Vorgelegt Von Marc Biver BA (Hons.), MA (Oxon.) Aus Winseler, Luxemburg

Total Page:16

File Type:pdf, Size:1020Kb

Vorgelegt Von Marc Biver BA (Hons.), MA (Oxon.) Aus Winseler, Luxemburg INAUGURAL-DISSERTATION zur Erlangung der Doktorwürde der Naturwissenschaftlich-Mathematischen Gesamtfakultät der Ruprecht-Karls-Universität Heidelberg Vorgelegt von Marc Biver B.A. (Hons.), M.A. (Oxon.) aus Winseler, Luxemburg Tag der mündlichen Prüfung : 11.05.2011 Some Kinetic Aspects of the Mobilization of Antimony from Natural Sources Gutachter : Prof. Dr. William Shotyk Prof. Dr. Heinz Friedrich Schöler SHORT SUMMARY The aim of the present thesis is to close some gaps in our understanding of the factors that govern the rates of mobilization of antimony from its natural sources, viz. from its most abundant minerals, namely stibnite, the most abundant antimony mineral, and its principal weathering products in the supergene zone, namely senarmontite, valentinite and stibiconite. Antimony may also become enriched in soils and sediments, as a result of anthropogenic or natural contamination, and be mobilized thence; therefore, the specific mobilization of antimony in the form of Sb(V) from sediment was also considered. The first (introductory) Chapter is meant to give a comprehensive summary of the known geochemistry of antimony along with an outline of the theoretical basis of most of the material presented in the main chapters. In the second Chapter, we study the rate of oxidative dissolution of stibnite in acidic solution and derive a rate law in terms of hydrogen ion concentration and dissolved oxygen, and the activation energy of the process is measured. The effect of Fe3+ and other trivalent cations on the rate, and the formation of elemental sulfur at the dissolving mineral surface are also examined. In Chapter III, essentially the same study is repeated in basic solution and the observed dissolution rate in a natural system, specifically, the antimony mineralization near Goesdorf (L), is explained on the basis of our findings. Activation energies indicate that the dissolution processes are diffusion controlled in acidic, and surface controlled in basic solution. Another important (new) finding is the promotive effect exerted by metal cations, both in acidic and in basic solution. These are, to our knowledge, the first reported instances of metal- promoted dissolution in the case of a sulfide mineral. In Chapter IV, we investigate and rationalize the effects of organic ligands which commonly occur in the soil solution on the rate of dissolution of stibnite. Both the type of ligand and the contact time of the solution with the mineral determine whether an enhancement of the Sb mobilization is to be expected. In Chapter V, we turn to the oxide minerals of antimony; we derive rate laws for their proton-promoted dissolution over the environmentally relevant pH range (2 to 11) and measure the activation energies of these processes. These energies are in the range of surface controlled mechanisms, except for valentinite in basic solution, which appears to be transport-controlled, and stibiconite, which dissolves with a negative activation energy in acidic solution. Negative activation energies for mineral dissolution are exceedingly rare though their existence was predicted on theoretical grounds. Stibiconite represents the first reported oxide mineral with a negative dissolution activation energy. The results from this Chapter permit to derive the following sequence of dissolution rates, valid over most of the pH range 2-11: valentinite>senarmontite>stibiconite>stibnite. Geochemical implications of this order of reactivities are discussed. In Chapter VI, the mobilizing effect of common inorganic anionic aquatic species on antimony bearing sediment, and on pure phases representative of those present in sediments, is examined. The main objective consists in verifying whether carbonate and phosphate, known to mobilize As from sediments and soils, mobilize Sb as well. Phosphate at environmental concentrations has little impact, while that of carbonate, at environmentally relevant concentrations, is very slight, although significant. The Appendices contain, among others, detailed experimental results that are merely mentioned in the main text, or that are only presented there in graphical form, as well as the development of a UV-photometric method for the determination of elemental sulfur on mineral surfaces. The method is applied to weathered stibnite in Chapters II and III; it is more sensitive, more economic, more environmentally friendly, and easier to carry out than the literature method. KURZE ZUSAMMENFASSUNG Das Ziel der vorliegenden Arbeit besteht darin, einige Lücken in unserem gegenwärtigen Verständnis der Mobilisierung des Elementes Antimon zu schließen. Behandelt wird die Mobilisierung aus Stibnit (Grauspießglanz) und aus den hauptsächlichsten Oxidmineralen Senarmontit, Valentinit und Stibiconit, die in der Natur als Verwitterungsprodukte des Grauspießglanzes auftreten. Untersucht wird außerdem die Mobilisierung des fünfwertigen Antimons aus natürlich kontaminiertem Flußsediment. Im ersten, einführenden Kapitel, wird die bekannte Geochemie des Antimons möglichst vollständig zusammengefasst und es werden die theoretischen Grundlagen der Kinetik der Mineralauflösungsvorgänge vorgestellt. Im zweiten Kapitel wird das Reaktionsgeschwindigkeitsgesetz der oxidativen Auflösung von Grauspießglanz in Abhängigkeit der Acidität und der Konzentration an gelöstem Sauerstoff in saurer Lösung experimentell erarbeitet; die Aktivierungsenergie des Vorgangs wird gemessen, der Einfluss des Fe3+ und anderer dreiwertiger Kationen wird untersucht, ebenso wie die Bildung elementaren Schwefels an der in Auflösung begriffenen Mineraloberfläche. Im dritten Kapitel wird im Wesentlichen die gleiche Untersuchung in basischer Lösung wiederholt, und die so gewonnenen Erkenntnisse zur Erklärung der Verwitterungsgeschwindigkeiten in einem natürlichen System, dem Antimonvorkommen bei Goesdorf (L), herangezogen. Die Aktivierungsenergien lassen darauf schließen, daß in saurer Lösung die Diffusion geschwindigkeitsbestimmend ist, während es in alkalischer Lösung die Vorgänge an der Mineraloberfläche (d.h. das Herauslösen der Antimonionen aus dem Kristallverband) sind. Eine wichtige neue Erkenntnis besteht in dem geschwindigkeitsfördernden Effekt, den Metallkationen auf den Lösungsvorgang in saurer wie in basischer Lösung ausüben. Solche Effekte sind bereits beobachtet, aber noch nie für ein Sulfidmineral beschrieben worden. In Kapitel IV wird der Einfluss organischer Liganden, wie sie in der natürlichen Bodenlösung vorkommen, auf die Auflösungsgeschwindigkeit des Stibnits untersucht. Sowohl die Art des Liganden wie die Einwirkungsdauer der Lösung auf das Mineral bestimmen letztendlich, ob es mit einem gegebenen Liganden zu einer vertärkten Mobilisierung kommt oder nicht. In Kapitel V werden die Geschwindigkeitsgesetze für die Auflösung der Oxidminerale unter umweltrelevanten Bedingungen (pH Wert von 2 bis 11), sowie Aktivierungsenergien bestimmt. Diese Energien deuten wieder auf oberflächenkontrollierte Auflösungsmechanismen hin. Ausnahmen bilden Valentinit, in alkalischem Milieu, mit einer für Diffusion charakteristischen Aktivierungsenergie, und Stibiconit, in saurer Lösung, mit einer negativen Aktivierungsenergie. Negative Aktivierungsenergien sind überaus selten, gleichwohl ihre Existenz für Mineralauflösungsvorgänge aufgrund theoretischer Überlegungen vorhergesagt worden ist. Stibiconit stellt, nach unserem Wissen, das erste beschriebene Beispiel eines Oxidminerals mit negativer Aktivierungsenergie für dessen Auflösevorgang dar. Die Ergebnisse dieses Kapitels erlauben uns, nun die einzelnen Antimonminerale ihrer absteigenden Reaktionsgeschwindigkeit nach wie folgt zu ordnen: Valentinit>Senarmontit>Stibiconit>Stibnit. Diese Reihenfolge gilt praktisch für den ganzen pH Bereich von 2 bis 11. Die geochemische Bedeutung dieser Reihe wird diskutiert. In Kapitel VI wird der Einfluss der geläufigsten anorganischen, anionischen aquatischen Species auf die Mobiliserung des fünfwertigen Antimons aus oxischem Sediment untersucht. Es wurden auch Versuche an anorganischen Reinphasen (Oxidhydrate des Eisens, Aluminiums und Mangans, sowie Tonminerale) vorgenommen, die repräsentativ für die Zusammensetzung eines Sedimentes sind. Das Hauptziel besteht darin, festzustellen, ob Phosphat und Carbonat –welche bekannterweise Arsen aus Böden und Sediment mobilisieren- auch zu einer verstärkten Mobilisierung von Antimon führen. Phosphat mobilisiert Antimon kaum unter umweltrelevanten Bedingungen, während Carbonat in diesen Konzentrationen die Mobilisierung zwar signifikant, aber dennoch auch eher unmaßgeblich verstärkt. In den Anhängen befinden sich einige experimentelle Daten, die in den Hauptkapiteln nur erwähnt oder in graphischer Form dargestellt sind. Dazu kommt noch ein UV-photometrisches Verfahren zur quantitativen Bestimmung elementaren Schwefels an Mineraloberflächen. Diese Methode wird in den Kapiteln II und III auf Stibnit angewandt; sie ist empfindlicher, sparsamer, umweltfreundlicher und einfacher durchführbar als die Literaturmethode. Erklärung über selbständige Forschungsleistungen Diese Erklärung bezieht sich auf folgende Arbeiten, die zur Veröffentlichung eingereicht worden sind : Chapter II : Experimental Studies of Stibnite (Sb2S3) Dissolution Kinetics: Effects of pH, Dissolved Oxygen, Ferric Iron and Temperature. Part I : Acidic Solutions. Chapter III : Experimental Study of Stibnite Dissolution Kinetics : Effect of pH, Dissolved Oxygen, Temperature, and Alkaline-Earth Metal Cations. Part II. Alkaline Solutions and Field Implications. Chapter IV :
Recommended publications
  • Mother's Day Mailer
    For You, Mom KENDRA SCOTT Elisa Necklace in White Howlite/Silver $60 | Cynthia Pendant Necklace in White Howlite/Silver $68 Reid Pendant Necklace in White Howlite/Silver $88 | Elle Earrings in White Howlite/Silver $65 2 Cynthia Cuff Bracelet in Silver White Mix $78 KENDRA SCOTT Elisa Necklace in White Howlite/Silver $60 | Cynthia Pendant Necklace in White Howlite/Silver $68 Reid Pendant Necklace in White Howlite/Silver $88 | Elle Earrings in White Howlite/Silver $65 TORY BURCH Cynthia Cuff Bracelet in Silver White Mix $78 Kira Chevron Small Camera Bag in Limone, Pink City and Bluewood $358 3 KATE SPADE NEW YORK Augusta Bilayer Square Polarized Sunglasses in Black/Pink $180 Lillian Filigree Temple Round Sunglasses in Crystal/Beige $160 Britton Metal Arm Square Polarized Sunglasses in 4 Brown/Blue Havana $180 CLOTH & STONE Flutter Sleeve Striped Tank in Multi $68 JOE’S JEANS The Scout Mid Rise Slim Tomboy Crop Jeans $178 BIRKENSTOCK Women’s Arizona Birko-Flor® Sandal in White $100 BONNIE JEAN Knit to Chambray Romper in Blue $36 BIRKENSTOCK Kid’s Arizona Soft Footbed Sandal in White $60 5 Just for Mommy & Me HAMMITT Hunter Backpack in Pewter $325 Hunter Mini Backpack in Pewter $195 CECELIA Sunbeam Wooden Earrings $28 Ginkgo Seed Drop Wooden Earrings $28 Chevron Triangle Wooden Earrings $28 Sunburst Tiered Wooden Earrings $28 Pomegranate Rectangular Wooden Earrings $28 6 Just for Mommy & Me CARA Open Raffia Hoop Earrings in Sage $26 | Mini Tassel Teardrop Earrings in Sage $26 Woven Hoop Earrings in Light Grey $26 | Woven Raffia Hoop Earrings
    [Show full text]
  • 10-11-Cat.Pdf
    “The birth of a Pearl is a wondrous event. A particle of sand, piece of a shell, or foreign object drifts into the Oyster’s body and the oyster begins to secrete layers of nacre (Mother-of-Pearl) around the irritant. Over time, the layers transform into a glowing one-of-a-kind Pearl. Pearls have taught me about gratitude and nature’s wisdom. How many of us are able to take a challenge, as Oysters do, and find the gift in it? It isn’t always easy to find the positive in the hardships we endure, but in time beauty is often revealed. When we assimilate what we have learned from the difficulties we have overcome, we can then celebrate them as blessings and continue to grow. Every woman deserves to feel beautiful. Pearls can help us feel beautiful on the outside, while we practice embracing the challenges on the inside.” I’d like to share our Treasured Gems with you: Gem #1: Everything happens to us for a reason, from which I can learn and grow. Gem #2: Trusting my intuition and a power greater then myself provides the best guidance. Gem #3: All I have is today. Let me make today a fully alive day. Gem #4: I will take full responsibility for my choices and not feel responsible about the choice of others. Gem #5: I will not hurt others, instead I will use compassion and always use respect. Gem #6: When I treat myself as a priority, I am better able to deal with life’s challenges.
    [Show full text]
  • Thirteenth List of New Mineral Names. 1 by L. J. SPENCER, M.A., Sc.D., F.R.S
    624 Thirteenth list of new mineral names. 1 By L. J. SPENCER, M.A., Sc.D., F.R.S. Keeper of Minerals in the British Museum of Natural History. [Communicated June 7, 1934.] Alkanasul. J. Westman, 1931. Bol. Minero Soc. Nac. Mineria, Santiago de Chile, vol. 43 (a5o 47), p. 433; Zeits. Prakt. Geol., 1932, vol. 40, p. 110. Hydrous basic sulphate of aluminium, potassium, and sodium, K2SO4.Na~SO4.2AI2(SO4)a.6AI(OH)3.6H~O , yellowish-white to bluish-grey, massive, occurring in large amount near Salamanca, Chile. Named from the chemical composition. [Evidently identical with natroalunite.] [M.A. 5-200.] Alleghanyite. C. S. Ross and P. F. Kerr, 1932. Amer. Min., vol. 17, p. 7. Manganese silicate, 5MnO.2Si02, as pink orthorhombic grains, considered to be distinct from tephroite [2MnO.Si02]. Named from the locality, Alleghany County, North Carolina. [M.A. 5-50.] Alumo-chalcosiderite. A. Jahn and E. Gruner, 1933. Mitt. Vogtliind. Gesell. Naturfor., vol. 1, no. 8, p. 19 (Alumo-Chalkosi- derit). A variety of chalcosiderite containing some alumina (Al~O a 10.45 %) replacing ferric oxide. [M.A. 5-391.] Amarillite. H. Ungemach, 1933. Compt. Rend. Acad. Sci. Paris, vol. 197, p. 1133; Bull. Soc. Fran~. Min., [1934], vol. 56 (for 1933), p. 303. Hydrated sulphate of sodium and ferric iron NaFe(SO4)2.6HzO, as yellow monoclinic crystals from Tierra Amarilla, Chile. Named from the locality. [M.A. 5-390.] 1 Previous lists of this series have been given every three years at the ends of vols. 11-22 (1897-1931) of this Magazine.
    [Show full text]
  • Theoretical Studies on As and Sb Sulfide Molecules
    Mineral Spectroscopy: A Tribute to Roger G. Bums © The Geochemical Society, Special Publication No.5, 1996 Editors: M. D. Dyar, C. McCammon and M. W. Schaefer Theoretical studies on As and Sb sulfide molecules J. A. TOSSELL Department of Chemistry and Biochemistry University of Maryland, College Park, MD 20742, U.S.A. Abstract-Dimorphite (As4S3) and realgar and pararealgar (As4S4) occur as crystalline solids con- taining As4S3 and As4S4 molecules, respectively. Crystalline As2S3 (orpiment) has a layered structure composed of rings of AsS3 triangles, rather than one composed of discrete As4S6 molecules. When orpiment dissolves in concentrated sulfidic solutions the species produced, as characterized by IR and EXAFS, are mononuclear, e.g. ASS3H21, but solubility studies suggest trimeric species in some concentration regimes. Of the antimony sulfides only Sb2S3 (stibnite) has been characterized and its crystal structure does not contain Sb4S6 molecular units. We have used molecular quantum mechanical techniques to calculate the structures, stabilities, vibrational spectra and other properties of As S , 4 3 As4S4, As4S6, As4SIO, Sb4S3, Sb4S4, Sb4S6 and Sb4SlO (as well as S8 and P4S3, for comparison with previous calculations). The calculated structures and vibrational spectra are in good agreement with experiment (after scaling the vibrational frequencies by the standard correction factor of 0.893 for polarized split valence Hartree-Fock self-consistent-field calculations). The calculated geometry of the As4S. isomer recently characterized in pararealgar crystals also agrees well with experiment and is calculated to be about 2.9 kcal/mole less stable than the As4S4 isomer found in realgar. The calculated heats of formation of the arsenic sulfide gas-phase molecules, compared to the elemental cluster molecules As., Sb, and S8, are smaller than the experimental heats of formation for the solid arsenic sulfides, but shown the same trend with oxidation state.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Technical Information – Digital Land Use Map 2010
    Technical information – digital land use map 2010 DIGITAL LAND USE MAP FROM ORTHOPHOTOS IN LUXEMBOURG - Deliverable: Status 2010 - Technical Information GeoVille Environmental Services 3, Z.I. Bombicht L-6947 Niederanven Luxembourg Tel: +352 26 71 41 35 Fax: +352 26 71 45 54 E-mail: [email protected] Technical information – digital land use map 2010 Inhalt 1 General overview of the project ..................................................................................................... 3 1.1 Interpretation area .................................................................................................................. 3 1.2 Input data sets ......................................................................................................................... 4 1.3 Deliverables 2010 .................................................................................................................... 4 1.4 Definition of thematic classes ................................................................................................. 4 2 Product description ......................................................................................................................... 4 2.1 Product limitations .................................................................................................................. 6 3 Description of delivery .................................................................................................................... 7 3.1 Final products .........................................................................................................................
    [Show full text]
  • Geology of the Saint-Marcel Valley Metaophiolites (Northwestern Alps, Italy)
    Journal of Maps ISSN: (Print) 1744-5647 (Online) Journal homepage: http://www.tandfonline.com/loi/tjom20 Geology of the Saint-Marcel valley metaophiolites (Northwestern Alps, Italy) Paola Tartarotti, Silvana Martin, Bruno Monopoli, Luca Benciolini, Alessio Schiavo, Riccardo Campana & Irene Vigni To cite this article: Paola Tartarotti, Silvana Martin, Bruno Monopoli, Luca Benciolini, Alessio Schiavo, Riccardo Campana & Irene Vigni (2017) Geology of the Saint-Marcel valley metaophiolites (Northwestern Alps, Italy), Journal of Maps, 13:2, 707-717, DOI: 10.1080/17445647.2017.1355853 To link to this article: http://dx.doi.org/10.1080/17445647.2017.1355853 © 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of Journal of Maps View supplementary material Published online: 31 Jul 2017. Submit your article to this journal Article views: 24 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tjom20 Download by: [Università degli Studi di Milano] Date: 08 August 2017, At: 01:46 JOURNAL OF MAPS, 2017 VOL. 13, NO. 2, 707–717 https://doi.org/10.1080/17445647.2017.1355853 SCIENCE Geology of the Saint-Marcel valley metaophiolites (Northwestern Alps, Italy) Paola Tartarottia, Silvana Martinb, Bruno Monopolic, Luca Benciolinid, Alessio Schiavoc, Riccardo Campanae and Irene Vignic aDipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, Milan, Italy; bDipartimento di
    [Show full text]
  • Effect of Size and Processing Method on the Cytotoxicity of Realgar Nanoparticles in Cancer Cell Lines
    International Journal of Nanomedicine Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Effect of size and processing method on the cytotoxicity of realgar nanoparticles in cancer cell lines Weizhong Zhao1 Abstract: In this study, the effects of the size and Chinese traditional processing (including Xun Lu3 elutriation, water cleaning, acid cleaning, alkali cleaning) on realgar nanoparticles (RN)-induced Yuan Yuan1 antitumor activity in human osteosarcoma cell lines (MG-63) and hepatoma carcinoma cell lines Changsheng Liu1 (HepG-2) were investigated. The human normal liver cell line (L-02) was used as control. RN Baican Yang3 was prepared by high-energy ball milling technology. The results showed that with the assistance Hua Hong1 of sodium dodecyl sulfate, the size of realgar could be reduced to 127 nm after 12 hours’ ball milling. The surface charge was decreased from 0.83 eV to -17.85 eV and the content of As O Guoying Wang3 2 3 clearly increased. Except for elutriation, the processing methods did not clearly change the size Fanyan Zeng2 of the RN, but the content of As2O3 was reduced dramatically. In vitro MTT tests indicated that 1The State Key Laboratory in the two cancer cell lines, RN cytotoxicity was more intense than that of the coarse realgar of Bioreactor Engineering, 2Key Laboratory for Ultrafine nanoparticles, and cytotoxicity was typically time- and concentration-dependent. Also, RN Materials of Ministry of Education cytotoxicities in the HepG-2 and L-02 cells all increased with increasing milling time. Due to and Engineering Research Center the reduction of the As O content, water cleaning, acid cleaning, and alkali cleaning decreased for Biomedical Materials of Ministry 2 3 of Education, East China University RN cytotoxicity in HepG-2, but RN after elutriation, with the lowest As2O3 (3.5 mg/g) and the of Science and Technology, 3Pharmacy smallest size (109.3 nm), showed comparable cytotoxicity in HepG-2 to RN without treatment.
    [Show full text]
  • Circular of the Bureau of Standards No. 539 Volume 10: Standard X-Ray
    :ationa.u d H.W. BIS <T be Libra.ry, Reisrence book not to 1965 JVPR 1 6 from ibe lib s ary. taken NBS C | RCULAR 539 VOLUME 10 Standard X-ray Diffraction Powder Patterns UNITED STATES DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The Functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to government agencies on scientific and technical problems; in- vention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. Research projects are also performed for other government agencies when the work relates to and supplements the basic program of the Bureau or when the Bureau’s unique competence is required. The scope of activities is suggested by the listing of divisions and sections on the inside of the back cover. Publications The results of the Bureau’s work take the form of either actual equipment and devices or pub- lished papers. These papers appear either in the Bureau’s own series of publications or in the journals of professional and scientific societies.
    [Show full text]
  • Controls on Antimony Speciation and Mobility in Legacy Mine Tailings Environments: a Case Study of Mineral Occurrences in the Tintina Gold Province, Alaska and Yukon
    Controls on Antimony Speciation and Mobility in Legacy Mine Tailings Environments: A Case Study of Mineral Occurrences in the Tintina Gold Province, Alaska and Yukon. USGS Award MRERP 06HQGR0177 (Principle Investigator T.P. Trainor) T.P. Trainor1, S.H. Mueller2,*, V. Ritchie1, R.J. Goldfarb2 1.University of Alaska Fairbanks, Dept. of Chemistry and Biochemistry, P.O. Box 756160, Fairbanks, AK 99775-6160, Phone: 907-474-5628, Email: [email protected] 2. U.S. Geological Survey, Mineral Resources Program, Denver, CO 80225 * Present Address: Water Management Consultants Inc., 3845 North Business Center Drive, Tucson, AZ 85705, Phone: 520-319-0725 Research supported by the U.S. Geological Survey (USGS), Department of the Interior, under USGS award number 06HQGR0177. The views and conclusions contained in this document are those of the author(s) and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. Introduction In recent years, a great deal of progress has been made in the development of geoenvironmental models to predict the potential for environmental contamination associated with mineral resource development (c.f. du Bray, 1995; Plumlee and Logsdon, 1999). The application of such models to current, prospective, and legacy mining sites provides industry, public land managers, and environmental quality agencies an important tool for developing management and remediation strategies. An essential aspect of developing such models is access to high quality water, sediment, and soil chemistry data sets from well-characterized mineral deposits. These data sets can be used to predict the identity and levels of potentially toxic trace elements based on similarities in ore deposit mineralogy, host rock lithology, and other geo-environmental variables.
    [Show full text]
  • WO 2015/121485 Al 20 August 2015 (20.08.2015) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/121485 Al 20 August 2015 (20.08.2015) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every B01J 23/18 (2006.01) B01J 35/02 (2006.01) kind of national protection available): AE, AG, AL, AM, B01J 23/22 (2006.01) C07C 15/24 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, B01J 27/198 (2006.01) B01J 37/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, B01J 35/00 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (21) International Application Number: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, PCT/EP2015/053270 MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (22) International Filing Date: PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, 17 February 2015 (17.02.2015) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of regional protection available): ARIPO (BW, GH, (30) Priority Data: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 14155332.
    [Show full text]
  • CLARC Excerpt
    Washington State Department of Ecology - CLARC Air Table (Methods B and C) - February 2021 February 2021 S S CPFi S CPFo S Air Air RfC o RfDi o Inhalation RfDo o Oral o Air Air Method C Method C Inhalation u Inhalation IUR u Cancer Oral u Cancer u Method B Method B Noncancer Cancer Reference Reference Inhalation Potency Reference Potency Noncancer Cancer (Eq. 750-1 (Eq. 750-2 Chemical Data Links to r r r r Concentration c Dose Unit Risk c Factor Dose c Factor c (Eq. 750-1) (Eq. 750-2) adjusted) adjusted) 3 3 -1 CAS No. Group Chemical Name Important Notes (mg/m ) e (mg/kg-day) (µg/m ) e (kg-day/mg) (mg/kg-day) e (kg-day/mg) e (µg/m³) (µg/m³) (µg/m³) (µg/m³) 83-32-9 PAHs acenaphthene 6.00E-02 I 30560-19-1 Pesticides acephate 1.20E-03 O 75-07-0 VOCs acetaldehyde 9.00E-03 I 2.57E-03 2.20E-06 I 7.70E-03 4.10E+00 1.10E+00 9.00E+00 1.10E+01 34256-82-1 Pesticides acetochlor 2.00E-02 I 67-64-1 VOCs acetone 3.10E+01 A 8.86E+00 9.00E-01 I 1.40E+04 3.10E+04 75-86-5 VOCs acetone cyanohydrin 2.00E-03 X 5.71E-04 9.10E-01 2.00E+00 75-05-8 VOCs acetonitrile 6.00E-02 I 1.71E-02 2.70E+01 6.00E+01 98-86-2 SVOCs acetophenone 1.00E-01 I 62476-59-9 Herbicides acifluorfen, sodium 1.30E-02 I 107-02-8 VOCs acrolein 2.00E-05 I 5.71E-06 5.00E-04 I 9.10E-03 2.00E-02 79-06-1 VOCs acrylamide 6.00E-03 I 1.71E-03 1.00E-04 I-M 3.50E-01 2.00E-03 I 5.00E-01 I-M 2.70E+00 6.60E-03 6.00E+00 2.50E-01 79-10-7 VOCs acrylic acid 1.00E-03 I 2.86E-04 5.00E-01 I 4.60E-01 1.00E+00 107-13-1 VOCs acrylonitrile 2.00E-03 I 5.71E-04 6.80E-05 I 2.38E-01 4.00E-02 A 5.40E-01 I 9.10E-01 3.70E-02
    [Show full text]