compounds of americium, element 95, have been determined by the X-ray powder diffraction method. AisF^ is hexagonal (LaF^ type) with a = 4. 067 t 0.001 X and c « 7. 225 t 0.002 Si for the pseudoceil which explains the powder data. AmO^ is cubic (CaF^ type) with 1 a = 5. 38) t 0.001 X AmOCl is tetragonal (PbFCl type) with a = 4.00+O.OlX, c = 6.78 t 0.01 X. The metal parameter la 0.18 t 0.01.
    [Show full text]
  • Inelastic Collisions of Atomic Thorium and Molecular Thorium Monoxide with Cold Helium-3
    Inelastic collisions of atomic thorium and molecular thorium monoxide with cold helium-3 The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Au, Yat Shan. 2014. Inelastic collisions of atomic thorium and molecular thorium monoxide with cold helium-3. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:12274226 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Inelastic Collisions of Atomic Thorium and Molecular Thorium Monoxide with Cold Helium-3 A dissertation presented by Yat Shan Au to The Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Physics Harvard University Cambridge, Massachusetts November 2013 c 2013 - Yat Shan Au All rights reserved. Dissertation advisor Author Professor John Morrissey Doyle Yat Shan Au Inelastic Collisions of Atomic Thorium and Molecular Thorium Monoxide with Cold Helium-3 Abstract We measure inelastic cross sections for atomic thorium (Th) and molecular thorium monoxide (ThO) in collisions with 3He at temperatures near 1 K. We determine the 3 −17 −2 Zeeman relaxation cross section for Th ( F2) to be ∼ 2 × 10 cm at 800 mK. 3 We study electronic inelastic processes in Th ( P0) and find no quenching even after 106 collisions at 800 mK. We measure the vibrational quenching cross section for ThO (X, ν = 1) to be (7:9 ± 2:7) × 10−19 cm−2 at 800 mK.
    [Show full text]
  • Subject Index
    SUBJECT INDEX Vol. 1: 1–698, Vol. 2: 699–1395, Vol. 3: 1397–2111, Vol. 4: 2113–2798, Vol. 5: 2799–3440. Page numbers suffixed by t and f refer to Tables and Figures respectively. Absorption cross section, neutron scattering inner v. outer sphere complexations, and, 2233 2563–2566, 2566f, 2567t Absorption spectra, of uranium dioxide, oxidation states of, 2525–2527, 2525f 2276–2278, 2277f stability constants of, 2558–2559 Absorption spectroscopy, resonance correlations, 2567–2577 effects in, 2236 trivalent, 2562, 2563t Accelerator transmutation of waste (ATW), Actinide (III), hydration of, 2528–2530, 2693–2694 2529f, 2529t Acetates, structural chemistry of, Actinide chalcogenides, structural chemistry 2439t–2440t, 2440–2445, 2444f of, 2409–2414, 2412t–2413t Acetylacetones, SFE separation Actinide chemistry with, 2680 complexation and kinetics in solution, Acidic extractants, for solvent extraction, 2524–2607 2650–2652, 2651f bonding, 2556–2563 Actinide cations cation-cation complexes, complexes of, 2577–2591 2593–2596 with inorganic ligands, 2578–2580, cation hydration, 2528–2544 2579t, 2581t cation hydrolysis, 2545–2556 with inorganic oxo ligands, complexation reaction kinetics, 2580–2584, 2582t 2602–2606 with organic ligands, 2584–2591, complexes, 2577–2591 2585t–2586t, 2588f, 2589t correlations, 2566–2577 correlations in, 2567–2577 inner v. outer sphere, 2563–2566 Gibbs energy, 2568–2570, 2568f–2569f redox reaction kinetics, 2597–2602 ligand basicity, 2567–2568 ternary complexes, 2591–2593 hydration of, 2528–2544 magnetic properties,
    [Show full text]
  • Catalytic Organic Transformations Mediated by Actinide Complexes
    Inorganics 2015, 3, 392-428; doi:10.3390/inorganics3040392 OPEN ACCESS inorganics ISSN 2304-6740 www.mdpi.com/journal/inorganics Review Catalytic Organic Transformations Mediated by Actinide Complexes Isabell S. R. Karmel, Rami J. Batrice and Moris S. Eisen * Schulich Faculty of Chemistry, Technion—Israel Institute of Technology, Technion City, Haifa 32000, Israel; E-Mails: [email protected] (I.S.R.K.); [email protected] (R.J.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +972-4-829-2680. Academic Editors: Stephen Mansell and Steve Liddle Received: 16 September 2015 / Accepted: 9 October 2015 / Published: 30 October 2015 Abstract: This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field. Keywords: organoactinides; actinide coordination complexes; homogeneous catalysis; hydroelementations; polymerization of olefins; ROP; activation of heterocumulenes 1. Introduction The beginning of modern organoactinide chemistry is often attributed to the synthesis of 8 uranocene, [(η -C8H8)2U] in 1968, as the analogous compound to ferrocene and other transition metal metallocenes [1,2].
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • Diphosphazide-Supported Trialkyl Thorium(IV) Complex Tara K
    pubs.acs.org/Organometallics Communication Diphosphazide-Supported Trialkyl Thorium(IV) Complex Tara K. K. Dickie, Ashraf A. Aborawi, and Paul G. Hayes* Cite This: Organometallics 2020, 39, 2047−2052 Read Online ACCESS Metrics & More Article Recommendations *sı Supporting Information ABSTRACT: The potassium salt of a new ligand, KLP=N3 (2, κ5 i i − LP=N3 = -2,5-[(4- PrC6H4)N3 P Pr2]2N(C4H2) ), that features two units of the rare phosphazide (RN3 PR3) functionality was synthesized via an incomplete Staudinger reaction between K[2,5- i i ( Pr2P)2N(C4H2)] (1)and4-PrC6H4N3. The diphosphazide ligand was transferred to a thorium(IV) metal center using salt metathesis strategies, yielding LP=N3ThCl3 (3), which contains two intact and coordinated phosphazides. Reaction of complex 3 with 3 equiv of LiCH2SiMe3 resulted in formation of the trialkyl thorium species LP=N3Th(CH2SiMe3)3 (4). In contrast, attempts to synthesize an organothorium complex supported by the previously κ3 reported bisphosphinimine ligand LP=N (LP=N = -2,5- i i − ff [(4- PrC6H4)N P Pr2]2N(C4H2) )aorded the cyclometalated * * κ4 i i i i 2− dialkyl complex L P=NTh(CH2SiMe3)2 (6,L PN = -2-[(4- PrC6H3)N P Pr2]-5-[(4- PrC6H4)N P Pr2]N(C4H2) ) and 1 equiv of free tetramethylsilane. 1 he Staudinger reaction, discovered in 1919, introduced the facile loss of N2, and, accordingly, were overlooked as ′ ’ T the formation of a phosphinimine group (R3P NR ) via viable functional groups in ligand design. Since Staudinger s the reaction of a tertiary phosphine (R3P) with an organic original work, multiple methods have been developed to ′ azide (N3R ), resulting in concomitant loss of N2.
    [Show full text]
  • Extraction of Thorium Oxide from Monazite Ore
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work 5-2019 Extraction of Thorium Oxide from Monazite Ore Makalee Ruch University of Tennessee, Knoxville, [email protected] Chloe Frame University of Tennessee, Knoxville Molly Landon University of Tennessee, Knoxville Ralph Laurel University of Tennessee, Knoxville Annabelle Large University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Part of the Environmental Chemistry Commons, Geological Engineering Commons, and the Other Chemical Engineering Commons Recommended Citation Ruch, Makalee; Frame, Chloe; Landon, Molly; Laurel, Ralph; and Large, Annabelle, "Extraction of Thorium Oxide from Monazite Ore" (2019). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/2294 This Dissertation/Thesis is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Extraction of Thorium Oxide from Monazite Ore Dr. Robert Counce Department of Chemical and Biomolecular Engineering University of Tennessee Chloe Frame Molly Landon Annabel Large Ralph Laurel Makalee Ruch CBE 488: Honors
    [Show full text]
  • Sop Pyrophoric 2 12/16/2019
    Owner DOC. NO. REV. DATE C.H.O SOP PYROPHORIC 2 12/16/2019 DOC. TITLE SOP FOR PYROPHORIC CHEMICALS Environmental Health & Safety STANDARD OPERATING PROCEDURES (SOP) FOR WORKING WITH PYROPHORIC CHEMICALS AT AMHERST COLLEGE ___________________________________________________________________ General Information Pyrophoric Chemicals are solid, liquid, or gas compounds that, when exposed to air or moisture at or below 54°C (130°F), can spontaneously ignite. Examples of Pyrophoric chemicals used at Amherst College Laboratories include: sodium hydride, zinc powder, and Grignard reagents. See the “Appendix” page below for a full list of Pyrophoric Chemicals. Pyrophoric chemicals are often used as catalysts in chemical reactions or as reducing and deprotonating agents in organic chemistry. Note that Pyrophoric chemicals may also be characterized by other hazards, hence, users of these chemicals may also need to refer to other SOPs that cover other hazards. In addition, each individual chemical’s Safety Data Sheet (SDS) should be consulted before they are used. _____________________________________________________________________________________ Personal Protective Equipment When working with Pyrophoric Chemicals, the following personal protective equipment (PPE) must be worn, at a minimum. Depending on the specific chemical, other forms of protection might be required. Consult the SDS for each chemical before use: Splash goggles Lab coat (Fire resistant lab coat highly recommended) Long pants Close toed shoes Gloves – Nitrile gloves adequate for accidental contact with small quantities. However, the use of fire resistant Nomex/ Leather Pilot’s gloves is highly recommended _____________________________________________________________________________________ Safety Devices All work with Pyrophoric chemicals must be done in a glove box, vacuum manifold, or any enclosed inert environment. If work must be done in a fume hood, ensure that the hood sash is in the lowest feasible position.
    [Show full text]