Truffle Abundance and Mycophagy by Northern Flying Squirrels in Eastern Washington Forests
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Appendix K. Survey and Manage Species Persistence Evaluation
Appendix K. Survey and Manage Species Persistence Evaluation Establishment of the 95-foot wide construction corridor and TEWAs would likely remove individuals of H. caeruleus and modify microclimate conditions around individuals that are not removed. The removal of forests and host trees and disturbance to soil could negatively affect H. caeruleus in adjacent areas by removing its habitat, disturbing the roots of host trees, and affecting its mycorrhizal association with the trees, potentially affecting site persistence. Restored portions of the corridor and TEWAs would be dominated by early seral vegetation for approximately 30 years, which would result in long-term changes to habitat conditions. A 30-foot wide portion of the corridor would be maintained in low-growing vegetation for pipeline maintenance and would not provide habitat for the species during the life of the project. Hygrophorus caeruleus is not likely to persist at one of the sites in the project area because of the extent of impacts and the proximity of the recorded observation to the corridor. Hygrophorus caeruleus is likely to persist at the remaining three sites in the project area (MP 168.8 and MP 172.4 (north), and MP 172.5-172.7) because the majority of observations within the sites are more than 90 feet from the corridor, where direct effects are not anticipated and indirect effects are unlikely. The site at MP 168.8 is in a forested area on an east-facing slope, and a paved road occurs through the southeast part of the site. Four out of five observations are more than 90 feet southwest of the corridor and are not likely to be directly or indirectly affected by the PCGP Project based on the distance from the corridor, extent of forests surrounding the observations, and proximity to an existing open corridor (the road), indicating the species is likely resilient to edge- related effects at the site. -
Pozeminiai-Grybai
VILNIAUS UNIVERSITETAS Marija Kataržytė LIETUVOS POŽEMINIŲ GRYBŲ ĮVAIROVĖ, PAPLITIMAS IR SAITAI SU SMULKIAISIAIS ŽINDUOLIAIS Daktaro disertacija Biomedicinos mokslai, Biologija (01B) Vilnius, 2009 Disertacija rengta 2004–2008 metais Vilniaus universitete Mokslinis vadovas: doc. dr. Ernestas Kutorga (Vilniaus universitetas, biomedicinos mokslai, biologija – 01B ) TURINYS Įvadas …………………………….……………………………………….....….…... 5 1. Literatūros apžvalga …………………................................………………....... 10 1.1. Požeminių grybų biologija, ekologija ir reikšmė ................................ 10 1.2. Požeminių grybų įvairovė, taksonomija ir paplitimas ........................ 15 1.3. Požeminių grybų tyrimai Lietuvoje .................................................... 18 1.4. Makromicetų bendrijų tyrimai ............................................................ 20 1.5. Smulkiųjų žinduolių mikofagija ir jos reikšmė požeminių grybų biologijai ................................................................................... 25 2. Tyrimų medžiaga ir metodai ....................................................................... 29 2.1. Tyrimų vietos ...................................................................................... 29 2.2. Tyrimų medžiagos rinkimas ir būdinimas .......................................... 32 2.3. Statistinės analizės metodai ............................................................... 37 3. Tyrimų rezultatai ir jų aptarimas ................................................................. 40 3.1. Lietuvos požeminių -
Rhizopogon Togasawariana Sp. Nov., the First Report of Rhizopogon Associated with an Asian Species of Pseudotsuga
Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Mujic, A. B., Hosaka, K., & Spatafora, J. W. (2014). Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga. Mycologia, 106(1), 105-112. doi:10.3852/13-055 10.3852/13-055 Allen Press Inc. Version of Record http://hdl.handle.net/1957/47245 http://cdss.library.oregonstate.edu/sa-termsofuse Mycologia, 106(1), 2014, pp. 105–112. DOI: 10.3852/13-055 # 2014 by The Mycological Society of America, Lawrence, KS 66044-8897 Rhizopogon togasawariana sp. nov., the first report of Rhizopogon associated with an Asian species of Pseudotsuga Alija B. Mujic1 the natural and anthropogenic range of the family Department of Botany and Plant Pathology, Oregon and plays an important ecological role in the State University, Corvallis, Oregon 97331-2902 establishment and maintenance of forests (Tweig et Kentaro Hosaka al. 2007, Simard 2009). The foundational species Department of Botany, National Museum of Nature concepts for genus Rhizopogon were established in the and Science, Tsukuba-shi, Ibaraki, 305-0005, Japan North American monograph of Smith and Zeller (1966), and a detailed monograph also has been Joseph W. Spatafora produced for European Rhizopogon species (Martı´n Department of Botany and Plant Pathology, Oregon 1996). However, few data on Asian species of State University, Corvallis, Oregon 97331-2902 Rhizopogon have been incorporated into phylogenetic and taxonomic studies and only a limited account of Asian Rhizopogon species has been published for EM Abstract: Rhizopogon subgenus Villosuli are the only associates of Pinus (Hosford and Trappe 1988). -
AR TICLE Diversity of Chroogomphus (Gomphidiaceae, Boletales) In
doi:10.5598/imafungus.2018.09.02.04 IMA FUNGUS · Diversity of ( , ) in Europe, and Chroogomphus Gomphidiaceae Boletales ARTICLE [C. rutilus Ross Scambler1,6, Tuula Niskanen1, Boris Assyov2, A. Martyn Ainsworth1, Jean-Michel Bellanger3, Michael Loizides4 , Pierre- Arthur Moreau5, Paul M. Kirk1, and Kare Liimatainen1 1Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK; corresponding author e-mail: [email protected] 2!"#$"%'*+'///<'" 3UMR5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, INSERM, 1919, route de Mende, F-34293 Montpellier Cedex 5, France 4P.O. box 58499, 3734 Limassol, Cyprus 5Université de Lille, Fac. Pharma. Lille, EA 4483 IMPECS, F – 59000 Lille, France 6 Present address :Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK In this study, eight species of Chroogomphus are recognized from Europe: C. britannicus, C. aff. [ 1, C. fulmineus, C. cf. helveticus, C. mediterraneus, C. cf. purpurascens, C. rutilus, and C. subfulmineus. DNA barcode Different candidates for the application of the name C. rutilus[ ITS =>Chroogomphus fulmineus and C. mediterraneus are molecular systematics [C. subfulmineus?[ new taxa a new subgenus Siccigomphus and three new sections, Confusi, Filiformes, and Fulminei are introduced. The taxonomy former sections Chroogomphus and Floccigomphus are elevated to subgeneric level. Comparison of the ITS X[%!?'/\]'!?'*[ of 1.5 %, with the exception of the two species belonging to sect. Fulminei which differ by a minimum of 0.9 %. Ecological specimen data indicate that species of Chroogomphus form basidiomes under members of Pinaceae, with a general preference for species of Pinus. Five European species have been recorded under Picea, while Abies and Larix have also been recorded as tree associates, although the detailed nutritional relationships of the Submitted: 27 November 2017; Accepted: 27 August 2018; Published: 5 September 2018. -
A Preliminary Checklist of Arizona Macrofungi
A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona. -
AR TICLE Diversity of Chroogomphus (Gomphidiaceae, Boletales)
doi:10.5598/imafungus.2018.09.02.04 IMA FUNGUS · 9(2): 271–290 (2018) Diversity of Chroogomphus (Gomphidiaceae, Boletales) in Europe, and ARTICLE typification ofC. rutilus Ross Scambler1,6, Tuula Niskanen1, Boris Assyov2, A. Martyn Ainsworth1, Jean-Michel Bellanger3, Michael Loizides4 , Pierre- Arthur Moreau5, Paul M. Kirk1, and Kare Liimatainen1 1Jodrell Laboratory, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK; corresponding author e-mail: [email protected] 2Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113 Sofia, Bulgaria 3UMR5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, INSERM, 1919, route de Mende, F-34293 Montpellier Cedex 5, France 4P.O. box 58499, 3734 Limassol, Cyprus 5Université de Lille, Fac. Pharma. Lille, EA 4483 IMPECS, F – 59000 Lille, France 6 Present address :Department of Applied Sciences, University of the West of England, Frenchay Campus, Coldharbour Lane, Bristol, BS16 1QY, UK Abstract: In this study, eight species of Chroogomphus are recognized from Europe: C. britannicus, C. aff. Key words: filiformis 1, C. fulmineus, C. cf. helveticus, C. mediterraneus, C. cf. purpurascens, C. rutilus, and C. subfulmineus. DNA barcode Different candidates for the application of the name C. rutilus are evaluated and the best fit to the description is ITS selected; lecto- and epitypes are chosen to fix the name. Chroogomphus fulmineus and C. mediterraneus are molecular systematics also epitypified and a new species, C. subfulmineus, is described. The infrageneric classification is revised and new taxa a new subgenus Siccigomphus and three new sections, Confusi, Filiformes, and Fulminei are introduced. The taxonomy former sections Chroogomphus and Floccigomphus are elevated to subgeneric level. -
Forming Ectomycorrhizal Fungi in the Interior Cedar-Hemlock Biogeoclimatic Zone of British Columbia
THE ROLE OF SCIURIDS AND MURIDS IN THE DISPERSAL OF TRUFFLE- FORMING ECTOMYCORRHIZAL FUNGI IN THE INTERIOR CEDAR-HEMLOCK BIOGEOCLIMATIC ZONE OF BRITISH COLUMBIA by Katherine Sidlar A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The College of Graduate Studies (Biology) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) January 2012 © Katherine Sidlar, 2012 Abstract Ectomycorrhizal fungi form an integral tripartite relationship with trees and rodents whereby the fungi provide nutritional benefits for the trees, the trees provide carbohydrate for the fungi, and the rodents feed on the fruit bodies produced by the fungi and then disperse the fungal spores in their feces. When forests are harvested, new ectomycorrhizae must form. It has been assumed that dispersal beyond the root zone of surviving trees happens by way of animals dispersing the spores in their feces, but the importance of particular animal taxa to fungal spore dispersal into disturbed areas in the Interior Cedar Hemlock Biogeoclimatic zone of British Columbia has not previously been investigated. This study observed the occurrence and prevalence of hypogeous fruit bodies (truffles) of ectomycorrhizal fungi, and fungal spores in the feces of a range of rodent species. Truffles were excavated and sciurids (squirrels, chipmunks) and murids (mice, voles) were trapped on sites in a 7 to 102-year chronosequence, as well as unharvested sites adjacent to 7- and 25-year-old sites. The average truffle species richness in soil did not change significantly over the chronosequence. Rhizopogon species were present at all sites and treatments. Deer mice (Peromyscus maniculatus) and yellow-pine chipmunks (Tamias amoenus) were the most commonly trapped rodents across all site ages and were also the most likely to move between harvested and unharvested areas. -
Systematics of the Genus Rhizopogon Inferred from Nuclear Ribosomal DNA Large Subunit and Internal Transcribed Spacer Sequences
AN ABSTRACT OF THE THESIS OF Lisa C. Grubisha for the degree of Master of Science in Botany and Plant Pathology presented on June 22, 1998. Title: Systematics of the Genus Rhizopogon Inferred from Nuclear Ribosomal DNA Large Subunit and Internal Transcribed Spacer Sequences. Abstract approved Redacted for Privacy Joseph W. Spatafora Rhizopogon is a hypogeous fungal genus that forms ectomycorrhizae with genera of the Pinaceae. The greatest number and species of Rhizopogon are found in coniferous forests of the Pacific Northwestern United States, where members of the Pinaceae are also concentrated. Rhizopogon spp. are host-specific primarily with Pinus spp. and Pseudotsuga spp. and thus are an important component of these forest ecosystems. Rhizopogon includes over 100 species; however, the systematics of Rhizopogon have not been well understood. Currently the genus is placed in the Boletales, an order of ectomycorrhizal fungi that are primarily epigeous and have a tubular hymenium. Suillus is a stipitate genus closely related to Rhizopogon that is also in the Boletales and host specific with Pinaceae.I examined the relationship of Rhizopogon to Suillus and other genera in the Boletales. Infrageneric relationships in Rhizopogon were also investigated to test current taxonomic hypotheses and species concepts. Through phylogenetic analyses of large subunit and internal transcribed spacer nuclear ribosomal DNA sequences, I found that Rhizopogon and Suillus formed distinct monophyletic groups. Rhizopogon was composed of four distinct groups; sections Amylopogon and Villosuli were strongly supported monophyletic groups. Section Rhizopogon was not monophyletic, and formed two distinct clades. Section Fulviglebae formed a strongly supported group within section Villosuli. -
This File Was Created by Scanning the Printed
FUNGAL ECOLOGY 4 (2011) 134-146 available at www.sciencedirect.com --" -.;" ScienceDirect jou rna I hom epage: www.elsevier.com/locate/fu n eco ELSEVIER Addressing uncertainty: How to conserve and manage rare or little-known fungi b Randy MOLINAa,*, Thomas R. HORTON , James M. TRAPPEa, Bruce G. MARCOr: aOregon State University, Department of Forest Ecosystems and Society, 321 Richardson Hall, Corvallis, OR 97331, USA b State University of New York, College of Environmental Science and Forestry, Department of Environmental and Forest Biology, 246 Illick Hall, 1 Forestry Drive, Syracuse, NY 13210, USA cUSDA Forest Service, Pacific Northwest Research Station, Portland Forestry Sciences Laboratory, 620 SW Main Street, Suite 400, Portland, OR 97205, USA ARTICLE INFO ABSTRACT Article history: One of thegreater challenges in conserving fungi comes from our incomplete knowledge of Received 8 March 2010 degree of rarity, risk status, and habitat requirements of most fungal species. We discuss Accepted 15 June 2010 approaches to immediately begin closing knowledge gaps, including: (1) harnessing Available online 15 September 2010 collective expert knowledge so that data from professional experiences (e.g., personal Corresponding editor: Anne Pringle collection and herbarium records) are better organized and made available to the broader mycological community; (2) thinking outside the mycology box by learning and borrowing Keywords: from conservation approaches to other taxonomic groups; (3) developing and testing Adaptive management hypothesis-driven habitat models for representative fungi to provide support for habitat Expert knowledge restoration and management; (4) framing ecological questions and conducting field Fungus conservation surveys and research more directly pertinent to conservation information needs; and (5) Habitat modeling providing adaptive management guidelines and strategies for resource managers to Species vs. -
Patterns of Vegetative Growth and Gene Flow in Rhizopogon Vinicolor and R
Molecular Ecology (2005) 14,2259-2268 doi: 10.111 1/j.1365-294X.2005.02547.x Patterns of vegetative growth and gene flow in Rhizopogon vinicolor and R. vesiculosus (Boletales, Basidiomycota) ANNETTE M. KRETZER,"SUSIE DUNHAM,+ RANDY MOLINAS and JOSEPH W. SPATAFORAt *SUNYCollege of Environmental Science and Forest y, Faculty of Environmental and Forest Biology, 1 Forest y Drive, Syracuse, NY 13210, toregon State University, Department of Botany and Plant Pathology, 2082 Cordley Hall, Corvallis, OR 97331, SUSDA Forest Service; 620 SW Main St., Suite 400, Portland, OR 97205 Abstract We have collected sporocarps and tuberculate ectomycorrhizae of both Rhizopogon vini- color and Rhizopogon vesiculosus from three 50 x 100 m plots located at Mary's Peak in the Oregon Coast Range (USA); linear map distances between plots ranged from c. 1km to c. 5.5 km. Six and seven previously developed microsatellite markers were used to map the approximate size and distribution of R. vinicolor and R. vesiculosus genets, respectively. Genetic structure within plots was analysed using spatial autocorrelation analyses. No sig- nificant clustering of similar genotypes was detected in either species when redundant samples from the same genets were culled from the data sets. In contrast, strong clustering was detected in R. vesiculosus when all samples were analysed, but not in R. vinicolor. These results demonstrate that isolation by distance does not occur in either species at the intraplot sampling scale and that clonal propagation (vegetative growth) is significantly more prevalent in R. vesiculosus than in R. vinicolor. Significant genetic differentiation was detected between some of the plots and appeared greater in the more clonal species R. -
Duke University Dissertation Template
Systematics, Phylogeography and Ecology of Elaphomycetaceae by Hannah Theresa Reynolds Department of Biology Duke University Date:_______________________ Approved: ___________________________ Rytas Vilgalys, Supervisor ___________________________ Marc Cubeta ___________________________ Katia Koelle ___________________________ François Lutzoni ___________________________ Paul Manos Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology in the Graduate School of Duke University 2011 iv ABSTRACTU Systematics, Phylogeography and Ecology of Elaphomycetaceae by Hannah Theresa Reynolds Department of Biology Duke University Date:_______________________ Approved: ___________________________ Rytas Vilgalys, Supervisor ___________________________ Marc Cubeta ___________________________ Katia Koelle ___________________________ François Lutzoni ___________________________ Paul Manos An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biology in the Graduate School of Duke University 2011 Copyright by Hannah Theresa Reynolds 2011 Abstract This dissertation is an investigation of the systematics, phylogeography, and ecology of a globally distributed fungal family, the Elaphomycetaceae. In Chapter 1, we assess the literature on fungal phylogeography, reviewing large-scale phylogenetics studies and performing a meta-data analysis of fungal population genetics. In particular, we examined -
How Many Species in the <I>Rhizopogon Roseolus</I> Group?
MYCOTAXON Volume 109, pp. 111–128 July–September 2009 How many species in the Rhizopogon roseolus group? María P. Martín & Miguel A. García [email protected] Real Jardín Botánico, CSIC Plaza Murillo 2, Madrid 28014, Spain Abstract —Species concepts in the Rhizopogon roseolus species group (Boletales, Basidiomycotina) are analyzed using nrDNA ITS sequence data. This group includes taxa traditionally placed in sect. Rhizopogon in subsect. Rhizopogon (stirps Rubescens) and subsect. Angustipori (stirps Vulgaris) along with many other European species. ITS sequence analyses separate the collections into numerous clades and imply the existence of five phylogenetic species. Key words — internal transcribed spacer, nrDNA, taxonomy Introduction The genus Rhizopogon belongs to the order Boletales and comprises ca 100 species. Martín (1996) reported 21 species of Rhizopogon for Europe with R. roseolus (Corda) Th. Fr. sensu M.P. Martín cited as the most abundant. However, the taxonomy of R. roseolus has long been controversial (Smith & Zeller 1966, Groβ & Schmitt 1974) and current authors (Martín 1996, Grubisha et al. 2002) also disagree over its species concept. The holotype of R. roseolus — an illustration by Corda (1831) of Splanchnomyces roseolus — shows basidiomes with a uniformly vinaceous peridium and white gleba. In the genus Rhizopogon, the peridium and gleba colour serve with chemical tests as the main characters used to describe new species. The absence of yellow in the Corda illustration caused many authors to describe new taxa. However, recent morphological analyses by Martín (1996) proposed that 36 taxa described by many different authors (Corda 1854; Boudier 1885; Karsten 1886, 1889; Fries 1909; Velenovský 1931, 1939; Vacek 1948; Soehner 1956; Svrček 1958; Smith & Zeller 1966; Pacioni 1984a,b) are synonymous with R.