A Survey and Evaluation of FPGA High-Level Synthesis Tools
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2015.2513673, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems TCAD, VOL. X, NO. Y, DECEMBER 2015 1 A Survey and Evaluation of FPGA High-Level Synthesis Tools Razvan Nane, Member, IEEE, Vlad-Mihai Sima, Christian Pilato, Member, IEEE, Jongsok Choi, Student Member, IEEE, Blair Fort, Student Member, IEEE, Andrew Canis, Student Member, IEEE, Yu Ting Chen, Student Member, IEEE, Hsuan Hsiao, Student Member, IEEE, Stephen Brown, Member, IEEE, Fabrizio Ferrandi, Member, IEEE, Jason Anderson, Member, IEEE, Koen Bertels Member, IEEE Abstract—High-level synthesis (HLS) is increasingly popular at a low level of abstraction, where cycle-by-cycle behavior for the design of high-performance and energy-efficient heteroge- is completely specified. The use of such languages requires neous systems, shortening time-to-market and addressing today’s advanced hardware expertise, besides being cumbersome to system complexity. HLS allows designers to work at a higher-level of abstraction by using a software program to specify the hard- develop in. This leads to longer development times that can ware functionality. Additionally, HLS is particularly interesting critically impact the time-to-market. for designing FPGA circuits, where hardware implementations An interesting solution to realize such heterogeneity and, can be easily refined and replaced in the target device. Recent at the same time, address the time-to-market problem is the years have seen much activity in the HLS research community, combination of reconfigurable hardware architectures, such with a plethora of HLS tool offerings, from both industry and academia.
[Show full text]