Hypobetalipoproteinemia and Developmental Abnormalities in Mice (Embryonic Stem Cells/Gene Targeting/Hydrocephalus/Exencephalus/Atherosclerosis) GREGG E

Total Page:16

File Type:pdf, Size:1020Kb

Hypobetalipoproteinemia and Developmental Abnormalities in Mice (Embryonic Stem Cells/Gene Targeting/Hydrocephalus/Exencephalus/Atherosclerosis) GREGG E Proc. Natl. Acad. Sci. USA Vol. 90, pp. 2389-2393, March 1993 Medical Sciences Targeted modification of the apolipoprotein B gene results in hypobetalipoproteinemia and developmental abnormalities in mice (embryonic stem cells/gene targeting/hydrocephalus/exencephalus/atherosclerosis) GREGG E. HoMANICS*, TERRY J. SMITH*t, SUNNY H. ZHANG*, DENISE LEE*, STEPHEN G. YOUNGf, AND NOBUYO MAEDA*§ *Department of Pathology, The University of North Carolina at Chapel Hill, CB #7525, Chapel Hill, NC 27599-7525; and tGladstone Foundation Laboratories for Cardiovascular Disease, Cardiovascular Research Institute, Department of Medicine, The University of California, San Francisco, CA 94110-0608 Communicated by Oliver Smithies, December 17, 1992 (receivedfor review November 10, 1992) ABSTRACT Familial hypobetalipoproteinemia is an auto- proteins (for reviews, see refs. 7 and 8). Such mutations cause somal codominant disorder resulting in a dramatic reduction in familial hypobetalipoproteinemia (HBL), a condition char- plasma concentrations of apolipoprotein (apo) B, cholesterol, acterized by a reduction in circulating apoB, cholesterol, and and ,-migrating lipoproteins. A benefit of hypobetalipopro- ,-lipoproteins. Humans homozygous for "null alleles" have teinemia is that mildly affected individuals may be protected a complete absence of apoB-containing lipoproteins and can from coronary vascular disease. We have used gene targeting be severely affected with symptoms of intestinal fat malab- to generate mice with a modified Apob allele. Mice containing sorption, fat-soluble vitamin deficiency, and neurological this allele display all of the hallmarks of human hypobetali- problems. The phenotypes of individuals homozygous for poproteinemia: they produce a truncated apoB protein, mutant APOB alleles leading to the synthesis of truncated apoB70, and have markedly decreased plasma concentrations apoB proteins are variable (7-10). Heterozygotes have one- of apoB, ,B-lipoproteins, and total cholesterol. In addition, the third to one-half of normal apoB and LDL-cholesterol levels mice manifest several characteristics that are occasionally and are almost always asymptomatic. Because of their low observed in human hypobetalipoproteinemia, including re- cholesterol levels, heterozygotes appear to be protected from duced plasma triglyceride concentrations, fasting chylomicro- coronary vascular disease and have a longer life expectancy nemia, and reduced high density lipoprotein cholesterol. An (10). unexpected finding is that the modified Apob allele is strongly Progress is being made toward understanding atherogen- associated with exencephalus and hydrocephalus. These mice esis by investigating humans and animals that are genetically should help increase our understanding of hypobetalipopro- prone to hyperlipidemia. A valid alternative is to study teinemia, atherogenesis, and the eitiology of exencephalus and humans and animals that are genetically protected from hydrocephalus. cardiovascular disease. With this in mind, we have generated a mouse model of HBL. To do this, we used a sequence insertion vector to disrupt exon 26 ofthe Apob gene in mouse Apolipoprotein (apo) B is a major structural component of embryonic stem (ES) cells. Mice carrying this disrupted gene very low density lipoprotein (VLDL), intermediate density synthesize apoB48 and a truncated apoB (apoB70) but no lipoprotein (IDL), low density lipoprotein (LDL), chylomi- apoBlOO. The lipoprotein phenotype of the mice is remark- crons, and lipoprotein(a). High plasma levels of apoB- ably similar to familial HBL in humans. Quite unexpectedly, containing lipoproteins are associated with an increased risk however, some of the mice also exhibit exencephalus and of coronary artery disease (1). apoB normally exists in two hydrocephalus, pathologic features that have never, to our forms, apoB100 and apoB48; both are the product ofthe same knowledge, been reported in human HBL. gene (2). The human gene spans 43 kb of DNA and contains 29 exons (3). MATERIALS AND METHODS apoBlOO, which contains 4536 amino acids, is synthesized Preparation of Targeting Constructs. An =l11-kb Bgl II exclusively in the liver and is secreted into the circulation as fragment containing exon 26 of the Apob gene was isolated a surface component of triglyceride-rich VLDL. It is a ligand from STO cell DNA (11). Two oligonucleotides which encode for the LDL receptor and is responsible for receptor- peptides of human f3s-globin (amino acids 1-12 and 120-131) mediated clearance of LDL by the liver and other organs. were used to replace nucleotides located in exon 26 of the Amino acids 3146-3159 and amino acids 3357-3368 are Apob gene (see Fig. 1) that encode two short amino acid thought to be important components of the LDL receptor- sequences thought to be important in binding to the LDL binding domain of apoBlOO (4). receptor (4). An in-frame stop codon was inadvertently apoB48 is formed as a result of post-transcriptional editing inserted into the 5' 3s-globin sequence while making the ofapoB mRNA, which changes codon 2153 into a stop codon constructs, but its presence later proved beneficial to the (5, 6). apoB48 is synthesized in small intestine and is required outcome of the experiments. 0-type (insertion) targeting for the packaging of dietary lipids into chylomicrons. A large plasmids were constructed with an 8.3-kb HindIII fragment percentage of mouse hepatic apoB mRNA is edited, indicat- ofthe Apob gene which includes the ,35-globin modifications, ing that the mouse probably makes apoB48 in the liver (D. F. an HPRT minigene [pnI2(IlS) of Reid et al. (12)], and Johnson, personal communication). apoB48 lacks the puta- pBluescript (Stratagene) (Fig. 1B). Constructs were made tive LDL receptor-binding domain of apoBlOO and does not interact with the LDL receptor. Abbreviations: HBL, hypobetalipoproteinemia; apo, apolipoprotein; In humans, many mutations in the APOB gene have been HDL, high density lipoprotein; LDL, low density lipoprotein; VLDL, identified that prevent the translation of full-length apoB very low density lipoprotein; IDL, intermediate density lipoprotein; ES cells, embryonic stem cells; HPRT, hypoxanthine phosphoribo- syltransferase. The publication costs of this article were defrayed in part by page charge tPresent address: BioResearch Ireland, National Diagnostic Centre, payment. This article must therefore be hereby marked "advertisement" University College, Galway, Ireland. in accordance with 18 U.S.C. §1734 solely to indicate this fact. §To whom reprint requests should be addressed. 2389 Downloaded by guest on September 30, 2021 2390 Medical Sciences: Homanics et al. Proc. Natl. Acad. Sci. USA 90 (1993) A - 11.0 kb _ retro-orbital bleeding into tubes containing 0.3 mg of EDTA, 25 mg of gentamycin sulfate, and 11.5 milliunits of aprotinin (Sigma). Plasma was collected by centrifugation at 14,000 x probe B probe A g for 10 min at 4°C. Agarose gel electrophoresis of whole plasma and determination of total cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride were as pre- B **+ viously described (17, 18). Lipoproteins were fractionated by sequential density ul- tracentrifugation (18). Fractions were concentrated and de- salted by using a Centricon-10 (Amicon) apparatus according probe C to the manufacturer's protocol, and 20 ,ug of protein from each fraction was electrophoresed on an SDS/3-20% poly- C 16I16.5 kb 17.5 kb 12/12.5 kb acrylamide gradient gel (16 x 16 x 1.5 mm) at 150 V for 6 hr (18). The size of lipoproteins in the d (density) < 1.006 g/ml fraction of mouse plasma was assessed by electron micros- copy (19). Whole plasma apoAI concentrations were quan- term. P1 P2 tified by nonreducing gel electrophoresis as described by France et al. (20). FIG. 1. (A) Endogenous Apob locus, showing relative location of Northern Blot Analysis. Total RNA was prepared, electro- sequences coding for LDL receptor-binding domains (white boxes) phoresed, transferred to Hybond-N (Amersham), and hy- within exon 26 (solid black box). The horizontal arrow illustrates the bridized as described (21). Probes used include probes A, B, size of the endogenous Bgl II fragment. Probe A is a 1.1-kb C (see Fig. 1), apoAl (22), and human j3actin (Clontech). HindIII/Bgl II fragment. Probe B is a 2.35-kb EcoRI fragment. (B) Insertion type targeting construct. The sequences that encode the RESULTS AND DISCUSSION LDL receptor-binding domains of the endogenous Apob locus have Targeting of the been replaced with 1s-globin sequences as indicated by asterisks. Apob Locus in Mouse ES Cells. The scheme The downward arrow indicates the Sac I site used to linearize the of targeting of the Apob locus is illustrated in Fig. 1. A total construct prior to electroporation. Probe C hybridizes to plasmid of 1967 HPRT+ ES cell colonies were screened by PCR for vector sequences (thin line). H in stippled box indicates hypoxan- homologous recombination at the Apob locus. From 23 thine phosphoribosyltransferase (HPRT) DNA. (C) Targeted Apob PCR-positive colonies, 6 lines of ES cells were established in locus of cell line ESapoB6-3, which contains three repeats of Apob which targeting at the Apob locus was confirmed by Southern sequences that include the ps-globin modifications. In this locus, the blot analysis (Fig. 2). Probe A, which is external to the HPRT gene is in the opposite transcriptional orientation from the targeting DNA, detected an 11-kb Bgl II fragment from the Apob gene. The expected sizes of the Bgl II fragments
Recommended publications
  • Genetic Testing for Familial Hypercholesterolemia AHS – M2137
    Corporate Medical Policy Genetic Testing for Familial Hypercholesterolemia AHS – M2137 File Name: genetic_testing_for_familial_hypercholesterolemia Origination: 01/01/2019 Last CAP Review: 07/2021 Next CAP Review: 07/2022 Last Review: 07/2021 Description of Procedure or Service Definitions Familial hypercholesterolemia (FH) is a genetic condition that results in premature atherosclerotic cardiovascular disease due to lifelong exposure to elevated low-density lipoprotein cholesterol (LDL-C) levels (Sturm et al., 2018). FH encompasses multiple clinical phenotypes associated with distinct molecular etiologies. The most common is an autosomal dominant disorder caused by mutations in one of three genes, low-density lipoprotein receptor (LDLR), apolipoprotein B-100 (APOB), and proprotein convertase subtilisin-like kexin type 9 (PCSK9) (Ahmad et al., 2016; Goldberg et al., 2011). Rare autosomal recessive disease results from mutation in low-density lipoprotein receptor adaptor protein (LDLRAP) (Garcia et al., 2001). Related Policies Cardiovascular Disease Risk Assessment AHS – G2050 ***Note: This Medical Policy is complex and technical. For questions concerning the technical language and/or specific clinical indications for its use, please consult your physician. Policy BCBSNC will provide coverage for genetic testing for familial hypercholesterolemia when it is determined the medical criteria or reimbursement guidelines below are met. Benefits Application This medical policy relates only to the services or supplies described herein. Please refer to the Member's Benefit Booklet for availability of benefits. Member's benefits may vary according to benefit design; therefore member benefit language should be reviewed before applying the terms of this medical policy. When Genetic Testing for Familial Hypercholesterolemia is covered 1. Genetic testing to establish a molecular diagnosis of Familial Hypercholesterolemia is considered medically necessary when BOTH of the following criteria are met: A.
    [Show full text]
  • Commonly Used Lipidcentric ICD-10 (ICD-9) Codes
    Commonly Used Lipidcentric ICD-10 (ICD-9) Codes *This is not an all inclusive list of ICD-10 codes R.LaForge 11/2015 E78.0 (272.0) Pure hypercholesterolemia E78.3 (272.3) Hyperchylomicronemia (Group A) (Group D) Familial hypercholesterolemia Grütz syndrome Fredrickson Type IIa Chylomicronemia (fasting) (with hyperlipoproteinemia hyperprebetalipoproteinemia) Hyperbetalipoproteinemia Fredrickson type I or V Hyperlipidemia, Group A hyperlipoproteinemia Low-density-lipoid-type [LDL] Lipemia hyperlipoproteinemia Mixed hyperglyceridemia E78.4 (272.4) Other hyperlipidemia E78.1 (272.1) Pure hyperglyceridemia Type 1 Diabetes Mellitus (DM) with (Group B) hyperlipidemia Elevated fasting triglycerides Type 1 DM w diabetic hyperlipidemia Endogenous hyperglyceridemia Familial hyperalphalipoproteinemia Fredrickson Type IV Hyperalphalipoproteinemia, familial hyperlipoproteinemia Hyperlipidemia due to type 1 DM Hyperlipidemia, Group B Hyperprebetalipoproteinemia Hypertriglyceridemia, essential E78.5 (272.5) Hyperlipidemia, unspecified Very-low-density-lipoid-type [VLDL] Complex dyslipidemia hyperlipoproteinemia Elevated fasting lipid profile Elevated lipid profile fasting Hyperlipidemia E78.2 (272.2) Mixed hyperlipidemia (Group C) Hyperlipidemia (high blood fats) Broad- or floating-betalipoproteinemia Hyperlipidemia due to steroid Combined hyperlipidemia NOS Hyperlipidemia due to type 2 diabetes Elevated cholesterol with elevated mellitus triglycerides NEC Fredrickson Type IIb or III hyperlipoproteinemia with E78.6 (272.6)
    [Show full text]
  • Hyperlipidemia
    Hyperlipidemia Overview Hyperlipidemia (HLP) is a condition in which there are high levels of lipid (or fat) in the blood. The two main types of fat that are found in the blood are cholesterol and triglycerides. Nutrition and lifestyle factors such as maintaining a healthy weight, limiting alcohol consumption, avoiding tobacco, and adequate physical activity play a role in both the prevention and treatment of hyperlipidemia. Hyperlipidemia is the most common risk factor for the development of cardiovascular disease, which is why it is important to manage your blood lipid levels by implementing a heart healthy lifestyle. LDL Cholesterol Cholesterol is an essential component found in all human cell membranes and is required for healthy bodily functions. Your body makes all the cholesterol it needs to function and therefore the amount consumed in the diet should be limited. High levels of cholesterol in the blood increases your risk for heart disease by sticking to the walls of your arteries and causing plaque to build-up. Over time, this plaque can narrow your arteries and prevent adequate blood flow. This condition is called atherosclerosis and it is one of the primary causes of heart attack and stroke. There are two types of cholesterol, low-density lipoprotein (LDL) or “bad” cholesterol, and high-density lipoprotein (HDL) or “good” cholesterol. High levels of LDL are associated with the formation of atherosclerotic plaque. High levels of HDL have been shown to decrease the risk for heart disease and stroke by removing excess cholesterol from the bloodstream. Triglycerides Triglycerides are the most common type of fat in the body.
    [Show full text]
  • Familial Combined Hyperlipidemia: Current Knowledge, Perspectives
    REVISTA DE INVESTIGACIÓN CLÍNICA Contents available at PubMed www .clinicalandtranslationalinvestigation .com PERMANYER Rev Invest Clin. 2018;70:224-36 BRIEF REVIEW Familial Combined Hyperlipidemia: Current Knowledge, Perspectives, and Controversies Omar Yaxmehen Bello-Chavolla1,2, Anuar Kuri-García1, Monserratte Ríos-Ríos1, Arsenio Vargas-Vázquez1,2, Jorge Eduardo Cortés-Arroyo1,2, Gabriela Tapia-González1, Ivette Cruz-Bautista1,3,4 and Carlos Alberto Aguilar-Salinas1,3,4* 1Metabolic Diseases Research Unit and 3Department of Endocrinology and Metabolism, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico; 2MD/PhD (PECEM) Program, Facultad de Medicina, Universidad Nacional Autónoma de México; 4Tec Salud, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, N.L., México ABSTRACT Familial combined hyperlipidemia (FCHL) is the most prevalent primary dyslipidemia; however, it frequently remains undiagnosed and its precise definition is a subject of controversy. FCHL is characterized by fluctuations in serum lipid concentrations and may present as mixed hyperlipidemia, isolated hypercholesterolemia, hypertriglyceridemia, or as a normal serum lipid profile in combination with abnormally elevated levels of apolipoprotein B. FCHL is an oligogenic primary lipid disorder, which can occur due to the interaction of several contributing variants and mutations along with environmental triggers. Controversies surround- ing the relevance of identifying FCHL as a cause of isolated hypertriglyceridemia and a differential diagnosis of familial hyper- triglyceridemia are offset by the description of associations with USF1 and other genetic traits that are unique for FCHL and that are shared with other conditions with similar pathophysiological mechanisms. Patients with FCHL are at an increased risk of cardiovascular disease and mortality and have a high frequency of comorbidity with other metabolic conditions such as type 2 diabetes, non-alcoholic fatty liver disease, steatohepatitis, and the metabolic syndrome.
    [Show full text]
  • LIPITOR® (Atorvastatin Calcium) Tablets for Oral Administration Hypothyroidism, and Renal Impairment
    HIGHLIGHTS OF PRESCRIBING INFORMATION ----------------------WARNINGS AND PRECAUTIONS-----------------------­ These highlights do not include all the information needed to use Skeletal muscle effects (e.g., myopathy and rhabdomyolysis): Risks increase LIPITOR safely and effectively. See full prescribing information for when higher doses are used concomitantly with cyclosporine, fibrates, and LIPITOR. strong CYP3A4 inhibitors (e.g., clarithromycin, itraconazole, HIV protease inhibitors). Predisposing factors include advanced age (> 65), uncontrolled LIPITOR® (atorvastatin calcium) Tablets for oral administration hypothyroidism, and renal impairment. Rare cases of rhabdomyolysis with Initial U.S. Approval: 1996 acute renal failure secondary to myoglobinuria have been reported. In cases of myopathy or rhabdomyolysis, therapy should be temporarily withheld or discontinued (5.1). ----------------------------INDICATIONS AND USAGE--------------------------- LIPITOR is an inhibitor of HMG-CoA reductase (statin) indicated as an Liver enzyme abnormalities and monitoring: Persistent elevations in hepatic adjunct therapy to diet to: transaminases can occur. Monitor liver enzymes before and during treatment • Reduce the risk of MI, stroke, revascularization procedures, and angina (5.2). in patients without CHD, but with multiple risk factors (1.1). • Reduce the risk of MI and stroke in patients with type 2 diabetes without A higher incidence of hemorrhagic stroke was seen in patients without CHD CHD, but with multiple risk factors (1.1). but with stroke
    [Show full text]
  • UMHS Guideline Screening and Management of Lipids
    Guidelines for Clinical Care Quality Department Ambulatory Lipid Therapy Screening and Management of Lipids Guideline Team Team Leader Patient population: Adults age 20–79 years without familial or severe dyslipidemias or chronic Audrey L. Fan, MD kidney disease (CKD). (In patients with CKD, see UMHS Management of Chronic Kidney Disease.) General Medicine Objective: Primary and secondary prevention of atherosclerotic cardiovascular disease (ASCVD) Team Members through lipid screening, determining treatment benefit and risk, and providing appropriate treatment. Jill N. Fenske, MD Family Medicine Key Points R. Van Harrison, PhD Obtain a screening / baseline lipid profile Medical Education Patients. Men age ≥ 35 and women age ≥ 45 years. Also men age 20–35 and women age 20–45 who are Melvyn Rubenfire, MD at increased risk for ASCVD [IC*]. Can also consider a screening or baseline lipid profile in adults Cardiology age ≥ 20 when assessing traditional ASCVD risk factors (age, sex, total cholesterol, HDL-C, systolic Marie A. Marcelino, BP, use of antihypertensive therapy, diabetes, and smoking) [IIC*]. PharmD Fasting/non-fasting. Screening lipid profile can be obtained fasting or non-fasting. Pharmacy Services Prior to considering drug treatment for dyslipidemias at any age exclude secondary causes (Table 1). Consultant, 2020 revision Assess ASCVD risk. Does the patient have any of the following risk factors? Trisha D. Wells, PharmD Clinical ASCVD. This includes stroke/TIA, carotid and peripheral arterial disease, and clinical evidence Pharmacy Services of coronary heart disease. Initial Release LDL-C ≥ 190 mg/dL and age ≥ 20, not caused by drugs or an underlying medical condition (Table 1). May 2000 Diabetes mellitus type 1 or 2, and age 40–75 years, with LDL-C 70–189 mg/dL.
    [Show full text]
  • Hypertriglyceridemia
    J Am Board Fam Med: first published as 10.3122/jabfm.19.3.310 on 3 May 2006. Downloaded from EVIDENCED-BASED CLINICAL MEDICINE Hypertriglyceridemia Rade N. Pejic, MD, and Daniel T. Lee, MD Hypertriglyceridemia is a commonly encountered lipid abnormality frequently associated with other lipid and metabolic derangements. The National Cholesterol Education Program recommends obtaining a fasting lipid panel in adults over the age of 20. The discovery of hypertriglyceridemia should prompt an investigation for secondary causes such as high fat diet, excessive alcohol intake, certain medica- tions, and medical conditions (eg, diabetes mellitus, hypothyroidism). In addition, patients should be evaluated for other components of the metabolic syndrome. These include abdominal obesity, insulin resistance, low high-density lipoprotein (HDL), high triglyceride, and hypertension. Hypertriglyceride- mia is classified as primary hypertriglyceridemia when there are no secondary causes identified. Pri- mary hypertriglyceridemia is the result of various genetic defects leading to disordered triglyceride me- tabolism. It is important to treat hypertriglyceridemia to prevent pancreatitis by reducing triglyceride levels to <500 mg/dL. Furthermore, lowering triglycerides while treating other dyslipidemias and com- ponents of the metabolic syndrome will reduce coronary events. However, it is controversial how much isolated hypertriglyceridemia correlates directly with coronary artery disease and further studies are needed to clarify whether treatment for this condition leads to meaningful clinical outcomes. Therapeu- tic lifestyle changes (TLC) are the first line of treatment for hypertriglyceridemia. These changes include a low saturated fat, carbohydrate-controlled diet, combined with alcohol reduction, smoking cessation, and regular aerobic exercise. High doses of omega-3 fatty acids from fish and fish oil supplements will lower triglyceride levels significantly.
    [Show full text]
  • Hyperlipidemia: Etiology and Possible Control
    IOSR Journal of Dental and Medical Sciences (IOSR-JDMS) e-ISSN: 2279-0853, p-ISSN: 2279-0861.Volume 14, Issue 10 Ver. VI (Oct. 2015), PP 93-100 www.iosrjournals.org Hyperlipidemia: Etiology and Possible Control Onwe PE* ., Folawiyo MA., Anyigor -Ogah CS., Umahi G., Okorocha AE and Afoke AO *Department of Medical Physiology, Faculty of Medicine, Ebonyi State University, Abakaliki, Nigeria. Abstract: Hyperlipidemia is a condition characterized by an elevation of any or all lipid profile and/or lipoproteins in the blood. Although elevated low density lipoprotein cholesterol (LDL) is thought to be the best indicator of atherosclerosis risk, (Amit et al., 2011) dyslipidemia (abnormal amount of lipids in the blood) can also describe elevated total cholesterol (TC) or triglycerides (TG), or low levels of high density lipoprotein cholesterol (HDL).Hyperlipidemia is the major precursor of lipid related ailment such as atherosclerosis, coronary artery disease and also involved in sudden death syndrome. The main cause of hyperlipidemia includes changes in lifestyle habits in which risk factor is mainly poor diet i.e. with a fat intake greater than 40 percent of total calories, saturated fat intake greater than 10 percent of total calories; and cholesterol intake greater than 300 milligrams per day or treatable medical conditions (Durrington, 1995). The pathophysiology of hyperlipidemia can be studied under the two basic classification of hyperlipidemia - primary and secondary hyperlipidemia. The pathophysiology of primary hyperlipidemia involve the idiopathic hyperchylomicronemia in which defect in lipid metabolism leads to hypertriglyceridemia and hyperchylomicronemia caused by a defect in lipoprotein lipase activity or the absence of the surface apoprotein CII31.
    [Show full text]
  • The Role of Nonstatin Therapy in Managing Hyperlipidemia This Is One in a Series of Pro/Con Editorials Dis- JONATHAN R
    Editorials The Role of Nonstatin Therapy in Managing Hyperlipidemia This is one in a series of pro/con editorials dis- JONATHAN R. MURROW, MD, Medical College of cussing controversial issues in family medicine. Georgia—University of Georgia Medical Partnership, ▲ Athens, Georgia See related editorial on page 1063. about these ADD A AAFP members may post comments COMMENT editorials at http://www.aafp.org/afp/2010/1101/ Hyperlipidemia is a potent biomarker for predicting the p1056.html. development of cardiovascular disease.1,2 Reducing low- density lipoprotein (LDL) cholesterol levels with statin use improves morbidity and mortality.3,4 Although of 20 clinical trials found that fibrate therapy for hyper- statins are generally safe, up to 10 percent of patients lipidemia offers a reduction in nonfatal MI, although who are prescribed statin therapy experience toxicity overall mortality is not affected.10 that leads to the discontinuation of therapy.5 In other Niacin lowers LDL cholesterol levels by influencing patients, optimal statin dosing fails to achieve lipid- very-low–density lipoprotein metabolism. In the Coro- lowering goals.3 Accordingly, when treating hyper- nary Drug Project, patients with coronary heart disease lipidemia, physicians often face the question of the receiving niacin were followed over 15 years, and were clinical value of nonstatin drugs, including bile acid found to have a lower all-cause mortality rate compared sequestrants, fibrates (fibric acid derivatives), niacin, with those receiving placebo (52 versus 58 percent; and cholesterol-absorption inhibitors. This editorial P < .001; number needed to treat = 16).11 When com- highlights the most prominent trial data and examines bined with simvastatin (Zocor), extended-release niacin the merit of these drugs in the primary and secondary has been shown to attenuate progression of subclini- prevention of heart disease.
    [Show full text]
  • Primary Deficiency of Microsomal Triglyceride Transfer Protein in Human Abetalipoproteinemia Is Associated with Loss of CD1 Function
    Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function Sebastian Zeissig, … , Nicholas O. Davidson, Richard S. Blumberg J Clin Invest. 2010;120(8):2889-2899. https://doi.org/10.1172/JCI42703. Research Article Immunology Abetalipoproteinemia (ABL) is a rare Mendelian disorder of lipid metabolism due to genetic deficiency in microsomal triglyceride transfer protein (MTP). It is associated with defects in MTP-mediated lipid transfer onto apolipoprotein B (APOB) and impaired secretion of APOB-containing lipoproteins. Recently, MTP was shown to regulate the CD1 family of lipid antigen-presenting molecules, but little is known about immune function in ABL patients. Here, we have shown that ABL is characterized by immune defects affecting presentation of self and microbial lipid antigens by group 1 (CD1a, CD1b, CD1c) and group 2 (CD1d) CD1 molecules. In dendritic cells isolated from ABL patients, MTP deficiency was associated with increased proteasomal degradation of group 1 CD1 molecules. Although CD1d escaped degradation, it was unable to load antigens and exhibited functional defects similar to those affecting the group 1 CD1 molecules. The reduction in CD1 function resulted in impaired activation of CD1-restricted T and invariant natural killer T (iNKT) cells and reduced numbers and phenotypic alterations of iNKT cells consistent with central and peripheral CD1 defects in vivo. These data highlight MTP as a unique regulator of human metabolic and immune pathways and reveal that ABL is not only a disorder of lipid metabolism but also an immune disease involving CD1. Find the latest version: https://jci.me/42703/pdf Research article Primary deficiency of microsomal triglyceride transfer protein in human abetalipoproteinemia is associated with loss of CD1 function Sebastian Zeissig,1 Stephanie K.
    [Show full text]
  • Acquired Lipoprotein Lipase Deficiency Associated with Chronic Urticaria. A
    European Journal of Endocrinology (1999) 141 502–505 ISSN 0804-4643 CLINICAL STUDY Acquired lipoprotein lipase deficiency associated with chronic urticaria. A new etiology for type I hyperlipoproteinemia Angel L Garcı´a-Otı´n1, Fernando Civeira1, Julia Peinado-Onsurbe2, Carmen Gonzalvo1, Miguel Llobera2 and Miguel Pocovı´1 1Departments of Biochemistry, Molecular Biology and Medicine, University of Zaragoza, Hospital Miguel Servet, Av. Isabel La Cato´lica 1–3, 50009, Zaragoza, Spain and 2Department of Biochemistry and Molecular Biology, University of Barcelona, Av. Diagonal 645, 08028, Barcelona, Spain (Correspondence should be addressed to F Civeira, Servicio de Medicina Interna, Hospital Miguel Servet, Av. Isabel La Cato´lica 1–3, 50009, Zaragoza, Spain; Email: [email protected]) Abstract Type I hyperlipoproteinemia (type I HLP) is a rare disorder of lipid metabolism characterized by fasting chylomicronemia and reduced postheparin plasma lipoprotein lipase (LPL) activity. Most cases of type I HLP are due to genetic defects in the LPL gene or in its activator, the apolipoprotein CII gene. Several cases of acquired type I HLP have also been described in the course of autoimmune diseases due to the presence of circulating inhibitors of LPL. Here we report a case of type I HLP due to a transient defect of LPL activity during puberty associated with chronic idiopathic urticaria (CIU). The absence of any circulating LPL inhibitor in plasma during the disease was demonstrated. The LPL genotype showed that the patient was heterozygous for the D9N variant. This mutation, previously described, can explain only minor defects in the LPL activity. The presence of HLP just after the onset of CIU, and the elevation of the LPL activity with remission of the HLP when the patient recovered from CIU, indicate that type I HLP was caused by CIU.
    [Show full text]
  • Pediatric Cardiology Management and Referral Guidelines
    Pediatric Cardiology Mana gement and Referral Guidelines Pediatric Cardiology Management and Referral Guidelines Provided by 1 Pediatric Cardiology Mana gement and Referral Guidelines Hyperlipidemia (E78.0-78.2) Diagnoses: ICD-10 Hypercholesterolemia: E78.0 Hypertriglyceridemia: E78.1 Mixed hyperlipidemia: E78.2 Risk based screening was found to miss 30-60% of children with dyslipidemia. Universal lipid screening is recommended for children aged: • 9-11 • 17-21 (after puberty is complete) Target Population • Or earlier, if: o Family history of dyslipidemia o Family history of early onset coronary artery disease o Child has additional cardiovascular risk factors. Pediatricians play an important role in preventing adult coronary artery disease by screening. • High childhood cholesterol predicts earlier adult atherosclerosis, and decreasing lipids over a lifetime decreases atherosclerosis. Clinical Findings • Most mild lipid abnormalities can be addressed by lifestyle changes such as increased exercise, weight loss and dietary changes. Specific guidelines have been established to help guide initiation of pharmacologic therapy. • Screening can be performed with a non-fasting lipid panel or fasting lipid panel. o A non-fasting lipid panel can be used to calculate Non-HDL cholesterol (Non-HDL = total cholesterol – HD; abnormal > 140 mg/dL). o If Non-HDL cholesterol is abnormal a fasting lipid Evaluation panel should be obtained. Recommendations o Child has additional cardiovascular risk factors. • Thyroid dysfunction and nephrotic syndrome
    [Show full text]