Investigation of the in Vitro Antioxidant Activity, in Vivo Antidiabetic Efficacy

Total Page:16

File Type:pdf, Size:1020Kb

Investigation of the in Vitro Antioxidant Activity, in Vivo Antidiabetic Efficacy Journal of Medicinal Plants Studies 2015; 3(1): 42-47 ISSN 2320-3862 Investigation of the in vitro antioxidant activity, JMPS 2015; 3(1): 42-47 in vivo antidiabetic efficacy and safety of Capparis © 2015 JMPS Received: 04-11-2014 tomentosa aqueous roots extracts in male Accepted: 26-11-2014 alloxanized mice Laura Nyawira Wangai Kirinyaga University College, School Health Sciences, Laura Nyawira Wangai, Brenda Wamae Waithera, Muriira Geoffrey P. O Box 143-10300, Kerugoya, Kenya Karau, Ndura Boniface Koimburi, Philip Karanja Ndura, Rebecca Karanja, Michael Kimani Gitau, Peter Kirira Brenda Wamae Waithera Jomo Kenyatta University of Agriculture and Technology, Abstract P. O Box 62000-00200, The current study investigated the in vitro antioxidant activity, in vivo antidiabetic efficacy and safety of Nairobi, Kenya Capparis tormentosa aqueous root extracts. Antioxidant activity was determined using 1, 1-diphenyl-2- picrylhydrazyl (DPPH), phosphomolybdate and reducing power assay with ascorbic and gallic acid as Muriira Geoffrey Karau references. Six groups of BALB/c mice each comprising of five were used in evaluating the antidiabetic Kenya Bureau of Standards activity. Diabetes mellitus was induced in five groups using 10% alloxan monohydrate at a dose of 186.9 Research and Development mg/kg body weight. Non-diabetic control mice was orally administered with 0.1 ml physiological saline; Department, P. O Box 54974-00200, diabetic mice with 0.075 mg of reference drug, glibenclamide at 3 mg/kg body weight; 1.25 mg, 2.5 mg, Nairobi, Kenya and 5 mg extracts in 0.1 ml physiological saline for 50, 100 and 200 mg/kg body weight, and the other group of diabetic mice was given 0.1 ml physiological saline. The blood glucose level was determined Ndura Boniface Koimburi after 0, 2, 4, 6 and 8 hours. Safety was evaluated by daily administration of a single dose of 1000 mg/kg Kitale Nature Conservancy body weight extract to BALB/c male mice of comparable age and weight over a period of one month, P. O Box 1556-3020, while recording body weights every 7 days and organs weights after the 28th day. The antioxidant activity Kitale, Kenya by DPPH was 35.50 ± 0.02%, by phosphomolybdate assay was 41.22 ± 0.17 mg/kg ascorbic acid Philip Karanja Ndura equivalent, and the reducing power increased with increase in concentration up to a maximum at 800 Kitale Nature Conservancy, µg/ml. The antidiabetic activity was dose dependent and significantly higher. There was no significant P. O Box 1556-3020, change in body weights for treated and untreated mice in safety studies (p = 0.69), and the weight gain Kitale, Kenya was normal for both experimental and control mice. Except kidneys, which changed significantly (p = 0.009), all the other organ weights were not affected. The study supports the claim that C. tormentosa is Rebecca Karanja effective and safe in the management of diabetes mellitus. Jomo Kenyatta University of Agriculture and Technology, Keywords: Antidiabetic, BALB/c mice, Capparis tormentosa, Safety, Efficacy P. O Box 62000-00200, Nairobi, Kenya 1. Introduction Diabetes mellitus is a chronic metabolic disorder caused by inherited and/or acquired Michael Kimani Gitau deficiency in production of insulin by the pancreas, or by the ineffectiveness of the insulin Kitale Nature Conservancy, produced. This deficiency in insulin production results to increase in the concentration of P. O Box 1556-3020, blood glucose, which in turn causes damage to many of the body’s systems particularly the Kitale, Kenya [1] blood vessels and nerves . Diabetes mellitus is a major health problem, affecting about 5% of [2] Peter Kirira the total population in the U.S and 3% of the world population. Epidemiological studies and Directorate of Research and clinical trials [3], strongly support the premise that most of the complications are caused by Development, Mount Kenya hyperglycemia. Effective blood glucose control is the critical intervention measure in the University, P. O Box 342-01000, management of diabetic complications and improving quality of life [4]. Thus, sustained Thika, Kenya reduction of hyperglycemia lowers the risk of developing microvascular complications and reduces the risk of macrovascular complications [5]. Capparis tomentosa belongs to the family Capparaceae commonly referred to as Woody Caper Bush in English [6]. It is an indigenous South African plant that grows naturally in the savanna Correspondence: forest of Western, Eastern and Southern Africa [7]. It is a scrambling shrub, sometimes Muriira Geoffrey Karau Kenya Bureau of Standards maturing into a tree that can grow as high as 10 meters tall and is covered with scattered Research and Development spines. It is well branched and the branches are normally covered with thick yellow hairs; even Department, the robust, recurved spines are often hairy. The twigs and leaves are yellow-green in colour P. O Box 54974-00200, and are covered in soft, velvety hairs. The oblong leaves are approximately 50 × 20 mm, with Nairobi, Kenya ~ 42 ~ Journal of Medicinal Plants Studies a pair of sharp, hook-like thorns at the junction of the stem and nm. The blank contained all reagents except the roots extract. leaf base. The white and pink flowers have multiple stamens. Ascorbic acid at a concentration of 1 mg/ml was used as The fruit is pink to orange in colour, round and stalked. The reference. The scavenging activity was calculated by using the seeds are surrounded by fleshy, grey fruit pulp [8, 6]. formula shown in equation 1. In herbal and traditional medicine, C. tomentosa is used to Percent scavenging activity = treat rheumatism, madness, snakebite, chest pain, jaundice, malaria, headache, coughs, pneumonia, constipation, infertility and to prevent abortions. It is used to treat leprosy, tuberculosis and gonorrhea [1]. The roots are boiled in water and half a cup of this infusion is drunk three times per day to manage cough and chest pain [7, 9]. Despite the continued use Equation 1 of C. tomentosa in management and treatment of many ailments among many communities, it has been reported to be 2.3 Total antioxidant activity by phosphomolybdate assay toxic to livestock [8, 10]. Data on its in vitro antioxidant activity, This was carried out according to the procedure described antidiabetic efficacy and safety in Kenya is scarce. Therefore, elsewhere [13]. The phosphomolybdate reagent was prepared by this study investigated the in vitro antioxidant activity, in vivo mixing equal volumes of 100 ml each of 0.6 M sulfuric acid, antidiabetic efficacy and safety of C. tomentosa in alloxan 28 mM sodium phosphate and 4 mM ammonium molybdate. induced diabetic male BALB/c mice, to validate the folkloric Test samples were prepared by dissolving 1 mg of plant claim among the herbalists and local communities. methanolic extract in 1 ml of methanol. Then, 0.1 ml of the test sample was dissolved in 1 ml of reagent solution in a test 2. Materials and Methods tube which was capped with silver foil and incubated in a 2.1 Preparation of the aqueous root extracts water bath for 90 min at 95 ºC. After cooling the sample to Fresh roots of C. tomentosa were collected from West Pokot room temperature, the absorbance was read at 765 nm against and Marakwet parts of the North Rift Valley of Kenya in the a blank. Ascorbic acid was used as a standard antioxidant with month of December 2012. The plant is likened to ‘the biblical a concentration ranging from 10 to 50 mg/L. The ascorbic acid hyssop’ by Mr. Ndura Boniface, who has been using it for absorbances were used in the construction of the standard over six years in treatment and management of diabetes curve. The results were expressed as μg of ascorbic acid mellitus, HIV/AIDS, reproductive problems and cancer among equivalent (AAE) per mg of the dried weight of the root many other diseases (Unpublished, personal communications). extracts of C. tomentosa. The AAE was determined according The fresh roots were washed with clean tap water, cut into to the expression in equation 2. small pieces and dried under shade at room temperature for 4 weeks. They were then milled into fine powder using electric mill, and the powder kept at room temperature away from direct sunlight in dry airtight plastic bags. 100 g of the root powder was extracted in 1 liter of distilled water at 60 ºC in a Equation 2 metabolic shaker for 6 hours. The extract was decanted into a 2.4 Reducing power assay clean, dry conical flask and then filtered through cotton gauze The reducing power assay was carried out by the method of [14] into another dry clean conical flask. The filtrate was freeze with some modifications. The root extract or gallic acid dried in 200 ml portions in a Modulyo Freeze Dryer (Edward, solution ranging from 25 to 800 µg/ml, each 2.5 ml was mixed England) for 48 hours. These extracts were weighed and stored with 2.5 ml of 0.2 M sodium phosphate buffer and 2.5 ml of in airtight, amber containers at the 4 ºC ready for use. 1% potassium ferricyanide. The mixture was incubated at 50 The extracts for in vivo antidiabetic studies were prepared ºC for 20 min and 2.5 ml of trichloroacetic acid solution (100 according to the protocol described elsewhere by Karau et al mg/L) was added. The mixture was centrifuged at 650 rpm for [12] , with slight modifications. Briefly, 125 mg to make an oral 10 min, and 5 ml of the supernatant was mixed with 5 ml of dose of 50; 250 mg to make 100, and 500 mg to make 200 distilled water and 1 ml of 0.1% ferric chloride solution.
Recommended publications
  • Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi
    YIKA-VWAZA TRUST RESEARCH STUDY REPORT N (2017/18) Vascular Plant Survey of Vwaza Marsh Wildlife Reserve, Malawi By Sopani Sichinga ([email protected]) September , 2019 ABSTRACT In 2018 – 19, a survey on vascular plants was conducted in Vwaza Marsh Wildlife Reserve. The reserve is located in the north-western Malawi, covering an area of about 986 km2. Based on this survey, a total of 461 species from 76 families were recorded (i.e. 454 Angiosperms and 7 Pteridophyta). Of the total species recorded, 19 are exotics (of which 4 are reported to be invasive) while 1 species is considered threatened. The most dominant families were Fabaceae (80 species representing 17. 4%), Poaceae (53 species representing 11.5%), Rubiaceae (27 species representing 5.9 %), and Euphorbiaceae (24 species representing 5.2%). The annotated checklist includes scientific names, habit, habitat types and IUCN Red List status and is presented in section 5. i ACKNOLEDGEMENTS First and foremost, let me thank the Nyika–Vwaza Trust (UK) for funding this work. Without their financial support, this work would have not been materialized. The Department of National Parks and Wildlife (DNPW) Malawi through its Regional Office (N) is also thanked for the logistical support and accommodation throughout the entire study. Special thanks are due to my supervisor - Mr. George Zwide Nxumayo for his invaluable guidance. Mr. Thom McShane should also be thanked in a special way for sharing me some information, and sending me some documents about Vwaza which have contributed a lot to the success of this work. I extend my sincere thanks to the Vwaza Research Unit team for their assistance, especially during the field work.
    [Show full text]
  • Capparis Tomentosa (Capparidaceae)
    id7158906 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com Capparis tomentosa (Capparidaceae) English: Caper, woolly caper-bush, caper bud French: Tapenade, tapeno Spanish: Tapeno African vernacular names: Swahili: Mkoyo Tswana: Motawana Zulu: Iqwanene, iqwaningi, quanini, umabusane The plant A small spiny tree or scrambling shrub found in tropical or other warm regions. In northern Botswana and South West Africa it is a good sized tree. It grows up to 10m height, well-branched and with dense leaves. It occurs in a wide range of habitats, as evergreen and costal forests, in open woodlands and hot dry thornvelds, and on mountain slopes. Leaves are oblong to broadly elliptic, 3.5 to 8 and 1 to 2.5 cm, light green or greyish green, soft or velvety, with stipules. Flowers white or lilac, sepals thickly hairy, fruits always more than 2 cm in diameter. The baby leaves and fresh shoots of the related species C. spinosa are eaten as a vegetable or salad. The flower buds are pickled und used as a pungent condiment. The fruits of other species are reported to be edible. Plant parts used: The aerial parts or leaves, the fruits, the roots Constituents Glucosinolates are the characteristic compounds of the Capparidaceae plants. If plants are destroyed by crushing, glucosinolates are altered by the enzyme myrosinase into mustard oils. These bring a bitter taste and a hot smell and have skin irritant and antibacterial properties. Therefore plants of this family are used as condiments like radish or the fresh leaves of the lettuce Rucola.
    [Show full text]
  • Ethnobotanical Study of Traditional Medicinal Plants in and Around Fiche District, Central Ethiopia
    Current Research Journal of Biological Sciences 6(4): 154-167, 2014 ISSN: 2041-076X, e-ISSN: 2041-0778 © Maxwell Scientific Organization, 2014 Submitted: December 13, 2013 Accepted: December 20, 2013 Published: July 20, 2014 Ethnobotanical Study of Traditional Medicinal Plants in and Around Fiche District, Central Ethiopia 1Abiyu Enyew, 2Zemede Asfaw, 2Ensermu Kelbessa and 1Raja Nagappan 1Department of Biology, College of Natural and Computational Sciences, University of Gondar, Post Box 196, Gondar, 2Department of Plant Biology and Biodiversity Management, College of Natural Sciences, Addis Ababa University, Post Box 3434, Addis Ababa, Ethiopia Abstract: An ethnobotanical study of medicinal plants was conducted in and around Fiche District, North Shewa Zone of Oromia Region, Ethiopia from September 2011 to January 2012. Ten kebeles were selected from North to South and East to West directions of Fiche District and its surroundings by purposive sampling method. Six informants including one key informant were selected from each kebele for data collection by using printed data collection sheets containing, semi-structured interview questions, group discussion and guided field walk. The plant specimens were identified by using taxonomic keys in the Floras of Ethiopia and Eritrea. The data were analysed using descriptive statistics; informant consensus factor and fidelity level using MS-Excel 2010. Totally, 155 medicinal plants belonging to 128 genera and 65 families were recorded. Most medicinal plants (72.9%) were used for human healthcare in which Lamiaceae was dominant (11%) in which Ocimum lamiifolium, Otostegia integrifolia and Leonotis ocymifolia were the most common species. Herbs were dominant (43.87%) flora followed by shrubs (35.48%).
    [Show full text]
  • Analysisandinterpreta Tion Of
    A N A L Y S I S A N D I N T E R P R E T A T I O N OF B O T A N I C A L R E M A I N S F R O M S I B U D U C A V E , K W A Z U L U – N A T A L Christine Scott A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, in fulfilment of the requirements for the Degree of Master of Science Department of Archaeology School of Geography, Archaeology and Environmental Studies University of the Witwatersrand Johannesburg, 2005 D E C L A R A T I O N I declare that this thesis is my own, unaided work. It is being submitted for the Degree of Master of Science in the University of the Witwatersrand, Johannesburg. It has not been submitted before for any degree or examination in any other University. ……………………… Signature of candidate …….. day of …..…………… 2005 ii A B S T R A C T The identification and analysis of seeds (including fruits and nuts) from second millennium AD deposits at Sibudu Cave, KwaZulu-Natal, constitute the first in-depth archaeobotanical study of seeds in South Africa. The study highlights problems in the reconstruction of past vegetation and climatic variables from seed data. The Sibudu seed assemblage produced no evidence to suggest vegetation change in the Sibudu area during the last 1000 years. Either it is not possible to identify short-term fluctuations in indigenous vegetation from seed data, or the evidence of vegetation change has been masked by the influence of the perennial Tongati River, depositional history, differential preservation and recovery, and identification difficulties.
    [Show full text]
  • Chemical Constituents of Capparis Sinaica Veill. Plant and Its Antimicrobial Effects
    Middle East Journal of Applied Volume : 05 | Issue : 02 | April-June | 2015 Sciences Pages: 411- 422 ISSN 2077-4613 Chemical Constituents of Capparis sinaica Veill. Plant and its Antimicrobial Effects 1El-Saied A. Ghazal, 2Inas M. A. Khamis and 1Mohammed H. Mohsen Elhaw 1Botany and Microbiology Dept., Faculty of Science Al-Azhar University, Egypt. 2Medicinal and Aromatic Plant Dept., Desert Research Center, Cairo, Egypt. ABSTRACT Capparis sinaica Veill. belongs to the family Capparaceae that has several uses in the Egyptian folk medicine for many years. Nothing could be traced about the chemical composition of the plant. Preliminary phytochemical screening of the plant, revealed the presence of tannins, flavonoids, carbohydrates and/or glycosides, resins, sterol, saponins and alkaloids. The highest concentration of total carbohydrates, nitrogen and protein were determined in the aerial part of the plant at winter, while the highest concentration of the total lipid content was determined at autumn. The highest concentration of total flavonoids, saponins and alkaloids were determined in the aerial part of the plant at winter, while the highest concentration of the total tannins content was determined in the root part of the plant at winter. Extraction, isolation and purification of the air-dried plant material using different chromatographic techniques provided five flavonoids and two alkaloids. Identification of the isolated compounds using different chemical and physical techniques (UV and 1H-NMR spectroscopy) allowed to characterize these compounds as quercetin, querctein-7-O-rutinoside, Luteolin, Kaempferol-3- galactoside and quercetin-7-glycoside as flavonoid compounds as well as Capparin A and Capparin B as alkaloid compounds. Extracts of ethyl acetate, methanol for aerial part of Capparis sinaica plant produced the best inhibition effects against the all tested fungi species, while each of hexane, benzene, chloroform and water of all fractions have not any anti-fungi activities against different fungi strains.
    [Show full text]
  • An Investigation of Environmental Knowledge Among Two Rural Black Communities in Natal
    AN INVESTIGATION OF ENVIRONMENTAL KNOWLEDGE AMONG TWO RURAL BLACK COMMUNITIES IN NATAL Submitted in partial fulfIlment of the requirements for the Degree of MASTER OF EDUCATION of Rhodes University by CYNTHIA SIBONGISENI MTSHALI February 1994 . , I i ABSTRACT This study elicits and documents knowledge of the natural environment amongst two rural Black communities in Natal namely, the districts of Maphumulo and Ingwavuma.Twenty members of these communities who are older than 60 years of age were interviewed, as older people are considered by the researcher to be important repositories of environmental knowledge. This study records a variety of animals hunted in these communities and discusses various activities associated with this activity. It examines the gathering and the use of wild edible plants like fruits and spinach, and of wild plants alleged to have medicinal value. It reviews indigenous knowledge related to 1 custom beliefs and prohibitions as well as traditional laws associated .with animals an9 trees. It also considers how this knowledge can contribute towards the development of Environmental Education in South Africa. The data was deduced from the responses elicited from semi-structured interviews. The data was analyzed qualitatively. ii TABLE OF CONTENTS Abstract Table of Contents ii List of Figures and Tables vi Acknowledgements vii ,-- - CHAPTER 1 1.1 Introduction 1 1.2 The Purpose and Background to the Study 1 1.3 The Statement of the Problem 3 1.4 Clarification of Concepts 4 1.4.1 Indigenous knowledge 4 1.4.2 Sustainable
    [Show full text]
  • Laikipia – a Natural History Guide
    LAIKIPIA – A NATURAL HISTORY GUIDE LAIKIPIA – A NATURAL HISTORY GUIDE A publication of the LAIKIPIA WILDLIFE FORUM First published in 2011 by Laikipia Wildlife Forum P O Box 764 NANYUKI – 10400 Kenya Website: www.laikipia.org With support from the Embassy of the Kingdom of the Netherlands in Nairobi, Kenya Text: Copyright © Laikipia Wildlife Forum 2011 Artwork: Copyright © Lavinia Grant 2011 Illustration (p. 33): © Jonathan Kingdon Illustration (p. 78): © Stephen D Nash / Conservation International Illustrations (pp. 22, 45, 46): © Dino J Martins Maps: Copyright © Laikipia Wildlife Forum 2011 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form, or by any means – electronic, mechanical, photocopy, recording, or otherwise – without the prior consent of the publisher. ISBN 978–9966–05–363–3 Editor: Gordon Boy Contributing writers: Anthony King (AK); Chris Disclaimer: The Laikipia Wildlife Forum has made Thouless (CT); Dino J Martins (DJM); Patrick every effort to ensure the information conveyed in K Malonza (PKM); Margaret F Kinnaird (MFK); this guide is accurate in all respects. The Forum Anne Powys (AP); Phillipa Bengough (PB); cannot accept responsibility for consequences Gordon Boy (GB) (including loss, injury, or inconvenience) arising from use of this information. Original paintings by Lavinia Grant, reproduced with the kind permission of the artist Printed on Avalon paper – 100 % chlorine free, made from 60 % bagasse waste derived from Maps: Phillipa Bengough, Job Ballard sustainable afforestation. Design: Job Ballard Printed by The Regal Press Kenya Limited, P O Box Coordination: Phillipa Bengough 4166; 00100 – NAIROBI, Kenya Cover: African Wild Dogs against the backdrop of Mount Kenya.
    [Show full text]
  • Large Ungulate Habitat Preference in Chobe National Park, Botswana
    J. Range Manage. 55: 341-349 July 2002 Large ungulate habitat preference in Chobe National Park, Botswana UYAPO J. OMPHILE AND JEFF POWELL Authors are Lecturer, Botswana College of Agriculture, Gaborone; and Professor of Rangeland Livestock-Wildlife Relations, Wyoming Agricultural Experiment Station, Laramie, Wyo, USA. Abstract Resumen Both large ungulates and wildlife tourists tend to concentrate Durante la estacion seca los grandes ungulados y los turistas de along the Chobe River in Chobe National Park, Botswana, dur- la fauna silvestre tienden a concentrarse a to largo del rio Chobe ing the dry season causing concern for wildlife habitat and the en el Parque Nacional Chobe de Botswana, causando preocu- recreational experience for wildlife viewers. Therefore, ground pacion por el habitat y la experiencia recreacional de los obser- reconnaissance inventory data of 5 most common large ungulates vadores de fauna silvestre. Por to tanto, cada dos meses durante were collected during the early morning and late afternoon hours un periodo de 24 meses, se colectaron en el Parque Nacional along tourist routes in 5 different habitat types every second Chobe datos de un inventario de reconocimiento terrestre de los month for a period of 24 months in Chobe National Park to 5 grandes ungulados mas comunes. La colecta de datos se realizo determine their relative, seasonal habitat preference and avail- temprano en la manana y en la tarde a to largo de rutas de turis- ability for viewing by vehicular tourists. A total of 909 herds: tas en 5 diferentes tipos de habitat para determinar la preferen- greater kudu (Tragelaphus strepsiceros), 285; impala (Aepyceros cia estacional relativa de habitat y la disponibilidad para ser melampus), 209; elephant (Loxodonta africana), 200; giraffe visto por turistas en vehiculos.
    [Show full text]
  • Phylogeny and Multiple Independent Whole‐Genome Duplication Events
    RESEARCH ARTICLE Phylogeny and multiple independent whole-genome duplication events in the Brassicales Makenzie E. Mabry1,11 , Julia M. Brose1, Paul D. Blischak2, Brittany Sutherland2, Wade T. Dismukes1, Christopher A. Bottoms3, Patrick P. Edger4, Jacob D. Washburn5, Hong An1, Jocelyn C. Hall6, Michael R. McKain7, Ihsan Al-Shehbaz8, Michael S. Barker2, M. Eric Schranz9, Gavin C. Conant10, and J. Chris Pires1,11 Manuscript received 10 December 2019; revision accepted 5 May PREMISE: Whole-genome duplications (WGDs) are prevalent throughout the evolutionary 2020. history of plants. For example, dozens of WGDs have been phylogenetically localized 1 Division of Biological Sciences and Christopher S. Bond Life across the order Brassicales, specifically, within the family Brassicaceae. A WGD event has Sciences Center, University of Missouri, Columbia, Missouri 65211, also been identified in the Cleomaceae, the sister family to Brassicaceae, yet its placement, USA as well as that of WGDs in other families in the order, remains unclear. 2 Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85719, USA METHODS: Phylo-transcriptomic data were generated and used to infer a nuclear 3 Informatics Research Core Facility and Christopher S. Bond Life phylogeny for 74 Brassicales taxa. Genome survey sequencing was also performed on 66 Sciences Center, University of Missouri, Columbia, Missouri 65211, of those taxa to infer a chloroplast phylogeny. These phylogenies were used to assess and USA confirm relationships among the major families of the Brassicales and within Brassicaceae. 4 Department of Horticulture, Michigan State University, East Lansing, Michigan 48824, USA Multiple WGD inference methods were then used to assess the placement of WGDs on the 5 Plant Genetics Research Unit, USDA-ARS, Columbia, Missouri nuclear phylogeny.
    [Show full text]
  • Systematics of Capparaceae and Cleomaceae: an Evaluation of the Generic Delimitations of Capparis and Cleome Using Plastid DNA Sequence Data1
    682 Systematics of Capparaceae and Cleomaceae: an evaluation of the generic delimitations of Capparis and Cleome using plastid DNA sequence data1 Jocelyn C. Hall Abstract: The phylogenetic relationships in Capparaceae and Cleomaceae were examined using two plastid genes, ndhF and matK, to address outstanding systematic questions in the two families. Specifically, the monophyly of the two type genera, Capparis and Cleome, has recently been questioned. Capparaceae and Cleomaceae were broadly sampled to assess the generic circumscriptions of both genera, which house the majority of species for each family. Phylogenetic reconstruc- tions using maximum parsimony and maximum likelihood methods strongly contradict monophyly for both type genera. Within Capparaceae, Capparis is diphyletic: the sampled species belong to two of the five major lineages recovered in the family, which corresponds with their geographic distribution. One lineage contains all sampled New World Capparis and four other genera (Atamisquea, Belencita, Morisonia, and Steriphoma) that are distributed exclusively in the New World. The other lineage contains Capparis species from the Old World and Australasia, as well as the Australian genus, Apo- phyllum. Species of Cleome are scattered across each of four major lineages identified within Cleomaceae: (i) Cleome in part, Dactylaena, Dipterygium, Gynandropsis, Podandrogyne, and Polanisia;(ii) Cleome droserifolia (Forssk.) Del.; (iii) Cleome arabica L., and Cleome ornithopodioides L.; and (iv) Cleome in part, Cleomella, Isomeris, Oxystylis, and Wislizenia. Resolution within and among these major clades of Cleomaceae is limited, and there is no clear correspond- ence of clades with geographic distribution. Within each family, morphological support and taxonomic implications of the molecular-based clades are discussed.
    [Show full text]
  • World Bank Document
    El 512 VOL. 3 I BURNSIDE Public Disclosure Authorized Bujagali Interconnection Project, Uganda Social and Environmental Assessment Terms of Reference Public Disclosure Authorized Prepared by R.J. Burnside & Associates Limited 292 Speedvale Avenue West Unit 7 Guelph ON N1H 1C4 Canada In association with Dillon Consulting Limited, Canada Public Disclosure Authorized Ecological Writings #1, Inc., Canada Enviro and Industrial Consult (U)Ltd, Uganda Frederic Giovannetti, Consultant, France Tonkin & Taylor International Ltd., New Zealand June 2006 File No: I-A 10045 Public Disclosure Authorized The material in this report reflects best judgement in light of the information available at the time of preparation. Any Use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. R. J. Burnside & Associates Limited accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report. i i iI j iI i § BURNSIDE Bujagali Interconnection Project, Uganda Social and Environmental Assessment Terms of Reference Prepared by R.J. Burnside & Associates Limited 292 Speedvale Avenue West Unit 7 Guelph ON N1H 1C4 Canada In association with Dillon Consulting Limited, Canada Ecological Writings #1, Inc., Canada Enviro and Industrial Consult (U)Ltd, Uganda Frederic Giovannetti, Consultant, France Tonkin & Taylor International Ltd., New Zealand June 2006 File No: I-A 10045 The material in this report reflects best judgement in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties.
    [Show full text]
  • Lake Kivu Islands Biodiversity Inventories Karongi 2012
    Inventories of Kivu Lake Islands Biodiversity In Support To Their Inclusion Into The Protected Areas Network In Rwanda TABLE OF CONTENTS LIST OF TABLES ...................................................................................................................................... 4 LIST OF FIGURES .................................................................................................................................... 5 LIST OF PHOTOS ..................................................................................................................................... 6 EXECUTIVE SUMMARY.......................................................................................................................... 8 CHAPTER I. INTRODUCTION .............................................................................................................. 9 1.1. Kivu Lake ................................................................................................................................ 9 1.1.1. General information .......................................................................................................... 9 1.1.2. The biological environment ............................................................................................ 10 1.1.2.1. Fish fauna ................................................................................................................. 10 1.1.2.1. Plankton fauna .......................................................................................................... 11 1.2. Kivu
    [Show full text]