Hyperlipidemia Disorders in Dogs

Total Page:16

File Type:pdf, Size:1020Kb

Hyperlipidemia Disorders in Dogs Article #2 CE Hyperlipidemia Disorders in Dogs Mark C. Johnson, DVM, DACVP (Clinical Pathology) Texas A & M University ABSTRACT: Lipid disorders are common in dogs, with most arising from secondary causes such as endocrine imbalances, cholestatic liver disease, or protein-losing nephropathies.Two pri- mary lipid disorders—idiopathic hyperlipidemia in miniature schnauzers and hypercho- lesterolemia in briards—are also recognized. Visualization of a lipemic fasted blood sample or elevated plasma cholesterol or triglyceride in combination with clinical assess- ment is the method by which most lipid disorders are diagnosed. Cholesterol and triglyceride are components of larger molecules called lipoproteins, which have a complex and highly regulated metabolism that is important to understand when altered by lipid disorders. ipid disorders are relatively common in vet- cholesterol and triglyceride are water insoluble erinary medicine, particularly in dogs. The in plasma, so they are transported via water-sol- L presence of a lipid disorder provides clues uble lipoproteins in plasma. There are four gen- regarding underlying disease and presents a risk eral types of lipoproteins: chylomicrons, factor for other problems. In dogs, lipid disorders very–low-density lipoprotein (VLDL), low- are either primary or secondary, of which the lat- density lipoprotein (LDL), and high-density ter is by far the most common.1–4 Primary disor- lipoprotein (HDL). Intermediate-density ders are considered hereditary in some breeds of lipoprotein is also recognized but is considered dogs.1,3–6 Secondary disorders can be dietary less important. Humans have two HDL mole- related or more often of endocrine origin, result- cules: HDL2 and HDL3. Dogs have HDL2 and ing from an imbalance of homeostatic mecha- HDL3 but are unique in that they have HDL1, 1–4 nisms that normally regulate plasma lipids (see which is recognized by a distinct α2 band on box on p. 362). Unfortunately, it is not always lipoprotein electrophoresis.1,3,7 easy to separate these two based on clinical Lipoproteins exist in plasma as spherical assessment or biochemical analysis. Therefore, it structures composed of an outer shell and an is imperative that signalment, clinical presenta- inner core (Figure 1). The outer shell has both tion, and biochemical information for each ani- hydrophilic and hydrophobic properties con- mal be analyzed collectively when suspecting one taining free cholesterol, apoproteins, and phos- of these disorders. This article discusses basic pholipids.3,7 Apoproteins serve as cofactors for concepts of lipid metabolism, addresses labora- cholesterol-shuttling enzymes, receptors for tory evaluation of plasma lipids, and examines uptake and delivery of tissue cholesterol and the causes of hyperlipidemia disorders in dogs. triglyceride, and receptors for removal of rem- nant lipoproteins by the liver. The inner core Full-text articles and CE testing at LIPID METABOLISM consists of hydrophobic lipids, primarily choles- CompendiumVet.com. Send comments/ Cholesterol and triglyceride terol esters and triglyceride.3,7 questions via email compendium@ medimedia.com, fax 800-556-3288, are clinically relevant plasma Chylomicrons are created by intestinal or web CompendiumVet.com. lipids (Figures 1 and 2). Free epithelial cells following fatty meal ingestion. May 2005 361 COMPENDIUM 362 CE Hyperlipidemia Disorders in Dogs Causes of Primary and Secondary Lipid Disorders in Dogs A Primary • Idiopathic hyperlipidemia in miniature schnauzers • Hypercholesterolemia in briards P Secondary • High-fat diets • Diabetes mellitus • Hyperadrenocorticism • Hypothyroidism • Acute pancreatitis CCCE TG • Protein-losing nephropathy • Cholestasis may be removed from circulation by the liver or may undergo further triglyceride depletion by lipoprotein lipase or a second enzyme called hepatic triglyceride lipase, forming smaller and denser LDL.3,7 There are notable differences in how dogs and humans Figure 1. Basic lipoprotein structure. (A = apoprotein; process LDL and form HDL. LDL, the “bad lipopro- C = cholesterol; CE = cholesterol ester; P = phospholipid; tein,” primarily transports cholesterol with smaller TG = triglyceride) amounts of triglyceride for delivery to tissues. Subse- quently, remnant LDL particles can be removed from circulation by the liver in both species, similar to rem- They are large molecules composed primarily of triglyc- nant VLDL. In humans, a process called cholesterol shut- eride with smaller amounts of cholesterol. Chylomi- tling, which is mediated by cholesterol ester transfer crons transport triglyceride to tissue, such as muscle or protein, enables triglyceride to be transported directly fat. A critical enzyme called lipoprotein lipase, which is from LDL or VLDL to HDL3 in plasma in exchange located on the endothelium in many tissues, mediates for cholesterol esters, consequently forming cholesterol 3,7,8 this transport. Lipoprotein lipase hydrolyzes triglyc- ester–rich LDL and triglyceride-rich HDL2, respec- Understanding basic lipoprotein metabolism is important because many diseases alter this process, leading to elevated plasma lipid levels. eride within chylomicrons to long-chain fatty acids and tively. 3,7 Cholesterol ester–rich LDL is removed from the glycerol for active uptake by cells.8 Insulin and thyroxine bloodstream by the liver but can also be actively removed are known to enhance the activity of this enzyme.8 After from circulation by macrophages lining large arteries, triglyceride is delivered to tissue, remnant chylomicron potentially leading to atherosclerosis. Unlike humans, particles are removed from circulation by the liver. dogs have no documented activity of cholesterol ester VLDL is produced by hepatocytes and is smaller than transfer protein, which likely contributes to their general chylomicrons but also contains similar cholesterol and resistance to this detrimental phenomenon.3,7,9 triglyceride proportions. Lipoprotein lipase also Native HDL, the “good lipoprotein,” is produced by hydrolyzes triglyceride within VLDL, subsequently the liver and transports cholesterol from tissue back to forming remnant VLDL. Remnant VLDL particles the liver (i.e., the so-called “reverse cholesterol trans- COMPENDIUM May 2005 Hyperlipidemia Disorders in Dogs CE 363 Circulation Tissue Lipoprotein lipase Intestine CM Triglycerides CM CM remnant Lipoprotein lipase VLDL VLDL Triglycerides VLDL Liver remnant Lipoprotein Hepatic lipase triglyceride lipase LDL Cholesterol Native HDL LDL remnant Lecithin–cholesterol Native HDL acyltransferase Cholesterol HDL1 HDL3 Figure 2. Canine lipoprotein metabolism. Cholesterol and triglycerides are transported in plasma via four lipoproteins: chylomicrons (CMs),VLDL, LDL, and HDL. CMs are made in the intestine. Lipoprotein lipase releases triglycerides into the tissue. Remnant CMs are removed from circulation by the liver. VLDL is made by the liver. Lipoprotein lipase releases triglycerides into the tissue. Remnant VLDL is removed by the liver or degraded by the enzymes lipoprotein lipase or hepatic triglyceride to LDL, which transports cholesterol to the tissue. Remnant LDL is removed by the liver. Native HDL is made by the liver and transports tissue cholesterol to the liver with the help of lecithin–cholesterol acyltransferase. Native HDL then becomes HDL3, which incorporates additional cholesterol esters and becomes HDL1, which is removed from the blood by the liver. port” mechanism). Lecithin-cholesterol acyltransferase lesterol esters for incorporation into HDL molecules.3,7 (LCAT), which is an enzyme bound to native HDL in These cholesterol ester–rich molecules are called HDL3 circulation, converts free cholesterol from tissue to cho- in both species. Because dogs do not have cholesterol May 2005 COMPENDIUM 364 CE Hyperlipidemia Disorders in Dogs 1,12,13 ester transfer protein activity, most HDL3 continues to disorder may be present. From a laboratory perspec- acquire cholesterol esters and results in formation of the tive, lipemia can interfere with certain biochemical tests unique HDL1 molecule. Consequently, HDL1 is usually that use endpoint or kinetic assays and can falsely increased with hypercholesterolemia in dogs.3,7 Choles- increase tests using refractometry or spectrophotometry, terol ester–rich HDL can be removed from the blood by such as plasma protein and hemoglobin testing, respec- receptor-mediated endocytosis in the liver for possible tively.14 Spurious biochemical results reported in reuse. Recent evidence in cultured mouse adrenal cells patients with lipemia are increased total bilirubin, total also shows that cholesterol esters can be removed from protein, albumin, globulin, glucose, calcium, phosphorus cholesterol ester–rich HDL by scavenger receptors and bile acid levels.3,14 Falsely decreased assays can be (class B, type 1) without endocytosis of the HDL mole- seen with electrolyte levels and serum activity of amy- cule.10 This receptor has been characterized in humans, lase, lipase, alanine aminotransferase, aspartate transam- but a canine counterpart has not been identified in the inase, and alkaline phosphatase.3,14 literature.11 Lipemia is always associated with elevated plasma triglycerides. However, hyperlipidemia does not always LABORATORY FEATURES OF induce lipemia because hypercholesterolemia by itself LIPID DISORDERS does not cause lipemia.13 Consumption of fatty diets can Increased plasma lipids are often discovered in dogs induce transient lipemia for up to 12 hours after eat-
Recommended publications
  • Case Report: Eruptive Xanthoma in a 14-Year-Old Boy Ryan M
    Case Report: Eruptive Xanthoma in a 14-year-old boy Ryan M. Proctor, DO; Warren A. Peterson, DO; Michael W. Peterson, DO: Michael R. Proctor, DO; J. Ryan Jackson, DO; Andrew C. Duncanson OMS4; Allen E. Stout, DC. Dr. R. Proctor, Dr. W. Peterson, Dr. M. Peterson are from Aspen Dermatology Residency, Spanish Fork, UT; Dr. M. Proctor is from Arizona Desert Dermatology, Kingman, AZ; Dr. Jackson is from Sampson Regional Medical Center, Clinton, NC; OMS4 Duncanson is from Des Moines University, Des Moines, IA; DC Stout is from Stout Wellness Center, Fort Mohave, AZ. INTRODUCTION CLINICAL PHOTOS DISCUSSION Xanthomas are benign collections of lipid deposits that manifest as yellow to Eruptive xanthomas (EX) are often an indicator of severe red firm papules, nodules, or plaques. This yellow/red coloration is due to the hypertriglyceridemia and can indicate undiagnosed or Figure 1 Figure 2 carotene in lipids. Xanthomas are composed of lipid filled macrophages decompensated diabetes mellitus (DM).1 The triglyceride levels in known as “foam cells”. Xanthomas can be due to genetic disorders of lipid these patients can be >3000-4000 mg/dl (normal <150 mg/dl).2 metabolism, such as autosomal dominant hypocholesteremia or familial lipoprotein lipase(LPL) deficiency.1,2 They can also be caused by severe It is important to quickly diagnose and manage these patients due hypertriglyceridemia and have been associated with undiagnosed diabetic to the possible sequela of diabetes mellitus and hyperlipidemia. dyslipidemia, hypothyroidism, cholestasis, nephrotic
    [Show full text]
  • Genetic Testing for Familial Hypercholesterolemia AHS – M2137
    Corporate Medical Policy Genetic Testing for Familial Hypercholesterolemia AHS – M2137 File Name: genetic_testing_for_familial_hypercholesterolemia Origination: 01/01/2019 Last CAP Review: 07/2021 Next CAP Review: 07/2022 Last Review: 07/2021 Description of Procedure or Service Definitions Familial hypercholesterolemia (FH) is a genetic condition that results in premature atherosclerotic cardiovascular disease due to lifelong exposure to elevated low-density lipoprotein cholesterol (LDL-C) levels (Sturm et al., 2018). FH encompasses multiple clinical phenotypes associated with distinct molecular etiologies. The most common is an autosomal dominant disorder caused by mutations in one of three genes, low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB), and proprotein convertase subtilisin-like kexin type 9 (PCSK9) (Ahmad et al., 2016; Goldberg et al., 2011). Rare autosomal recessive disease results from mutation in low-density lipoprotein receptor adaptor protein (LDLRAP) (Garcia et al., 2001). Related Policies Cardiovascular Disease Risk Assessment AHS – G2050 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for genetic testing for familial hypercholesterolemia when it is determined the medical criteria or reimbursement guidelines below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Genetic Testing for Familial Hypercholesterolemia is covered 1. Genetic testing to establish a molecular diagnosis of Familial Hypercholesterolemia is considered medically necessary when BOTH of the following criteria are met: A.
    [Show full text]
  • Apoa5genetic Variants Are Markers for Classic Hyperlipoproteinemia
    CLINICAL RESEARCH CLINICAL RESEARCH www.nature.com/clinicalpractice/cardio APOA5 genetic variants are markers for classic hyperlipoproteinemia phenotypes and hypertriglyceridemia 1 1 1 2 2 1 1 Jian Wang , Matthew R Ban , Brooke A Kennedy , Sonia Anand , Salim Yusuf , Murray W Huff , Rebecca L Pollex and Robert A Hegele1* SUMMARY INTRODUCTION Hypertriglyceridemia is a common biochemical Background Several known candidate gene variants are useful markers for diagnosing hyperlipoproteinemia. In an attempt to identify phenotype that is observed in up to 5% of adults. other useful variants, we evaluated the association of two common A plasma triglyceride concentration above APOA5 single-nucleotide polymorphisms across the range of classic 1.7 mmol/l is a defining component of the meta­ 1 hyperlipoproteinemia phenotypes. bolic syndrome and is associated with several comorbidities, including increased risk of cardio­ Methods We assessed plasma lipoprotein profiles and APOA5 S19W and vascular disease2 and pancreatitis.3,4 Factors, –1131T>C genotypes in 678 adults from a single tertiary referral lipid such as an imbalance between caloric intake and clinic and in 373 normolipidemic controls matched for age and sex, all of expenditure, excessive alcohol intake, diabetes, European ancestry. and use of certain medications, are associated Results We observed significant stepwise relationships between APOA5 with hypertriglyceridemia; however, genetic minor allele carrier frequencies and plasma triglyceride quartiles. The factors are also important.5,6 odds ratios for hyperlipoproteinemia types 2B, 3, 4 and 5 in APOA5 S19W Complex traits, such as plasma triglyceride carriers were 3.11 (95% CI 1.63−5.95), 4.76 (2.25−10.1), 2.89 (1.17−7.18) levels, usually do not follow Mendelian patterns of and 6.16 (3.66−10.3), respectively.
    [Show full text]
  • Commonly Used Lipidcentric ICD-10 (ICD-9) Codes
    Commonly Used Lipidcentric ICD-10 (ICD-9) Codes *This is not an all inclusive list of ICD-10 codes R.LaForge 11/2015 E78.0 (272.0) Pure hypercholesterolemia E78.3 (272.3) Hyperchylomicronemia (Group A) (Group D) Familial hypercholesterolemia Grütz syndrome Fredrickson Type IIa Chylomicronemia (fasting) (with hyperlipoproteinemia hyperprebetalipoproteinemia) Hyperbetalipoproteinemia Fredrickson type I or V Hyperlipidemia, Group A hyperlipoproteinemia Low-density-lipoid-type [LDL] Lipemia hyperlipoproteinemia Mixed hyperglyceridemia E78.4 (272.4) Other hyperlipidemia E78.1 (272.1) Pure hyperglyceridemia Type 1 Diabetes Mellitus (DM) with (Group B) hyperlipidemia Elevated fasting triglycerides Type 1 DM w diabetic hyperlipidemia Endogenous hyperglyceridemia Familial hyperalphalipoproteinemia Fredrickson Type IV Hyperalphalipoproteinemia, familial hyperlipoproteinemia Hyperlipidemia due to type 1 DM Hyperlipidemia, Group B Hyperprebetalipoproteinemia Hypertriglyceridemia, essential E78.5 (272.5) Hyperlipidemia, unspecified Very-low-density-lipoid-type [VLDL] Complex dyslipidemia hyperlipoproteinemia Elevated fasting lipid profile Elevated lipid profile fasting Hyperlipidemia E78.2 (272.2) Mixed hyperlipidemia (Group C) Hyperlipidemia (high blood fats) Broad- or floating-betalipoproteinemia Hyperlipidemia due to steroid Combined hyperlipidemia NOS Hyperlipidemia due to type 2 diabetes Elevated cholesterol with elevated mellitus triglycerides NEC Fredrickson Type IIb or III hyperlipoproteinemia with E78.6 (272.6)
    [Show full text]
  • The Effect of Omega-3 Fatty Acids on Hypertriglyceridemia: a Review
    Review Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.26.004382 The Effect of Omega-3 Fatty Acids on Hypertriglyceridemia: A Review Alaa Abousetta, Ibrahim Abousetta, Theresa Dobler, Lia Ebrahimi, Vassillis Frangoullis, Stephanos Christodoulides and Ioannis Patrikios* School of Medicine, European University Cyprus, Cyprus *Corresponding author: Ioannis Patrikios, School of Medicine, European University Cyprus, Cyprus ARTICLE INFO Abstract Received: March 06, 2020 Hypertriglyceridemia is a common problem in adults in the developed world. It is associated with increased levels of triglycerides within the blood, which subsequently Published: March 17, 2020 promote the development of other diseases such as cardiovascular disease and pancreatitis. Triglycerides are mostly consumed through the diet and act as a source of energy in between meals. However, the levels of triglycerides increase proportionally Citation: Alaa A, Ibrahim A, Theresa D, Lia with the number of calories consumed. This only leads to a problem if the total daily E, Ioannis P, et al., The Effect of Omega-3 energy expenditure is exceeded. Additionally, the type of macronutrients taken in Fatty Acids on Hypertriglyceridemia: A Re- view. Biomed J Sci & Tech Res 26(4)-2020. for instance, high carbohydrate intake has been associated with an increased plasma BJSTR. MS.ID.004382. triglyceridethrough the level.diet has If thea direct levels influence of the triglycerideson having an inincreased the blood level rise of abovetriglycerides, 150 mg/ as Abbreviations: FHTG: Familial hypertri- dL, it is considered as hypertriglyceridemia. Increasing numbers of triglycerides can glyceridemia; FCH: Familial Combined Hy- have multiple underlying causes, which can be divided into primary and secondary perlipidemia, systemic lupus erythemato- causes.
    [Show full text]
  • Other Types of Primary Hyperlipoproteinemia
    82 Journal of Atherosclerosis and Thrombosis Vol.21, No.2 Committee Report 10 Other Types of Primary Hyperlipoproteinemia (Hyperlipidemia) Executive Summary of the Japan Atherosclerosis Society (JAS) Guidelines for the Diagnosis and Prevention of Atherosclerotic Cardiovascular Diseases in Japan ― 2012 Version Tamio Teramoto, Jun Sasaki, Shun Ishibashi, Sadatoshi Birou, Hiroyuki Daida, Seitaro Dohi, Genshi Egusa, Takafumi Hiro, Kazuhiko Hirobe, Mami Iida, Shinji Kihara, Makoto Kinoshita, Chizuko Maruyama, Takao Ohta, Tomonori Okamura, Shizuya Yamashita, Masayuki Yokode and Koutaro Yokote Committee for Epidemiology and Clinical Management of Atherosclerosis 1. Primary Hyperlipoproteinemias (Hyperlipidemias) enhanced hepatic apolipoprotein (apo) B-100 synthe- Other Than Familial Hypercholesterolemia sis, decreased LPL activity, increased very-low-density There are various types of primary hyperlipopro- lipoprotein (VLDL) secretion from the liver and the teinemias (hyperlipidemias) other than familial hyper- accumulation of visceral fat as factors for the develop- cholesterolemia (FH). These types are clinically ment of symptoms and has been reported to be related important and classified according to their associated to abnormalities of the LPL and APOC-Ⅱ genes or pathophysiology and genetic abnormalities (Table 1)1). APOA-Ⅰ/C-Ⅲ/A-Ⅳ gene cluster. However, none of Familial lipoprotein lipase (LPL) deficiency manifests these findings have been proven to be definitive. It has as severe hyperchylomicronemia and may present with also been suggested that FCHL is caused by a poly- eruptive cutaneous xanthomas or acute pancreatitis, genic background that tends to induce hyperlipopro- although it does not necessarily accompany atheroscle- teinemia due to environmental factors, such as over- rotic cardiovascular disease (CVD). On the other nutrition and a low level of physical activity.
    [Show full text]
  • Hyperlipidemia
    Hyperlipidemia Overview Hyperlipidemia (HLP) is a condition in which there are high levels of lipid (or fat) in the blood. The two main types of fat that are found in the blood are cholesterol and triglycerides. Nutrition and lifestyle factors such as maintaining a healthy weight, limiting alcohol consumption, avoiding tobacco, and adequate physical activity play a role in both the prevention and treatment of hyperlipidemia. Hyperlipidemia is the most common risk factor for the development of cardiovascular disease, which is why it is important to manage your blood lipid levels by implementing a heart healthy lifestyle. LDL Cholesterol Cholesterol is an essential component found in all human cell membranes and is required for healthy bodily functions. Your body makes all the cholesterol it needs to function and therefore the amount consumed in the diet should be limited. High levels of cholesterol in the blood increases your risk for heart disease by sticking to the walls of your arteries and causing plaque to build-up. Over time, this plaque can narrow your arteries and prevent adequate blood flow. This condition is called atherosclerosis and it is one of the primary causes of heart attack and stroke. There are two types of cholesterol, low-density lipoprotein (LDL) or “bad” cholesterol, and high-density lipoprotein (HDL) or “good” cholesterol. High levels of LDL are associated with the formation of atherosclerotic plaque. High levels of HDL have been shown to decrease the risk for heart disease and stroke by removing excess cholesterol from the bloodstream. Triglycerides Triglycerides are the most common type of fat in the body.
    [Show full text]
  • Severe Hypertriglyceridemia in a Patient Heterozygous for a Lipoprotein Lipase Gene Allele with Two Novel Missense Variants
    European Journal of Human Genetics (2015) 23, 1259–1261 & 2015 Macmillan Publishers Limited All rights reserved 1018-4813/15 www.nature.com/ejhg SHORT REPORT Severe hypertriglyceridemia in a patient heterozygous for a lipoprotein lipase gene allele with two novel missense variants Ursula Kassner*,1, Bastian Salewsky2,3, Marion Wühle-Demuth1, Istvan Andras Szijarto1, Thomas Grenkowitz1, Priska Binner4, Winfried März4,5,6, Elisabeth Steinhagen-Thiessen1,2 and Ilja Demuth*,2,3 Rare monogenic hyperchylomicronemia is caused by loss-of-function mutations in genes involved in the catabolism of triglyceride-rich lipoproteins, including the lipoprotein lipase gene, LPL. Clinical hallmarks of this condition are eruptive xanthomas, recurrent pancreatitis and abdominal pain. Patients with LPL deficiency and severe or recurrent pancreatitis are eligible for the first gene therapy treatment approved by the European Union. Therefore the precise molecular diagnosis of familial hyperchylomicronemia may affect treatment decisions. We present a 57-year-old male patient with excessive hypertriglyceridemia despite intensive lipid-lowering therapy. Abdominal sonography showed signs of chronic pancreatitis. Direct DNA sequencing and cloning revealed two novel missense variants, c.1302A4T and c.1306G4A, in exon 8 of the LPL gene coexisting on the same allele. The variants result in the amino-acid exchanges p.(Lys434Asn) and p.(Gly436Arg). They are located in the carboxy-terminal domain of lipoprotein lipase that interacts with the glycosylphosphatidylinositol- anchored HDL-binding protein (GPIHBP1) and are likely of functional relevance. No further relevant mutations were found by direct sequencing of the genes for APOA5, APOC2, LMF1 and GPIHBP1. We conclude that heterozygosity for damaging mutations of LPL may be sufficient to produce severe hypertriglyceridemia and that chylomicronemia may be transmitted in a dominant manner, at least in some families.
    [Show full text]
  • Evaluation and Treatment of Hypertriglyceridemia: an Endocrine Society Clinical Practice Guideline
    SPECIAL FEATURE Clinical Practice Guideline Evaluation and Treatment of Hypertriglyceridemia: An Endocrine Society Clinical Practice Guideline Lars Berglund, John D. Brunzell, Anne C. Goldberg, Ira J. Goldberg, Frank Sacks, Mohammad Hassan Murad, and Anton F. H. Stalenhoef University of California, Davis (L.B.), Sacramento, California 95817; University of Washington (J.D.B.), Seattle, Washington 98195; Washington University School of Medicine (A.C.G.), St. Louis, Missouri 63110; Columbia University (I.J.G.), New York, New York 10027; Harvard School of Public Health (F.S.), Boston, Massachusetts 02115; Mayo Clinic (M.H.M.), Rochester, Minnesota 55905; and Radboud University Nijmegen Medical Centre (A.F.H.S.), 6525 GA Nijmegen, The Netherlands Objective: The aim was to develop clinical practice guidelines on hypertriglyceridemia. Participants: The Task Force included a chair selected by The Endocrine Society Clinical Guidelines Subcommittee (CGS), five additional experts in the field, and a methodologist. The authors received no corporate funding or remuneration. Consensus Process: Consensus was guided by systematic reviews of evidence, e-mail discussion, conference calls, and one in-person meeting. The guidelines were reviewed and approved sequen- tially by The Endocrine Society’s CGS and Clinical Affairs Core Committee, members responding to a web posting, and The Endocrine Society Council. At each stage, the Task Force incorporated changes in response to written comments. Conclusions: The Task Force recommends that the diagnosis of hypertriglyceridemia be based on fasting levels, that mild and moderate hypertriglyceridemia (triglycerides of 150–999 mg/dl) be diagnosed to aid in the evaluation of cardiovascular risk, and that severe and very severe hyper- triglyceridemia (triglycerides of Ͼ 1000 mg/dl) be considered a risk for pancreatitis.
    [Show full text]
  • Familial Partial Lipodystrophy
    Familial Partial Lipodystrophy Purvisha Patel; Ralph Starkey, MD; Michele Maroon, MD The lipodystrophies are rare disorders character- ized by insulin resistance and the absence or loss of body fat. The 4 subtypes of lipodystrophy are characterized by onset and distribution. Partial lipodystrophy is rare, with loss of fat from the extremities and excess fat accumulation in the face and neck; recognizing this phenotype and subsequent referral for endocrinologic care may improve outcome and reduce mortality. ipodystrophies are rare disorders characterized by insulin resistance and the absence or L loss of body fat.1 Classification of the 4 main subtypes of lipodystrophy is based on onset (congenital/familial vs acquired/sporadic) and dis- Figure not available online tribution (total/generalized vs partial). Congenital total lipodystrophy (also known as Berardinelli syndrome, Seip syndrome) is a rare autosomal- recessive disorder marked by an almost complete lack of adipose tissue from birth. Familial partial lipodystrophy (also known as Kobberling-Dunnigan syndrome) involves loss of subcutaneous fat from the extremities and accumulation of excess fat in the face and neck and to a lesser extent in the hands and feet. Acquired total lipodystrophy (also known as lipoatrophy, Lawrence-Seip syndrome) presents with generalized loss of fat beginning in childhood. Acquired partial lipodystrophy (also known as progressive lipodystrophy, partial lipoat- Figure 1. Accentuation of fat pads in the face and neck. rophy, Barraquer-Simons syndrome) is character- ized by loss of fat only from the upper extremities, face, and trunk.2 tional uterine bleeding (gravida 2, para 1, AB 1) Case Report necessitating total hysterectomy. On physical A 39-year-old white woman presented with the examination, accentuation of fat pads in the face complaint of thickened brown skin on the neck and and neck (Figure 1), central obesity, and prominent medial thighs.
    [Show full text]
  • Management of Hypertriglyceridemia BMJ: First Published As 10.1136/Bmj.M3109 on 12 October 2020
    STATE OF THE ART REVIEW Management of hypertriglyceridemia BMJ: first published as 10.1136/bmj.m3109 on 12 October 2020. Downloaded from Vinaya Simha ABSTRACT Hypertriglyceridemia is one of the most common lipid abnormalities encountered in clinical practice. Many monogenic disorders causing severe hypertriglyceridemia have been identified, but in most patients triglyceride elevations result from a Division of Endocrinology, Mayo combination of multiple genetic variations with small effects and environmental Clinic, Rochester, MN 55905, USA factors. Common secondary causes include obesity, uncontrolled diabetes, alcohol Correspondence to: misuse, and various commonly used drugs. Correcting these factors and optimizing [email protected] Cite this as: BMJ 2020;371:m3109 lifestyle choices, including dietary modification, is important before starting http://dx.doi.org/10.1136/bmj.m3109 drug treatment. The goal of drug treatment is to reduce the risk of pancreatitis in Series explanation: State of the Art Reviews are commissioned patients with severe hypertriglyceridemia and cardiovascular disease in those on the basis of their relevance with moderate hypertriglyceridemia. This review discusses the various genetic and to academics and specialists in the US and internationally. acquired causes of hypertriglyceridemia, as well as current management strategies. For this reason they are written predominantly by US authors. Evidence supporting the different drug and non-drug approaches to treating hypertriglyceridemia is examined, and an easy to adopt step-by-step management strategy is presented. Introduction independent risk factor for ASCVD and optimal drug Hypertriglyceridemia is a fairly common clinical treatment, including novel and emerging therapies, condition, but it continues to evoke considerable to mitigate this will be examined in greater detail.
    [Show full text]
  • Familial Combined Hyperlipidemia: Current Knowledge, Perspectives
    REVISTA DE INVESTIGACIÓN CLÍNICA Contents available at PubMed www .clinicalandtranslationalinvestigation .com PERMANYER Rev Invest Clin. 2018;70:224-36 BRIEF REVIEW Familial Combined Hyperlipidemia: Current Knowledge, Perspectives, and Controversies Omar Yaxmehen Bello-Chavolla1,2, Anuar Kuri-García1, Monserratte Ríos-Ríos1, Arsenio Vargas-Vázquez1,2, Jorge Eduardo Cortés-Arroyo1,2, Gabriela Tapia-González1, Ivette Cruz-Bautista1,3,4 and Carlos Alberto Aguilar-Salinas1,3,4* 1Metabolic Diseases Research Unit and 3Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; 2MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México; 4Tec Salud, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, N.L., México ABSTRACT Familial combined hyperlipidemia (FCHL) is the most prevalent primary dyslipidemia; however, it frequently remains undiagnosed and its precise definition is a subject of controversy. FCHL is characterized by fluctuations in serum lipid concentrations and may present as mixed hyperlipidemia, isolated hypercholesterolemia, hypertriglyceridemia, or as a normal serum lipid profile in combination with abnormally elevated levels of apolipoprotein B. FCHL is an oligogenic primary lipid disorder, which can occur due to the interaction of several contributing variants and mutations along with environmental triggers. Controversies surround- ing the relevance of identifying FCHL as a cause of isolated hypertriglyceridemia and a differential diagnosis of familial hyper- triglyceridemia are offset by the description of associations with USF1 and other genetic traits that are unique for FCHL and that are shared with other conditions with similar pathophysiological mechanisms. Patients with FCHL are at an increased risk of cardiovascular disease and mortality and have a high frequency of comorbidity with other metabolic conditions such as type 2 diabetes, non-alcoholic fatty liver disease, steatohepatitis, and the metabolic syndrome.
    [Show full text]