SEDAR Caribbean Mutton Snapper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Feeding Ecology of the Schoolmaster Snapper, <I>Lutjanus Apodus</I
BULLETIN OF MARINE SCIENCE, 56(3): 881-894, 1995 CORAL REEF PAPER FEEDING ECOLOGY OF THE SCHOOLMASTER SNAPPER, LUTJANUS APODUS (WALBAUM), FROM SOUTHWESTERN PUERTO RICO Jay R. Rooker ABSTRACT Stomach contents from 449 schoolmaster snapper, Lutjanus apodus, from southwestern Puerto Rico were examined. Hierarchical cluster analysis identified two primary trophic groups: ::;70 mm FL and >70 mm FL. Small L. apodus (::;70 mm) fed almost exclusive]y on crustaceans (89% by weight; 95% by numbcr; 98% frequency of occurrence), particularly amphipods and crabs, By contrast, L. apodus greater than 70 mm preferred piscine prey (57% by weight; 37% by number; 63% frequency of occurrence) and supplemented their diets with crabs, shrimp, and stomatopods, Ontogenetic patterns in diet were related to changes in jaw morphology (i.e., gape dimensions). Moreover, spatial and temporal variations were size- related and appeared to play some role in structuring the diet of L. apodus. Small L. apodus (::;70 mm) were found only in mangrove prop-root habitats and showed peak fecding at midday, Larger L. apodus (>70 mm) were present in both mangrove and coral reef habitats and showed ]ittle variation in diurnal feeding periodicity. Prey selection patterns of L. apodus were influenced by habitat and season. The schoolmaster snapper, Lutjanus apodus (Lutjanidae), is the most commonly encountered lutjanid on coral reefs in the Caribbean (Randall, 1983) and Bahamas (Bohlke and Chaplin, 1968). L. apodus appears confined to reefs more than other snappers (Randall, 1967); however, it has also been reported as the predominant lutjanid in areas adjacent to or inside mangrove prop-root habitats (Austin, 1971; Austin and Austin, 1971; Kimmel, 1985; Rooker and Dennis, 1991). -
Characterizing Trophic Ecology of Generalist Consumers: a Case Study of the Invasive Lionfish in the Bahamas
Vol. 448: 131–141, 2012 MARINE ECOLOGY PROGRESS SERIES Published February 23 doi: 10.3354/meps09511 Mar Ecol Prog Ser Characterizing trophic ecology of generalist consumers: a case study of the invasive lionfish in The Bahamas Craig A. Layman1,*, Jacob E. Allgeier2 1Marine Sciences Program, Florida International University, 3000 N.E. 151st St., North Miami, Florida 33181, USA 2Odum School of Ecology, University of Georgia, Athens, Georgia 30602, USA ABSTRACT: Population sizes of generalist consumers are increasing in many ecosystems because of various human activities, and it is critical to understand the trophic role of these generalist spe- cies if we are to predict how they may affect food web structure and ecosystem function. Lionfish Pterois volitans/miles have spread throughout the Western Atlantic and Gulf of Mexico and they may have significant effects on native faunal communities. We characterized the trophic ecology of lionfish in back reef habitats on Abaco Island, Bahamas, drawing on recently developed analyt- ical tools that employ both direct diet information and stable isotope data. Although δ15N and δ13C bi-plot data appeared to suggest substantial niche overlap with native gray snapper and school- master snapper, Bayesian analytical tools suggested differences in core isotopic niches among the species. This was consistent with direct diet information, as lionfish fed almost exclusively on small prey fishes and snapper fed more commonly on crustaceans. When combining empirical iso- tope and diet data in a simulation model, individual lionfish appear to be more specialized in their diets than schoolmaster snapper. We suggest that this pattern may be driven by high site-fidelity of lionfish, in conjunction with distinct prey assemblages at the patch scale. -
The Effects of Trawling and Habitat Use on Red Snapper and the Associated
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Louisiana State University Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2007 The effects of trawling and habitat use on red snapper and the associated community Robert Joseph David Wells Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Oceanography and Atmospheric Sciences and Meteorology Commons Recommended Citation Wells, Robert Joseph David, "The effects of trawling and habitat use on red snapper and the associated community" (2007). LSU Doctoral Dissertations. 1821. https://digitalcommons.lsu.edu/gradschool_dissertations/1821 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THE EFFECTS OF TRAWLING AND HABITAT USE ON RED SNAPPER AND THE ASSOCIATED COMMUNITY A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Oceanography and Coastal Sciences by Robert Joseph David Wells B.S., Oregon State University, 1998 M.S., Texas A&M University, 2002 May 2007 DEDICATION This piece of work is dedicated to the most important and influential people in my life. My wife, Janel Wells, my son, Caden Wells, and my parents, Joe and Sue Wells. -
Five Years in Bacalar Chico Marine Reserve: an Evaluation of Reef Health and Reserve Effectiveness Between 2011-2015
REGISTERED CHARITY 1098893 Blue Ventures Conservation Report Five Years in Bacalar Chico Marine Reserve: an evaluation of reef health and reserve effectiveness between 2011-2015. Tyrell Reyes, Hannah Gilchrist, Olivia Lacasse, Friederike Peiffer, Henry Duffy & Alison Druskat December 2019 Blue Ventures, Level 2 Annex, Omnibus Business Centre, 39-41 North Road, London, N7 9DP, United Kingdom Tel: +44 (0)207 697 8598 Web: www.blueventures.org Email: [email protected] Blue Ventures Conservation Report © Blue Ventures 2019. Copyright in this publication and in all text, data and images contained herein, except as otherwise indicated, rests with Blue Ventures. Keywords: Belize, Bacalar Chico Marine Reserve, coral reef Authors: Tyrell Reyes, Hannah Gilchrist, Olivia Lacasse, Friederike Peiffer, Henry Duffy & Alison Druskat Contributors: Daniela Escontrela, Anna Simmons, Lucy Anderson, Andreina Acosta & Clara Sabal. Fieldwork supervised by: Jennifer Chapman (2011-2012), Nikkita Lawton (2011), Sarah Beach (2011-2013), Klavdija Jenko (2012-2013), Philippa Swannell (2013), Winnie Courtene-Jones (2013-2014), Me’ira Mizrahi (2014), Tom Nuttall-Smith (2014), Anouk Neuhaus (2015) & Daniela Escontrela (2015). Fieldwork conducted by: Volunteers and staff of Blue Ventures Expeditions, 2011-2015. Editors: Hannah Gilchrist, Jennifer Chapman, Charlotte Gough, Alison Druskat & Fabian Kyne Recommended citation: Reyes, T., Gilchrist, H., Lacasse, O., Peiffer, F., Duffy, H., and Druskat, A. 2019. Five years at Bacalar Chico Marine Reserve, an evaluation of reef health and reserve effectiveness. Blue Ventures Conservation Report, Blue Ventures, London. Acknowledgements: Blue Ventures would like to thank the Belize Fisheries Department for their on-going collaboration, in particular Henry Brown, the Fisheries Biologist for Bacalar Chico Marine Reserve throughout the period covered by this report. -
Volume III of This Document)
4.1.3 Coastal Migratory Pelagics Description and Distribution (from CMP Am 15) The coastal migratory pelagics management unit includes cero (Scomberomous regalis), cobia (Rachycentron canadum), king mackerel (Scomberomous cavalla), Spanish mackerel (Scomberomorus maculatus) and little tunny (Euthynnus alleterattus). The mackerels and tuna in this management unit are often referred to as ―scombrids.‖ The family Scombridae includes tunas, mackerels and bonitos. They are among the most important commercial and sport fishes. The habitat of adults in the coastal pelagic management unit is the coastal waters out to the edge of the continental shelf in the Atlantic Ocean. Within the area, the occurrence of coastal migratory pelagic species is governed by temperature and salinity. All species are seldom found in water temperatures less than 20°C. Salinity preference varies, but these species generally prefer high salinity. The scombrids prefer high salinities, but less than 36 ppt. Salinity preference of little tunny and cobia is not well defined. The larval habitat of all species in the coastal pelagic management unit is the water column. Within the spawning area, eggs and larvae are concentrated in the surface waters. (from PH draft Mackerel Am. 18) King Mackerel King mackerel is a marine pelagic species that is found throughout the Gulf of Mexico and Caribbean Sea and along the western Atlantic from the Gulf of Maine to Brazil and from the shore to 200 meter depths. Adults are known to spawn in areas of low turbidity, with salinity and temperatures of approximately 30 ppt and 27°C, respectively. There are major spawning areas off Louisiana and Texas in the Gulf (McEachran and Finucane 1979); and off the Carolinas, Cape Canaveral, and Miami in the western Atlantic (Wollam 1970; Schekter 1971; Mayo 1973). -
Marine Ecology Progress Series 415:211
Vol. 415: 211–220, 2010 MARINE ECOLOGY PROGRESS SERIES Published September 29 doi: 10.3354/meps08714 Mar Ecol Prog Ser Intrapopulation variation in habitat use by two abundant coastal fish species Caroline M. Hammerschlag-Peyer*, Craig A. Layman Marine Sciences Program, Department of Biological Sciences, Florida International University, 3000 N.E. 151st Street, North Miami, Florida 33181, USA ABSTRACT: Decline of marine fisheries has become one of the most severe global environmental crises. In typical fishery management efforts, fish populations are often treated as homogeneous units, thereby tacitly ignoring potential intrapopulation variation within taxonomic groupings. We used acoustic telemetry and stable isotope analysis to examine movement patterns of 20 gray snap- per Lutjanus griseus and 20 schoolmaster snapper L. apodus in a Bahamian tidal creek and wetland. In particular, we examined (1) if intrapopulation variation in fish habitat use and movement patterns existed, (2) whether that variation was a function of body size, and (3) if there was evidence of spe- cialization in habitat use among individuals. We found that movement varied substantially among individuals, but was independent of body size. Some individuals exhibited frequent, repeated, move- ments to certain areas of the study site. δ13C values of individual snapper were significantly related to movement metrics, suggesting that movement differences were related to specific patterns of for- aging behavior. Our findings suggest the importance of incorporating intrapopulation niche varia- tion—a source of variation that is often overlooked in traditional conservation and management strategies—into the study of coastal fish populations. KEY WORDS: Behavioral ecology · Body size · Fisheries · Food web · Individual specialization · Movement patterns · Optimal foraging theory · Stable isotopes Resale or republication not permitted without written consent of the publisher INTRODUCTION seek to identify broad generalities that define the ‘typ- ical’ individual of a particular population. -
5 Coral Condition Flat
The Western Atlantic Health and Resilience Cards provide photographic examples of the dominant habitat features and biological indicators of coral reef condition, health and resilience to future perturbations. Representative examples of benthic substrates types, indicators of coral health, algal functional groups, dominant sessile invertebrates, large, motile invertebrates, and herbivorous and predatory fishes are presented, with emphasis on major functional groups regulating coral diversity, abundance and condition. This is not intended as a taxonomic ID guide. Resilience is the ability of the reef community to maintain or restore structure and function and remain in an equivalent ‘phase’ as before an unusual disturbance. The most critical attributes of resilience for monitoring programs are compiled in this guide. A typical protocol involves an assessment of replicate belt transects in multiple reef environments to characterize 1) the diversity, abundance, size structure cover and condition of corals, 2) the abundance/cover of other associated and competing benthic organisms, including “pest” species; 3) fish diversity, abundance and size for the key functional groups (avoiding many of the small blennies, gobies, wrasses, juveniles and non‐reef species, and focusing on large herbivores, piscivores, invertebrate feeders, and detritivores); 4) abundance of motile macroinvertebrates that feed on algae and invertebrates, especially corallivores; 5) habitat quality and substrate condition (biomass and cover of five functional algal groups, turf, CCA, macroalgae, erect corallines and cyanobacteria; amount of rubble, pavement and sediment); 6) coral condition (prevalence of disease and corallivores, broken corals, levels of recruitment); and 7) evidence of human disturbance such as levels and types of fishing, runoff, and coastal development. -
University of Miami US Department of Commerce Miami-Dade County
Fisheries assessment of Biscayne Bay 1983 Item Type monograph Authors Berkeley, Steven A. Publisher NOAA/National Ocean Service Download date 01/10/2021 13:52:32 Link to Item http://hdl.handle.net/1834/30510 NOAA/University of Miami Joint Publication NOAA Technical Memorandum NOS NCCOS CCMA 166 University of Miami RSMAS TR 2004-01 Coastal and Estuarine Data Archaeology and Rescue Program University of Miami Rosenstiel School of Marine and Atmospheric Science February 2004 Miami, FL US Department of Commerce Miami-Dade County National Oceanic and Atmospheric Department of Environmental Administration Resources Management Silver Spring, MD Miami, FL a NOAA/University of Miami Joint Publication NOAA Technical Memorandum NOS NCCOS CCMA 166 University of Miami RSMAS TR TR 2004-01 Fisheries Assessment of Biscayne Bay 1983 Steven A. Berkeley Rosenstiel School of Marine and Atmospheric Science University of Miami Prepared for: Metropolitan Dade County Department of Environmental Resources Management A. Y. Cantillo NOAA National Ocean Service (Editor, 2004) February 2004 United States National Oceanic and Department of Commerce Atmospheric Administration National Ocean Service Donald L. Evans Conrad C. Lautenbacher, Jr. Jamison S. Hawkins Secretary Vice-Admiral (Ret.), Acting Assistant Administrator Administrator For further information please call or write: NOAA National Ocean Service National Centers for Coastal Ocean Science 1305 East West Hwy. Silver Spring, MD 20910 301 713 3020 COVER PHOTO: Pat Cope (Rosenstiel School of Marine and Atmospheric Science) interviewing a fisherman on the causeway leading to Miami Beach during the fisheries assessment. Photograph taken by Stephen Carney while at the Rosenstiel School of Marine and Atmospheric Science, University of Miami. -
Zootaxa, a New Species of Snapper
Zootaxa 1422: 31–43 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) A new species of snapper (Perciformes: Lutjanidae) from Brazil, with comments on the distribution of Lutjanus griseus and L. apodus RODRIGO L. MOURA1 & KENYON C. LINDEMAN2 1Conservation International Brasil, Programa Marinho, Rua das Palmeiras 451 Caravelas BA 45900-000 Brazil E-mail:[email protected] 2Environmental Defense, 485 Glenwood Avenue, Satellite Beach, FL, 32937 USA E-mail: [email protected] Abstract Snappers of the family Lutjanidae contain several of the most important reef-fishery species in the tropical western Atlantic. Despite their importance, substantial gaps exist for both systematic and ecological information, especially for the southwestern Atlantic. Recent collecting efforts along the coast of Brazil have resulted in the discovery of many new reef-fish species, including commercially important parrotfishes (Scaridae) and grunts (Haemulidae). Based on field col- lecting, museum specimens, and literature records, we describe a new species of snapper, Lutjanus alexandrei, which is apparently endemic to the Brazilian coast. The newly settled and early juvenile life stages are also described. This spe- cies is common in many Brazilian reef and coastal estuarine systems where it has been often misidentified as the gray snapper, Lutjanus griseus, or the schoolmaster, L. apodus. Identification of the new species cast doubt on prior distribu- tional assumptions about the southern ranges of L. griseus and L. apodus, and subsequent field and museum work con- firmed that those species are not reliably recorded in Brazil. The taxonomic status of two Brazilian species previously referred to Lutjanus, Bodianus aya and Genyoroge canina, is reviewed to determine the number of valid Lutjanus species occurring in Brazil. -
Local Ecological and Taxonomic Knowledge of Snapper Fish (Teleostei: Actinopterygii) Held by Fishermen in Ilhéus, Bahia, Brazil
Neotropical Ichthyology, 7(3):403-414, 2009 Copyright © 2009 Sociedade Brasileira de Ictiologia Local ecological and taxonomic knowledge of snapper fish (Teleostei: Actinopterygii) held by fishermen in Ilhéus, Bahia, Brazil Camilla Fahning Ferreira Caló1, Alexandre Schiavetti2 and Mauricio Cetra3 Local Ecological and Taxonomic Knowledge (LEK) of fish held by fishermen in the municipality of Ilhéus, Bahia, Brazil, known as the snapper (“vermelho”) was examined from August 2005 to November 2006. Semi-structured interviews and tests were made with fishermen selected under the criteria of “specialists”. The data analysis followed the union model of the different individual competences. Grouping analysis was performed on data referring to the localities of the occurrence of these fish, depth, coloration, and morphological characteristics of the species using the Pearson correlation coefficient (UPGMA). A total of 19 species were named within the snapper group, although three of them could not be scientifically identified. The Lutjanidae family presented the greatest numbers of species (n = 9). Other families mentioned were: the Serranidae (n = 3), Holocentridae (n = 2), Priacanthidae (n = 1), Mullidae (n = 1). The 1:1 correspondence between fishermen’s local names and scientific species observed in this study indicates the richness of local fishermen knowledge. Analysis of the LEK related to the feeding habits of these fish and indicated that most were considered as being carnivorous, which agrees with the specialized literature consulted. In terms of their spatial distribution, two categories were detected: locality of occurrence (rivers/sea, coast, and offshore) and depth (surface, mid-depth, mid-depth/deep, deep). The fish were considered locally to be “winter fish”, based on harvested yields. -
Feeding Ecology of Two Sympatric Species of Large-Sized Groupers (Perciformes: Epinephelidae) on Southwestern Atlantic Coralline Reefs
Neotropical Ichthyology, 15(2): e160047, 2017 Journal homepage: www.scielo.br/ni DOI: 10.1590/1982-0224-20160047 Published online: 12 June 2017 (ISSN 1982-0224) Copyright © 2017 Sociedade Brasileira de Ictiologia Printed: 30 June 2017 (ISSN 1679-6225) Feeding ecology of two sympatric species of large-sized groupers (Perciformes: Epinephelidae) on Southwestern Atlantic coralline reefs Matheus O. Freitas1,2, Vinicius Abilhoa2, Henry L. Spach1, Carolina V. Minte-Vera3, Ronaldo B. Francini-Filho4, Les Kaufman5 and Rodrigo L. Moura6 Red and black groupers are large-bodied opportunistic ambush predators commonly found in Southwestern Atlantic tropical reefs. We investigated the diet of both species in order to detail ontogenetic, spatial and temporal trends, and to assess the extent of overlap in resource use between these two sympatric predators on the Abrolhos Bank, Brazil. Decapods and fishes were the main food items of Epinephelus morio while fishes were the main prey of Mycteroperca bonaci. Both diets were significantly influenced by body size and habitat, but only smaller individuals of E. morio feed almost exclusively on crustaceans. While the two groupers rely on many of the same prey types, coexistence may be facilitated by E. morio feeding more heavily on crustaceans, particularly the blackpoint sculling crab Cronius ruber, while black grouper take comparatively few crustaceans but lots of fish prey. Predators like red and black groupers could trigger indirect effects in the community and influence a large range of ecological processes, such as linkages between top and intermediate predators, and intermediate predators and their resources. Keywords: Abrolhos Bank, Diet, Epinephelus morio, Feeding overlap, Mycteroperca bonaci. -
Field Guide to the Snappers {Lutianidae} of the Western Atlantic
Field Guide to the Snappers {Lutianidae} of the Western Atlantic By William D. Anderson, Jr. UNITED STATES DEPART MENT OF THE INTERIOR FISH AND WILDLIFE SERVICE BUREAU OF COMMERCIAL FISHERIES Circular 252 UNITED STATES DEPARTMENT OF THE INTERIOR Stewart L. Udall, Secretary John A. Carver, Jr., Under Secretary Stanley A. Cain, Assistant Secretary for Fish and Wildlife and Parks FISH AND WILDLIFE SERVICE, Clarence F. Pautzke, Commissioner BUREAU OF COMMERCIAL FISHERIES, Donald L. McKernan, Director Field Guide to the Snappers {Lutianidae} of the Western Atlantic By WILLIAM D. ANDERSON, Jr. Circular 252 Washington, D. C. January 1967 CONTENTS Field Guide to the Snappers (Lutianidae) of the Western Atlantic l By WILLIAM D. ANDERSON, Jr., Fishery Biologist 2 Bureau of Commercial Fisheries Biological Laboratory Brunswick, Georgia 31521 ABSTRACT This guide is intended to implement both field and laboratory identification of western Atlantic snappers (Lutjanidae). Eight genera and 27 species, of which 7 are of doubtful validity, are considered. lllustrated keys are supplemented by tables that give the ranges of numbers of fin rays, lateral line scales, and gill rakers. INTRODUCTION Fishes of the family Lutjanidae (Percomorphi) occur throughout the world in tropical and subtropical seas and are found from shallow inshore areas to depths of over 350 fath. (fathoms). Most species Live on or near the bottom and are largely confined to continental shelves and slopes and to corresponding depths around islands- - but some enter estuaries and even fresh water. Some species have pelagic larvae, but early developmental stages for most species are not known. About 30 genera and about 150 species have been assigned to the Lutjanidae.