Microbes Associated with Hylobius Abietis: a Chemical and Behavioral Study

Total Page:16

File Type:pdf, Size:1020Kb

Microbes Associated with Hylobius Abietis: a Chemical and Behavioral Study Microbes Associated with Hylobius abietis: A Chemical and Behavioral Study Muhammad Azeem Doctoral Thesis Stockholm 2013 Akademisk avhandling som med tillstånd av Kungliga Tekniska Högskolan i Stockholm framlägges till offentlig granskning för avläggande av doktorsexamen i kemi med inriktning mot organisk kemi torsdagen den 30 maj kl 10.00 i sal F3, KTH, Lindstedtsvägen 26, Stockholm. Avhandlingen försvaras på engelska. Opponent är Dr. Irena Valterová, Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Prague. Cover: Pine (Pinus sylvestris L.) seedling, Pine weevil (Hylobius abietis L.) feeding on pine seedling, Pine weevil frass, Penicillium expansum on pine bark broth, Pine bark, Co-culture of Heterobasidion parviporum and Bacillus subtilis A19 (Photos by Claes Hellqvist and Muhammad Azeem) ISBN 978-91-7501-727-3 ISSN 1654-1081 TRITA-CHE-Report 2013:23 © Muhammad Azeem, 2013 E-Print, Stockholm Muhammad Azeem, 2013: “Microbes Associated with Hylobius abietis: A Chemical and Behavioral Study” KTH Chemical Science and Engineering, Royal Institute of Technology, SE-100 44 Stockholm, Sweden. Abstract This thesis is based on three inter-related studies: the first part deals with the microbial consortium, the identification of microbes and their volatiles, the second part deals with the study of bio-chemical control methods of two conifer pests; the pine weevil Hylobius abietis (L.) and the root rot fungi Heterobasidion spp., and the third part describes the production of styrene by a fungus using forest waste. The large pine weevil (Hylobius abietis L.) is an economically important pest insect of conifers in reforestation areas of Europe and Asia. The female weevils protect their eggs from feeding conspecifics by adding frass (mixture of weevil feces and chewed bark) along with the eggs. In order to understand the mechanism behind frass deposition at the egg laying site and to find repellents/antifeedants for pine weevils, microbes were isolated from the aseptically collected pine weevil frass. Microbial produced volatile organic compounds (VOCs) were collected by solid phase micro extraction and analyzed by GC-MS after cultivating them on weevil frass broth. The major VOCs were tested against pine weevils using a multi-choice olfactometer. Ewingella sp., Mucor racemosus, Penicillium solitum, P. expansum, Ophiostoma piceae, O. pluriannulatum, Debaryomyces hansenii and Candida sequanensis were identified as abundant microbes. Styrene, 6-protoilludene, 1- octene-3-ol, 3-methylanisole, methyl salicylate, 2-methoxyphenol and 2- methoxy-4-vinylphenol were the VOCs of persistently isolated microbes. In behavioral bioassay, methyl salicylate, 3-methylanisole and styrene significantly reduced the attraction of pine weevils to their host plant volatiles. Heterobasidion spp. are severe pathogenic fungi of conifers that cause root and butt rot in plants. Bacterial isolates were tested for the antagonistic activity against fungi on potato dextrose agar. Bacillus subtilis strains significantly inhibited the growth of H. annosum and H. parviporum. Styrene is an industrial chemical used for making polymeric products, currently produced from fossil fuel. A strain of Penicillium expansum isolated from pine weevil frass was investigated for the production of styrene using forest waste. Grated pine stem bark and mature oak bark supplemented with yeast extract produced greater amounts of styrene compared to potato dextrose broth. Keywords: Hylobius, Ewingella, Penicillium, Heterobasidion, Bacteria, Fungi, Bark, Forest waste, Metabolites, Styrene, Methyl salicylate. Abbreviations ANOVA Analysis of variance CFU Colony forming unit DNA Deoxyribonucleic acid DVB Divinylbenzene FRASS Mixture of pine weevil feces and chewed bark GC Gas chromatography GPB Grated pine stem bark GPBYE Grated pine stem bark with yeast extract GYE Glucose yeast extract HS Headspace ITS Internal transcribed spacer MeS Methyl salicylate MS Mass spectrometry PCR Polymerase chain reaction PDA Potato dextrose agar PDB Potato dextrose broth PDMS Polydimethylsiloxane PN Pine needles PW Pine wood chips SE Standard error SPME Solid phase micro extraction VOCs Volatile organic compounds WF Weevil frass WFA Weevil frass agar WFB Weevil frass broth YE Yeast extract List of Publications This thesis is based on the following papers, referred to in the text by their Roman numerals I-V: I. Chemo- and biodiversity of microbes associated with pine weevil (Hylobius abietis) Muhammad Azeem, Gunaratna Kuttuva Rajarao, Kazuhiro Nagahama, Olle Terenius, Henrik Nordenhem, Göran Nordlander and Anna-Karin Borg-Karlson Manuscript II. Fungal metabolite mask the host plant odor of the pine weevil (Hylobius abietis) Muhammad Azeem, Emil Norin, Olle Terenius, Gunaratna Kuttuva Rajarao, Göran Nordlander, Henrik Nordenhem and Anna Karin Borg-Karlson Submitted III. Penicillium expansum volatiles reduce pine weevil attraction to host plants Muhammad Azeem, Gunaratna Kuttuva Rajarao, Henrik Nordenhem, Göran Nordlander and Anna Karin Borg-Karlson J. Chem. Ecol. 2013, 39, 120-128 IV. Antagonistic activity of Bacillus subtilis A18 – A19 against Heterobasidion species Muhammad Azeem, Anna Karin Borg-Karlson and Gunaratna Kuttuva Rajarao Submitted V. Sustainable bio-production of styrene from forest waste Muhammad Azeem, Anna Karin Borg-Karlson and Gunaratna Kuttuva Rajarao Submitted List of papers not included in this thesis: VI. Benzyl isothiocyanate, a major component from the roots of Salvadora persica is highly active against gram-negative bacteria Sofrata A, Santangelo E M, Azeem M, Borg-Karlson A K, Gustafsson A & Putsep K PlosOne. 2011, 6, 23045 VII. Anti-schistosomiasis triterpene glycoside from the Egyptian medicinal plant Asparagus stipularis Hesham R El-Seedi, Rehan El-Shabasy, Hanem Sakr, Mervat Zayed, Asmaa M A El-Said, Khalid M H Helmy, Ahmed H M Gaara, Zaki Turki, Muhammad Azeem, Ahmed M Ahmed, Loutfy Boulos, Anna- Karin Borg-Karlson and Ulf Göransson Braz. J. Pharmacog. 2012, 22, 314-318 VIII. Chemical composition and repellency of essential oils from four medicinal plants against Ixodes ricinus nymphs (Acari: Ixodidae) Hesham R El-Seedi, Nasr S Khalil, Muhammad Azeem, Eman A Taher, Ulf Göransson, Katinka Pålsson, and Anna Karin Borg-Karlson J. Med. Entomol. 2012, 49, 1067-1075 Dedication To my family, especially to my mother, and to the memories of my father (late) Table of Contents Abstract Abbreviations List of publications 1. Introduction ............................................................................................... 1 1.1. The aims of this thesis ........................................................................... 1 1.2. Conifers ................................................................................................. 3 1.3. Pine weevil ............................................................................................ 4 1.4. Reforestation problem of conifers ......................................................... 4 1.5. Seedling protection methods ................................................................. 5 1.5.1. Insecticides .................................................................................... 5 1.5.2. Physical protection ........................................................................ 7 1.5.3. Biocontrol ...................................................................................... 8 1.5.4. Silvicultural methods..................................................................... 8 1.5.5. Antifeedants .................................................................................. 9 1.6. Towards a new solution based on pine weevil egg protection strategy10 1.7. Microbes…. ........................................................................................ 11 1.7.1. Bacteria ....................................................................................... 11 1.7.2. Fungi ........................................................................................... 12 1.8. Metabolites of bacteria and fungi ........................................................ 13 2. Materials and Methods ............................................................................ 15 2.1. Collection of weevil frass and feces .................................................... 15 2.2. Microbial culturing media ................................................................... 16 2.3. Isolation of microbes ........................................................................... 17 2.4. Identification of microbes ................................................................... 18 2.5. Collection of volatiles ......................................................................... 19 2.5.1. Static or biodynamic collection of volatiles using SPME ………19 2.5.2. Dynamic collection of volatiles ................................................... 20 2.6. Identification of volatiles .................................................................... 21 2.7. Bioassay .............................................................................................. 22 2.7.1. Pine weevil behavior ................................................................... 22 2.7.2. Fungal inhibition ......................................................................... 22 2.8. Data analysis ....................................................................................... 24 3. Microbes associated with Hylobius abietis ............................................. 25 4. Fungal volatiles
Recommended publications
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS ROMANIA January 2007 Forest Resources Development Service Working Paper FBS/28E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Romania. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Romania TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests and diseases................................................................................................. 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases................................................................................................................
    [Show full text]
  • Regeneration Methods to Reduce Pine Weevil Damage to Conifer Seedlings
    Regeneration Methods to Reduce Pine Weevil Damage to Conifer Seedlings Magnus Petersson Southern Swedish Forest Research Centre Alnarp Doctoral thesis Swedish University of Agricultural Sciences Alnarp 2004 Acta Universitatis Agriculturae Sueciae Silvestria 330 ISSN: 1401-6230 ISBN: 91 576 6714 4 © 2004 Magnus Petersson, Alnarp Tryck: SLU Service/Repro, Alnarp 2004 Abstract Petersson, M. 2004. Regeneration methods to reduce pine weevil damage to conifer seedlings. ISSN: 1401-6230, ISBN: 91 576 6714 4 Damage caused by the adult pine weevil Hylobius abietis (L.) (Coleoptera, Curculionidae) can be a major problem when regenerating with conifer seedlings in large parts of Europe. Weevils feeding on the stem bark of newly planted seedlings often cause high mortality in the first three to five years after planting following clear-cutting. The aims of the work underlying this thesis were to obtain more knowledge about the effects of selected regeneration methods (scarification, shelterwoods, and feeding barriers) that can reduce pine weevil damage to enable more effective counter-measures to be designed. Field experiments were performed in south central Sweden to study pine weevil damage amongst planted Norway spruce (Picea abies (L.) H. Karst.) seedlings. The reduction of pine weevil damage by scarification, shelterwood and feeding barriers can be combined to obtain an additive effect. When all three methods were used simultaneously, mortality due to pine weevil damage was reduced to less than 10%. Two main types of feeding barriers were studied: coatings applied directly to the bark of the seedlings, and shields preventing the pine weevil from reaching the seedlings. It was concluded that the most efficient type of feeding barrier, reduced mortality caused by pine weevil about equally well as insecticide treatment, whereas other types were less effective.
    [Show full text]
  • 2019 UDAF Insect Report
    2019 Insect Report UTAH DEPARTMENT OF AGRICULTURE AND FOOD DIVISION OF PLANT INDUSTRY LARGE PINE WEEVIL H y l o b i u s a b i e ti s ( L i n n a e u s ) PROGRAM 2019 PARTNERS Insect Report MORMON CRICKET - VELVET LONGHORNED BEETLE - EMERALD ASH BORER - NUN MOTH - JAPANESE BEE- TLE - PINE SHOOT BEETLE - APPLE MAGGOT - GYPSY MOTH - PLUM CURCULIO - CHERRY FRUIT FLY - LARGE PINE WEEVIL - LIGHT BROWN APPLE MOTH - ROSY GYPSY MOTH - EUROPEAN HONEY BEE - BLACK FIR SAW- YER - GRASSHOPPER - MEDITERRANEAN PINE ENGRAVER - SIX-TOOTHED BARK BEETLE - NUN MOTH - EU- ROPEAN GRAPEVINE MOTH - SIBERIAN SILK MOTH - PINE TREE LAPPET - MORMON CRICKET - VELVET LONGHORNED BEETLE - EMERALD ASH BORER - NUN MOTH - JAPANESE BEETLE - PINE SHOOT BEETLE - AP- PLE MAGGOT - GYPSY MOTH - PLUM CURCULIO - CHERRY FRUIT FLY - LARGE PINE WEEVIL - LIGHT BROWN APPLE MOTH - ROSY GYPSY MOTH - EUROPEAN HONEY BEE - BLACK FIR SAWYER - GRASSHOPPER - MEDI- TERRANEAN PINE ENGRAVER - SIX-TOOTHED BARK BEETLE - NUN MOTH - EUROPEAN GRAPEVINE MOTH - SIBERIAN SILK MOTH - PINE TREE LAPPET - MORMON CRICKET - VELVET LONGHORNED BEETLE - EMERALD ASH BORER - NUN MOTH - JAPANESE BEETLE - PINE SHOOT BEETLE - APPLE MAGGOT - GYPSY MOTH - PLUM CURCULIO - CHERRY FRUIT FLY - LARGE PINE WEEVIL - LIGHT BROWN APPLE MOTH - ROSY GYPSY MOTH - EUROPEAN HONEY BEE - BLACK FIR SAWYER - GRASSHOPPER - MEDITERRANEAN PINE ENGRAVER - SIX-TOOTHED BARK BEETLE - NUN MOTH - EUROPEAN GRAPEVINE MOTH - SIBERIAN SILK MOTH - PINE TREE LAPPET - MORMON CRICKET - VELVET LONGHORNED BEETLE - EMERALD ASH BORER - NUN MOTH - JAPANESE
    [Show full text]
  • Identified Difficulties and Conditions for Field Success of Biocontrol
    Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco To cite this version: Bernard Blum, Philippe C. Nicot, Jürgen Köhl, Michelina Ruocco. Identified difficulties and conditions for field success of biocontrol. 4. Socio-economic aspects: market analysis and outlook. Classical and augmentative biological control against diseases and pests: critical status analysis and review of factors influencing their success, IOBC - International Organisation for Biological and Integrated Controlof Noxious Animals and Plants, 2011, 978-92-9067-243-2. hal-02809583 HAL Id: hal-02809583 https://hal.inrae.fr/hal-02809583 Submitted on 6 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. WPRS International Organisation for Biological and Integrated Control of Noxious IOBC Animals and Plants: West Palaearctic Regional Section SROP Organisation Internationale de Lutte Biologique et Integrée contre les Animaux et les OILB Plantes Nuisibles:
    [Show full text]
  • Status and Development of Old-Growth Elements and Biodiversity During Secondary Succession of Unmanaged Temperate Forests
    Status and development of old-growth elementsand biodiversity of old-growth and development Status during secondary succession of unmanaged temperate forests temperate unmanaged of succession secondary during Status and development of old-growth elements and biodiversity during secondary succession of unmanaged temperate forests Kris Vandekerkhove RESEARCH INSTITUTE NATURE AND FOREST Herman Teirlinckgebouw Havenlaan 88 bus 73 1000 Brussel RESEARCH INSTITUTE INBO.be NATURE AND FOREST Doctoraat KrisVDK.indd 1 29/08/2019 13:59 Auteurs: Vandekerkhove Kris Promotor: Prof. dr. ir. Kris Verheyen, Universiteit Gent, Faculteit Bio-ingenieurswetenschappen, Vakgroep Omgeving, Labo voor Bos en Natuur (ForNaLab) Uitgever: Instituut voor Natuur- en Bosonderzoek Herman Teirlinckgebouw Havenlaan 88 bus 73 1000 Brussel Het INBO is het onafhankelijk onderzoeksinstituut van de Vlaamse overheid dat via toegepast wetenschappelijk onderzoek, data- en kennisontsluiting het biodiversiteits-beleid en -beheer onderbouwt en evalueert. e-mail: [email protected] Wijze van citeren: Vandekerkhove, K. (2019). Status and development of old-growth elements and biodiversity during secondary succession of unmanaged temperate forests. Doctoraatsscriptie 2019(1). Instituut voor Natuur- en Bosonderzoek, Brussel. D/2019/3241/257 Doctoraatsscriptie 2019(1). ISBN: 978-90-403-0407-1 DOI: doi.org/10.21436/inbot.16854921 Verantwoordelijke uitgever: Maurice Hoffmann Foto cover: Grote hoeveelheden zwaar dood hout en monumentale bomen in het bosreservaat Joseph Zwaenepoel
    [Show full text]
  • Pine Weevil (Hylobius Abietis)
    Pine Weevil ( Hylobius abietis ) Feeding Pattern on Conifer Seedlings Frauke Fedderwitz 1, Niklas Björklund, Velemir Ninkovic, Göran Nordlander Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden. [email protected] Abstract The pine weevil ( Hylobius abietis ) is one of the most important forest pests in Europe, yet there is very little known about its detailed feeding behaviour. We study the temporal feeding pattern of individual pine weevils of both sexes for 24 hours with two treatments, intact and girdled seedlings. Properties of a meal, such as feeding duration, size and ingestion rate are of particular interest. The shortest interval considered to separate one feeding bout from another, the meal criterion, has never been published and it is only available for a few other insect species. Video recordings are analysed for feeding behaviour (e.g. duration of feeding activity, interval length between feeding activities, movements between and within feeding scars). We measured general activity patterns as there is insufficient knowledge on the daily behavioural patterns. We thereby got an in-depth view of the pine weevil feeding activity that would otherwise be difficult to assess. Introduction Herbivorous insects reduce the fitness of plants directly and indirectly by feeding despite inducing plant defence systems against herbivory [1]. Trees have especially low defence and tolerance as seedlings in comparison to other phases in plant ontogeny except for over-mature and senile plants [2]. The pine weevil ( Hylobius abietis ) is economically one of the most important forest pests in Europe [3]. Adults feed on the stem bark of conifer seedlings [4] and can cause seedling mortality of up to 90 % in the first three years [5].
    [Show full text]
  • Control and Management of the Pine Weevil Hylobius Abietis L
    Control and Management of the Pine Weevil Hylobius abietis L. * Amelia TUDORAN , Ion OLTEAN, Mircea VARGA Department of Plants Protection, University of Agricultural Sciences and Veterinary Medicine of Cluj- Napoca,* Romania corresponding author: [email protected] BulletinUASVM Horticulture 76(1) / 2019 Print ISSN 1843-5254, Electronic ISSN 1843-5394 DOI:10.15835/buasvmcn-hort: 2018.0049 Abstract Hylobius abietis H. abietis in The pine weevil, L., is a pest of economic importance causing massive damage to conifer seedlings planted on reforestation sites. The lack of effective methods to prevent establishment of newly-harvested sites makes it a threat to European forests. The biology and ecology of the pine weevil have been intensely studied through the years. However, in light of current and future climate change much of the knowledge gathered thus far may need to be re-evaluated under these new conditions. Changes in temperature and other climatic variables may strongly change, for example, the development of the weevil and its distribution. Such changes may result in higher population numbers and increase the feeding pressure on newly planted seedlings,H. abietis thus making it a novel pest in certain areas or increasing its pest status in others. There is a need to synthesize our current understanding on the biology, behavior and methods of damage control by the pine weevil , in order to identify knowledge gaps and propose new management practices. In this review, we present such an overview and provide several examples on how this knowledge could be expanded or used to meet future challenges.Keywords Hylobius abietis, : Control, monitoring, prevention Introduction Hylobius abietis is considered to be the main Hylobius th decade (Olenici, and Olenici, 1994).
    [Show full text]
  • Hylobius Abietis
    On the cover: Stand of eastern white pine (Pinus strobus) in Ottawa National Forest, Michigan. The image was modified from a photograph taken by Joseph O’Brien, USDA Forest Service. Inset: Cone from red pine (Pinus resinosa). The image was modified from a photograph taken by Paul Wray, Iowa State University. Both photographs were provided by Forestry Images (www.forestryimages.org). Edited by: R.C. Venette Northern Research Station, USDA Forest Service, St. Paul, MN The authors gratefully acknowledge partial funding provided by USDA Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology. Contributing authors E.M. Albrecht, E.E. Davis, and A.J. Walter are with the Department of Entomology, University of Minnesota, St. Paul, MN. Table of Contents Introduction......................................................................................................2 ARTHROPODS: BEETLES..................................................................................4 Chlorophorus strobilicola ...............................................................................5 Dendroctonus micans ...................................................................................11 Hylobius abietis .............................................................................................22 Hylurgops palliatus........................................................................................36 Hylurgus ligniperda .......................................................................................46
    [Show full text]
  • Controlling the Large Pine Weevil, Hylobius Abietis, Using Natural
    Silviculture / Management No. 15 © COFORD 2008 The large pine weevil is the most Controlling the large pine weevil, serious pest of conifer reforestation in Ireland. Hylobius abietis , using natural enemies The adult weevil causes damage by feeding on the bark of young Aoife Dillon 1 and Christine Griffin 2 transplants. With up to 100,000 adult weevils emerging per hectare on recently felled conifer sites, it is not The large pine weevil, Hylobius abietis (Figure 1) is the most important pest of uncommon for 100% of young replanted conifer sites in Ireland. This beetle has been recognised as a pest in plants to be killed. Europe since the nineteenth century, but reports of damage were relatively rare in Pine weevils are susceptible to Ireland and Britain until the start of the twentieth century. Adult weevils are attack from a number of natural brown, with yellow patches on their body, and are approximately 1.5 cm in enemies such as fungi, parasites length. and predators. Of these, insect killing nematodes (microscopic worms) are the most promising biological control agent: capable of reducing weevil populations by up to 70%. The practicalities of using nematodes, their environmental safety and their potential for use as part of an integrated pest management strategy are discussed. COFORD Arena House, Arena Road, Sandyford, Dublin 18, Ireland Telephone: +353 1 2130725 Email: [email protected] http://www.coford.ie Figure 1: An adult large pine weevil, Hylobius abietis. 1 Behavioural Ecology and Biocontrol Laboratory, Biology Department, National University of Ireland Maynooth, Maynooth, Co Kildare. Email: [email protected] 2 Behavioural Ecology and Biocontrol Laboratory, Biology Department, National University of Ireland Maynooth, Maynooth, Co Kildare.
    [Show full text]
  • Great Basin Naturalist Memoirs Volume 11 a Catalog of Scolytidae and Platypodidae Article 5 (Coleoptera), Part 1: Bibliography
    Great Basin Naturalist Memoirs Volume 11 A Catalog of Scolytidae and Platypodidae Article 5 (Coleoptera), Part 1: Bibliography 1-1-1987 I–L Stephen L. Wood Life Science Museum and Department of Zoology, Brigham Young University, Provo, Utah 84602 Donald E. Bright Jr. Biosystematics Research Centre, Canada Department of Agriculture, Ottawa, Ontario, Canada 51A 0C6 Follow this and additional works at: https://scholarsarchive.byu.edu/gbnm Part of the Anatomy Commons, Botany Commons, Physiology Commons, and the Zoology Commons Recommended Citation Wood, Stephen L. and Bright, Donald E. Jr. (1987) "I–L," Great Basin Naturalist Memoirs: Vol. 11 , Article 5. Available at: https://scholarsarchive.byu.edu/gbnm/vol11/iss1/5 This Chapter is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist Memoirs by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. 280 Great Basin Naturalist Memoirs No. 11 lABLOKOFF, ARHl'R KHINDZOHIAN. 1953. Les plantations in stem pests nidus]. Lesovedenie 1975(6):27—36. de pin sylvestre et la migration des xylophages. (ec). Revue Forestiere Francaise 5(5):321-327. (ee ds). Ifju. G . P C Ferguson, and R. G Oderwald. 1977. IabloKOFF-KhnzoRIAN. S. M. 1961. Experiments in es- Pulping and papermaking properties of southern tablishing the genesis of the larva of Coleoptera of pine harvested from beetle-infested forests. Pages Armenia [In Russian]. Akademiia Nauk Armian- 164-176. TAPPI Forest Biology and Wood Chem- skoi SSR, Zoologicheski Institut. 266 p.
    [Show full text]
  • Hylobius Abietis
    Egg laying behaviour of the large pine weevil, Hylobius abietis Marion Munneke Augustus 2005 ENT 70323 Supervisors: Sveriges lantbruksuniversitet: Wageningen Universiteit: Göran Nordlander Joop van Loon Helena Bylund Egg laying behaviour of the large pine weevil, Hylobius abietis 2 Table of Contents The institute SLU 5 1. Introduction 7 1.1 Life cycle of Hylobius abietis 7 1.2 Egg laying and protection of eggs 9 1.3 Research objectives 11 2. Materials 12 2.1 Gregarines 13 2.1.1 Gregarines: Observations 13 2.1.2 Gregarines: Theoretical background 15 2.1.3 Gregarines: Impact 17 3. Experiments: Methods and Results 18 3.1 Egg laying - no choice experiment 19 3.1.1 General Materials and Methods 19 3.1.2 Results 20 3.2 Egg laying - choice experiment (first set-up) 24 3.2.1 General materials and methods 25 3.2.2 Results 25 3.3 Egg laying - choice experiment (second set-up) 26 3.3.1 General materials and methods 26 3.3.2 Results 27 3.3.2.1 Eggs 27 3.3.2.2 Feeding damage 29 3.4 Egg deterrence – choice experiment 30 3.4.1 General materials and methods 30 3.4.2 Results 31 3.5 Faeces deterrence - choice experiment 32 3.5.1 General materials and methods 32 3 3.5.2 Results 33 3.6 Clean vs. contaminated egg choice experiment 34 3.6.1 General materials and methods 34 3.6.2 Methods and Results 34 3.7 Observations of the egg laying behaviour of Hylobius abietis 37 3.7.1 First phase: Making the egg chamber 37 3.7.2 Second phase: Laying the egg 37 3.7.3 Third phase: Closing the egg chamber 38 4.
    [Show full text]
  • Orientation of Hylobius Pales and Pachylobius Picivorus (Coleoptera: Curculionidae) to Visual Cues
    The Great Lakes Entomologist Volume 24 Number 4 - Winter 1991 Number 4 - Winter Article 3 1991 December 1991 Orientation of Hylobius Pales and Pachylobius Picivorus (Coleoptera: Curculionidae) to Visual Cues D.W. A. Hunt University of Wisconsin K. F. Raffa University of Wisconsin Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Hunt, D.W. A. and Raffa, K. F. 1991. "Orientation of Hylobius Pales and Pachylobius Picivorus (Coleoptera: Curculionidae) to Visual Cues," The Great Lakes Entomologist, vol 24 (4) Available at: https://scholar.valpo.edu/tgle/vol24/iss4/3 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Hunt and Raffa: Orientation of <i>Hylobius Pales</i> and <i>Pachylobius Picivorus 1991 THE GREAT LAKES ENTOMOLOGIST 225 ORIENTATION OF HYLOBIUS PALES AND PACHYLOBIUS PICIVORUS (COLEOPTERA: CURCULIONIDAE) TO VISUAL CUES D. W. A. Hunt,J,2 and K. F. Raffal ABSTRACT Pitfall traps with above-ground silhouettes of various colors and diameters were used in field tests to evaluate the role of vision in host orientation by adult pales weevils, Hylobius pales, and pitch-eating weevils, Pachylobius picivorus. White traps (11 em outer diameter) baited with ethanol and turpentine caught significantly more weevils than similarly baited black or green traps (11 cm outer diameter). Trap diameter (range of 6-22 cm outer diameter) did not affect trap catch.
    [Show full text]