Artificial Intelligence
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Agx Multiphysics Download
Agx multiphysics download click here to download A patch release of AgX Dynamics is now available for download for all of our licensed customers. This version include some minor. AGX Dynamics is a professional multi-purpose physics engine for simulators, Virtual parallel high performance hybrid equation solvers and novel multi- physics models. Why choose AGX Dynamics? Download AGX product brochure. This video shows a simulation of a wheel loader interacting with a dynamic tree model. High fidelity. AGX Multiphysics is a proprietary real-time physics engine developed by Algoryx Simulation AB Create a book · Download as PDF · Printable version. AgX Multiphysics Toolkit · Age Of Empires III The Asian Dynasties Expansion. Convert trail version Free Download, product key, keygen, Activator com extended. free full download agx multiphysics toolkit from AYS search www.doorway.ru have many downloads related to agx multiphysics toolkit which are hosted on sites like. With AGXUnity, it is possible to incorporate a real physics engine into a well Download from the prebuilt-packages sub-directory in the repository www.doorway.rug: multiphysics. A www.doorway.ru app that runs a physics engine and lets clients download physics data in real Clone or download AgX Multiphysics compiled with Lua support. Agx multiphysics toolkit. Developed physics the was made dynamics multiphysics simulation. Runtime library for AgX MultiPhysics Library. How to repair file. Original file to replace broken file www.doorway.ru Download. Current version: Some short videos that may help starting with AGX-III. Example 1: Finding a possible Pareto front for the Balaban Index in the Missing: multiphysics. -
Software Design for Pluggable Real Time Physics Middleware
2005:270 CIV MASTER'S THESIS AgentPhysics Software Design for Pluggable Real Time Physics Middleware Johan Göransson Luleå University of Technology MSc Programmes in Engineering Department of Computer Science and Electrical Engineering Division of Computer Science 2005:270 CIV - ISSN: 1402-1617 - ISRN: LTU-EX--05/270--SE AgentPhysics Software Design for Pluggable Real Time Physics Middleware Johan GÄoransson Department of Computer Science and Electrical Engineering, LuleºaUniversity of Technology, [email protected] October 27, 2005 Abstract This master's thesis proposes a software design for a real time physics appli- cation programming interface with support for pluggable physics middleware. Pluggable means that the actual implementation of the simulation is indepen- dent and interchangeable, separated from the user interface of the API. This is done by dividing the API in three layers: wrapper, peer, and implementation. An evaluation of Open Dynamics Engine as a viable middleware for simulating rigid body physics is also given based on a number of test applications. The method used in this thesis consists of an iterative software design based on a literature study of rigid body physics, simulation and software design, as well as reviewing related work. The conclusion is that although the goals set for the design were ful¯lled, it is unlikely that AgentPhysics will be used other than as a higher level API on top of ODE, and only ODE. This is due to a number of reasons such as middleware speci¯c tools and code containers are di±cult to support, clash- ing programming paradigms produces an error prone implementation layer and middleware developers are reluctant to port their engines to Java. -
Physics Simulation Game Engine Benchmark Student: Marek Papinčák Supervisor: Doc
ASSIGNMENT OF BACHELOR’S THESIS Title: Physics Simulation Game Engine Benchmark Student: Marek Papinčák Supervisor: doc. Ing. Jiří Bittner, Ph.D. Study Programme: Informatics Study Branch: Web and Software Engineering Department: Department of Software Engineering Validity: Until the end of summer semester 2018/19 Instructions Review the existing tools and methods used for physics simulation in contemporary game engines. In the review, cover also the existing benchmarks created for evaluation of physics simulation performance. Identify parts of physics simulation with the highest computational overhead. Design at least three test scenarios that will allow to evaluate the dependence of the simulation on carefully selected parameters (e.g. number of colliding objects, number of simulated projectiles). Implement the designed simulation scenarios within Unity game engine and conduct a series of measurements that will analyze the behavior of the physics simulation. Finally, create a simple game that will make use of the tested scenarios. References [1] Jason Gregory. Game Engine Architecture, 2nd edition. CRC Press, 2014. [2] Ian Millington. Game Physics Engine Development, 2nd edition. CRC Press, 2010. [3] Unity User Manual. Unity Technologies, 2017. Available at https://docs.unity3d.com/Manual/index.html [4] Antonín Šmíd. Comparison of the Unity and Unreal Engines. Bachelor Thesis, CTU FEE, 2017. Ing. Michal Valenta, Ph.D. doc. RNDr. Ing. Marcel Jiřina, Ph.D. Head of Department Dean Prague February 8, 2018 Bachelor’s thesis Physics Simulation Game Engine Benchmark Marek Papinˇc´ak Department of Software Engineering Supervisor: doc. Ing. Jiˇr´ıBittner, Ph.D. May 15, 2018 Acknowledgements I am thankful to Jiri Bittner, an associate professor at the Department of Computer Graphics and Interaction, for sharing his expertise and helping me with this thesis. -
Program and Book of Abstracts
20th International Conference on Multimedia in Physics Teaching and Learning Program and Book of Abstracts MPTL 2015 International Conference September 9–11, 2015 at LMU Munich Wed, 9 Sep Thu, 10 Sep Fri, 11 Sep Opening Ceremony Plenary Lecture Plenary Lecture 09:00 - 10:00 Michael Dubson Wouter van Joolingen Plenary Lecture Plenary Lecture Plenary Lecture 10:00 - 11:00 Jochen Schieck Christian Hackenberger David Lowe 11:00 - 11:30 Coffee Break Coffee Break Coffee Break 1A Invited Symposium REP 3A Parallel Session QP 6A Parallel Session SIM/VID 11:30 - 13:00 1B Invited Symposium IWB 3B Parallel Session VRL/MAP 6B Invited Symposium ASS 3C Workshop CAM 6C Workshop MAP Lunch Lunch Closing Ceremony 13:00 - 14:00 2A Invited Symposium VRL 4A Invited Symposium iMP Lunch 2B Invited Symposium ILA 4B Invited Symposum GBL 14:00 - 16:00 4C Parallel Session MM 16:00 - 16:30 Coffee Break Coffee Break Poster Session 5A Invited Symposium QP & 5B Parallel Session ILA 16:30 - 18:30 Welcome Party 5C Workshop VRL Guided Tour Conference Dinner 18:30 - 20:30 20:30 - 23:00 Program and Book of Abstracts European Physical Society 20th International Conference on Multimedia in Physics Teaching and Learning Program and Book of Abstracts MPTL 2015 International Conference September 9–11, 2015 at LMU Munich, Germany Organized by: Multimedia in Physics Teaching and Learning (MPTL) Chair of Physics Education, Faculty of Physics, LMU Munich With the support of: German Research Foundation (DFG) European Physical Society (EPS) – Physics Education Division German Physical -
Dynamic Simulation of Manipulation & Assembly Actions
Syddansk Universitet Dynamic Simulation of Manipulation & Assembly Actions Thulesen, Thomas Nicky Publication date: 2016 Document version Peer reviewed version Document license Unspecified Citation for pulished version (APA): Thulesen, T. N. (2016). Dynamic Simulation of Manipulation & Assembly Actions. Syddansk Universitet. Det Tekniske Fakultet. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 09. Sep. 2018 Dynamic Simulation of Manipulation & Assembly Actions Thomas Nicky Thulesen The Maersk Mc-Kinney Moller Institute Faculty of Engineering University of Southern Denmark PhD Dissertation Odense, November 2015 c Copyright 2015 by Thomas Nicky Thulesen All rights reserved. The Maersk Mc-Kinney Moller Institute Faculty of Engineering University of Southern Denmark Campusvej 55 5230 Odense M, Denmark Phone +45 6550 3541 www.mmmi.sdu.dk Abstract To grasp and assemble objects is something that is known as a difficult task to do reliably in a robot system. -
Basic Physics
Basic Game Physics Technical Game Development II Professor Charles Rich Computer Science Department [email protected] [some material provided by Mark Claypool] IMGD 4000 (D 11) 1 Introduction . What is game physics? • computing motion of objects in virtual scene – including player avatars, NPC’s, inanimate objects • computing mechanical interactions of objects – interaction usually involves contact (collision) • simulation must be real-time (versus high- precision simulation for CAD/CAM, etc.) • simulation may be very realistic, approximate, or intentionally distorted (for effect) IMGD 4000 (D 11) 2 1 Introduction (cont’d) . And why is it important? • can improve immersion • can support new gameplay elements • becoming increasingly prominent (expected) part of high-end games • like AI and graphics, facilitated by hardware developments (multi-core, GPU) • maturation of physics engine market IMGD 4000 (D 11) 3 Physics Engines . Similar buy vs. build analysis as game engines • Buy: – complete solution from day one – proven, robust code base (hopefully) – feature sets are pre-defined – costs range from free to expensive • Build: – choose exactly features you want – opportunity for more game-specification optimizations – greater opportunity to innovate – cost guaranteed to be expensive (unless features extremely minimal) IMGD 4000 (D 11) 4 2 Physics Engines . Open source • Box2D, Bullet, Chipmunk, JigLib, ODE, OPAL, OpenTissue, PAL, Tokamak, Farseer, Physics2d, Glaze . Closed source (limited free distribution) • Newton Game Dynamics, Simple Physics Engine, True Axis, PhysX . Commercial • Havok, nV Physics, Vortex . Relation to Game Engines • integrated/native, e.g,. C4 • integrated, e.g., Unity+PhysX • pluggable, e.g., C4+PhysX, jME+ODE (via jME Physics) IMGD 4000 (D 11) 5 Basic Game Physics Concepts . -
Spjaldtölvur Í Norðlingaskóla Smáforrit Í Nóvember 2012 – Upplýsingar Um Forritin Skúlína Hlíf Kjartansdóttir – 31.8.2014
Spjaldtölvur í Norðlingaskóla Smáforrit í nóvember 2012 – upplýsingar um forritin Skúlína Hlíf Kjartansdóttir – 31.8.2014 Lýsingar eru úr iTunes Preview eða af vefsíðum fyrirtækja framleiðnda forritanna. ! Not found on itunes http://ruckygames.com/ 30/30 – Productivity By Binary Hammer https://itunes.apple.com/is/app/30-30/id505863977?mt=8 You have never experienced a task manager like this! Simple. Attractive. Useful. 30/30 helps you get stuff done! 3D Brain – Education / 1 Cold Spring Harbor Lab http://www.g2conline.org/ https://itunes.apple.com/is/app/3d-brain/id331399332?mt=8 Use your touch screen to rotate and zoom around 29 interactive structures. Discover how each brain region functions, what happens when it is injured, and how it is involved in mental illness. Each detailed structure comes with information on functions, disorders, brain damage, case studies, and links to modern research. 3DGlobe2X – Education By Sreeprakash Neelakantan http://schogini.com/ View More by This Developer https://itunes.apple.com/us/app/3d-globe-2x/id430309485?mt=8 2 An amazing way to twirl the world! This 3D globe can be rotated with a swipe of your finger. Spin it to the right or left, and if you want it closer zoom in, or else zoom out. Watch the world revolve at your fingertips! An interesting feature of this 3D globe is that you can type in the name of a place in the given space and it is shown on the 3D globe by affixing a flag to show you the exact location. Also, when you click on the flag, you will get the details about the place on your screen. -
A Position Based Approach to Ragdoll Simulation
LINKÖPING UNIVERSITY Department of Electrical Engineering Master Thesis A Position Based Approach to Ragdoll Simulation Fiammetta Pascucci LITH-ISY-EX- -07/3966- -SE June 2007 LINKÖPING UNIVERSITY Department of Electrical Engineering Master Thesis A position Based Approach to Ragdoll Simulation Fiammetta Pascucci LITH-ISY-EX- -07/3966- -SE June 2007 Supervisor: Ingemar Ragnemalm Examinator: Ingemar Ragnemalm Abstract Create the realistic motion of a character is a very complicated work. This thesis aims to create interactive animation for characters in three dimen- sions using position based approach. Our character is pictured from ragdoll, which is a structure of system particles where all particles are linked by equidistance con- straints. The goal of this thesis is observed the fall in the space of our ragdoll after creating all constraints, as structure, contact and environment constraints. The structure constraint represents all joint constraints which have one, two or three Degree of Freedom (DOF). The contact constraints are represented by collisions between our ragdoll and other objects in the space. Finally, the environment constraints are represented by means of the wall con- straint. The achieved results allow to have a realist fall of our ragdoll in the space. Keywords: Particle System, Verlet’s Integration, Skeleton Animation, Joint Con- straint, Environment Constraint, Skinning, Collision Detection. Acknowledgments I would to thanks all peoples who aid on making my master thesis work. In particular, thanks a lot to the person that most of all has believed in me. This person has always encouraged to go forward, has always given a lot love and help me in difficult movement. -
Physics Engines
Physics Engines Jeff Wilson [email protected] Maribeth Gandy [email protected] Clint Doriot [email protected] CS4455 What is a Physics Engine? • Provides physics simulation in a virtual environment • High Precision vs. Real Time • Real Time requires a lot of approximations • Can be used in creative ways http://www.youtube.com/watch?v=2FMtQuFzjAc CS 4455 Real Time Physic Engines • Havok (commercial), Newton (closed source), Open Dynamics Engine (ODE) (open source), Aegia PhysX (accelerator board available) • Unity o PhysX integration § Rigidbodies § Soft Bodies § Joints § Ragdoll Physics § Cloth § Cars http://docs.unity3d.com/ Documentation/Manual/Physics.html CS 4455 Concepts • Forces • Rigid Bodies o Box, sphere, capsule, character mesh etc. • Constraints • Collision Detection o Can be used by itself with no dynamics CS 4455 Bodies • Rigid • Movable (Dynamic) o Kinematic o Unity’s IsKinematic = false § You are not controlling the velocity & position, Unity is doing that • Unmovable (Static) o Infinite mass • Properties o Mass, dynamic/static friction, restitution (bounciness), softness § Anisotropic friction (skateboard) o Mesh shapes with per triangle materials (terrain) CS 4455 Bodies • Position • Orientation • Velocity • Angular Velocity • These values are a result of forces CS 4455 Collisions • Bounding boxes (collision hulls) reduce complexity of collision calculation o Made from the primitives mentioned before § Boxes, capsules etc. • How your model is encapsulated determines accuracy, and computational requirements -
CPP Strategic Plan Everyone Was Excited About Their Own Area of Research and Wanted It to Continue and Be Represented in the CPP Strategic Plan
A Community Plan for Fusion Energy and Discovery Plasma Sciences Report of the 2019–2020 American Physical Society Division of Plasma Physics Community Planning Process A Community Plan for Fusion Energy and Discovery Plasma Sciences Chairs Scott Baalrud University of Iowa Nathaniel Ferraro Princeton Plasma Physics Laboratory Lauren Garrison Oak Ridge National Laboratory Nathan Howard Massachusetts Institute of Technology Carolyn Kuranz University of Michigan John Sarff University of Wisconsin-Madison Earl Scime (emeritus) West Virginia University Wayne Solomon General Atomics Magnetic Fusion Energy Fusion Materials and Technology Ted Biewer, ORNL John Caughman, ORNL Dan Brunner, CFS David Donovan, UT Knoxville Cami Collins, General Atomics Karl Hammond, U Missouri Brian Grierson, PPPL Paul Humrickhouse, INL Walter Guttenfelder, PPPL Robert Kolasinski, Sandia Chris Hegna, U Wisconsin-Madison Ane Lasa, UT Knoxville Chris Holland, UCSD Richard Nygren, Sandia Jerry Hughes, MIT Wahyu Setyawan, PNNL Aaro Järvinen, LLNL George Tynan, UCSD Richard Magee, TAE Steven Zinkle, UT Knoxville Saskia Mordijck, William & Mary Craig Petty, General Atomics High Energy Density Physics Matthew Reinke, ORNL Alex Arefiev, UCSD Uri Shumlak, U Washington Todd Ditmire, UT Austin Forrest Doss, LANL General Plasma Science Johan Frenje, MIT Daniel Den Hartog, U Wisconsin-Madison Cliff Thomas, UR/LLE Dan Dubin, UCSD Arianna Gleason, Stanford/SLAC Hantao Ji, Princeton Stephanie Hansen, Sandia Yevgeny Raitses, PPPL Louisa Pickworth, LLNL Dan Sinars, Sandia Jorge Rocca, Colorado State David Schaffner, Bryn Mawr College Derek Schaeffer, Princeton Steven Shannon, NC State Sean Finnegan, LANL Stephen Vincena, UCLA Figure 1. Artwork by Jennifer Hamson LLE/University of Rochester, concept by Dr. David Schaffner, Bryn Mawr College Preface This document is the final report of the Community Planning Process (CPP) that describes a comprehensive plan to deliver fusion energy and to advance plasma science. -
Systematic Literature Review of Realistic Simulators Applied in Educational Robotics Context
sensors Systematic Review Systematic Literature Review of Realistic Simulators Applied in Educational Robotics Context Caio Camargo 1, José Gonçalves 1,2,3 , Miguel Á. Conde 4,* , Francisco J. Rodríguez-Sedano 4, Paulo Costa 3,5 and Francisco J. García-Peñalvo 6 1 Instituto Politécnico de Bragança, 5300-253 Bragança, Portugal; [email protected] (C.C.); [email protected] (J.G.) 2 CeDRI—Research Centre in Digitalization and Intelligent Robotics, 5300-253 Bragança, Portugal 3 INESC TEC—Institute for Systems and Computer Engineering, 4200-465 Porto, Portugal; [email protected] 4 Robotics Group, Engineering School, University of León, Campus de Vegazana s/n, 24071 León, Spain; [email protected] 5 Universidade do Porto, 4200-465 Porto, Portugal 6 GRIAL Research Group, Computer Science Department, University of Salamanca, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected] Abstract: This paper presents a systematic literature review (SLR) about realistic simulators that can be applied in an educational robotics context. These simulators must include the simulation of actuators and sensors, the ability to simulate robots and their environment. During this systematic review of the literature, 559 articles were extracted from six different databases using the Population, Intervention, Comparison, Outcomes, Context (PICOC) method. After the selection process, 50 selected articles were included in this review. Several simulators were found and their features were also Citation: Camargo, C.; Gonçalves, J.; analyzed. As a result of this process, four realistic simulators were applied in the review’s referred Conde, M.Á.; Rodríguez-Sedano, F.J.; context for two main reasons. The first reason is that these simulators have high fidelity in the robots’ Costa, P.; García-Peñalvo, F.J. -
Desktop Haptic Virtual Assembly Using Physically-Based Part Modeling" (2005)
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1-1-2005 Desktop haptic virtual assembly using physically- based part modeling Brad M. Howard Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Recommended Citation Howard, Brad M., "Desktop haptic virtual assembly using physically-based part modeling" (2005). Retrospective Theses and Dissertations. 18810. https://lib.dr.iastate.edu/rtd/18810 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Desktop haptic virtual assembly using physically-based part modeling by Brad M. Howard A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Mechanical Engineering Program of Study Committee: Judy M. Vance (Major Professor) James H. Oliver Chris J. Harding Iowa State University Ames, Iowa 2005 11 Graduate College Iowa State University This is to certify that the master's thesis of Brad M. Howard has met the thesis requirements of Iowa State University Signatures have been redacted for privacy lll TABLE OF CONTENTS TABLE OF CONTENTS ....................................... ............... ............................. .....................