The Bacterial Microbiomes of Saskatchewan Crops and Potential for Plant Growth Promotion

Total Page:16

File Type:pdf, Size:1020Kb

The Bacterial Microbiomes of Saskatchewan Crops and Potential for Plant Growth Promotion THE BACTERIAL MICROBIOMES OF SASKATCHEWAN CROPS AND POTENTIAL FOR PLANT GROWTH PROMOTION A Thesis Submitted to the College of Graduate and Postdoctoral Studies In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In the Department of Soil Science University of Saskatchewan Saskatoon By Jorge Cordero Elvia © Copyright Jorge Cordero Elvia, January 2019. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their absence, by the Head of the Department or the Dean of the College in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Requests for permission to copy or to make other uses of materials in this thesis in whole or part should be addressed to: Head of the Department of Soil Science 51 Campus Drive, Room 5D34 University of Saskatchewan Saskatoon, Saskatchewan, S7N 5A8 Canada OR Dean College of Graduate and Postdoctoral Studies University of Saskatchewan 116 Thorvaldson Building, 110 Science Place Saskatoon, Saskatchewan, S7N 5C9 Canada i DISCLAIMER Reference in this thesis was prepared by the author to meet the requirements for the degree of Doctor of Philosophy at the University of Saskatchewan. Reference in this thesis to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement, recommendation, or favoring by the University of Saskatchewan. The views and opinions of the author expressed herein do not state or reflect those of the University of Saskatchewan, and shall not be used for advertising or product endorsement purposes. ii ABSTRACT Bacteria associated with the rhizosphere and plant tissues may contribute to host crops by providing nutrients, stimulating growth and/or controlling phytopathogens. These beneficial plant × bacteria associations may have a key role in the establishment and production of agricultural ecosystems. This research thesis investigated the bacterial communities associated with canola (Brassica napus L.), wheat (Triticum aestivum L.), lentil (Lens culinaris L.) and field pea (Pisum sativum L.) grown in agricultural fields in Saskatchewan and assessed the potential of some of these bacteria for plant growth promotion. Analysis of bacterial communities associated with these crops suggested a selection of the root endophytic microbiome from the rhizosphere. In contrast, endophytic bacteria associated with aboveground plant organs varied greatly among crops, soils and plant organs. Furthermore, Denaturing Gradient Gel Electrophoresis (DGGE) and high throughput-sequencing analyses of baterial profiles in wheat and canola suggested that each crop may select specific bacterial taxa at different plant growth stages and within different plant compartments. Pseudomonas and Stenotrophomonas were predominant genera in the rhizosphere and root interior of all crops, suggesting a generalist distribution of these bacteria. Relative abundance of specific bacterial groups in the rhizosphere, as well as bacterial Phospholipid Fatty Acids (PLFA) in the bulk soil, were significantly correlated with soil pH, silt and organic matter content. There was, however, no correlation between soil properties and the most abundant endophytic bacterial genera, thus suggesting that soil characteristics may not influence bacterial communities within plant roots. Culturable bacteria (n=157) isolated from the root interior of the studied crops were tested for their effect on seed germination, root elongation and plant growth promotion. A total of nine bacterial strains, isolated from the root interior of field grown crops, stimulated seed germination and root elongation when inoculated to canola and wheat plants, and five of these bacterial strains also promoted shoot growth in canola. Overall, these results suggest the bacterial microbiomes of the rhizosphere and plant tissues were modulated by soil properties and host crop, respectively. In addition, several endophytic bacteria demonstrated potential for use as bioinoculants in agriculture. iii ACKNOWLEDGMENTS Foremost, I would like to thank to my mother Margarita Elvia for her love, sacrifice and inspiration. I am extremely grateful to my supervisors Drs. Jim Germida and Renato de Freitas for their mentorship, support, guidance and encouragement during my Ph.D. studies. I would like to acknowledge the valuable inputs from my advisory committee members, Drs. Bobbi Helgason, Fran Walley, Steven Siciliano and Vladimir Vujanovic. I want to express my gratitude to many friends from the Soil Microbiology Lab 5E25, who made this journey with me. Special thanks to Eduardo Mitter, Panchali Katalunda, Avanthi Wijesinghe, Zayda Morales, Bethany Templeton, Natalie Blain, Mortuza Reza and Anisha Biswaray. I would also like to thank Marc St. Arnaud, Kim Heidinger and Dr. Ken Van Rees from the Department of Soil Science for their help and support. Thanks to all friends, professors and personnel at the College of Agriculture and Bioresources for contributing to my academic development. I would like to thank the Crop Development Centre and the research station of Agriculture Agri-Food Canada (AAFC) in Melfort for their help with plant sampling for this thesis. I am very thankful to Dr. Jeff Schoenau for providing me with his valuable advice, as well as the soil and plant samples from his farm. I am grateful for the financial support received from the University of Saskatchewan. I would like to thank my family for always being there for me and inspiring me to follow my dreams. Thanks to Adriana, Leslie, Dale, Dayana, Veriozka, David, Sadiel and Sebastian for being such amazing friends. iv TABLE OF CONTENTS PERMISSION TO USE….…………………………………………………………………..……i DISCLAIMER……..…………………………………………………………………………..….ii ABSTRACT…...……………………………………...………………………………………..…iii ACKNOWLEDGMENTS……………………………………………………………………….iv TABLE OF CONTENTS…….…………………………………………………………..……….v LIST OF TABLES…………………..……………………………………………………..…..…ix LIST OF FIGURES………..…………………………………………...………………..……….xi LIST OF ABBREVIATIONS…….…....……………………………...…………………..…..xviii 1. GENERAL INTRODUCTION..……….……...……………………………………………….1 1.1. Organization of the Thesis………………..…...……………...……………………………..4 2. LITERATURE REVIEW………………….……...………..………………………………….5 2.1. Plant × Bacteria Interactions: Implications for Crop Production and Agroecosystem Functioning…….....…………………....………...…………………………………………6 2.2. Bacterial Microbiome Associated with Crops…………..…..………………………………8 2.2.1. Rhizosphere……………………………….……………………..……………………8 2.2.2. Phyllosphere…………………………………….……..……………..……………...10 2.2.3. Spermosphere…………………………….…………………………………...…..…11 2.2.4. Endosphere…………………………………….…………………………….....……12 2.3. Factors Affecting the Diversity of Bacterial Communities Associated with Crops…....…...15 2.3.1. Soil Physical and Chemical Characteristics…………………..……….….………...15 2.3.2. Crop Species and Plant Development Stages…….………………………..….…….17 2.4. Plant Growth Promotion by Bacterial Endophytes Associated with Crops….....……...….19 2.4.1. Mechanisms of Plant Growth Promotion…...…………...……………………….....19 2.4.2. Perspectives for Crop Production in Saskatchewan………………......………..…...22 3. THE BACTERIAL MICROBIOMES ASSOCIATED WITH THE RHIZOSPHERE AND ROOT INTERIOR OF CROPS IN SASKATCHEWAN, CANADA……………..….28 3.1. Preface……..………………………………...………………………………………..…...28 3.2. Abstract……...………………………………………………………..…………………...29 3.3. Introduction…………..……………………………………………..…..…………………30 3.4. Materials and Methods………………………………………………………..…………...32 v 3.4.1. Sampling and Processing………………………...…………………..……………..32 3.4.2. Analysis of Soil Physical and Chemical Properties….…………………...…...……32 3.4.3. Phospholipid Fatty Acids (PLFA) Analysis of Soil Microbial Communities…….....35 3.4.4. Bacterial Isolation and Identification using Culture Dependent Methods…..……....35 3.4.5. Survey of Rhizosphere and Root Endophytic Bacterial Communities.....……...…...37 3.4.6. Analysis of Bacterial Communities using Denaturing Gradient Gel Electrophoresis (DGGE)…………………………………………………..……….37 3.4.7. Analysis of Bacterial Communities using 16S rRNA High-Throughput Sequencing...........………………...………………………………………………..38 3.4.8. Bioinformatics and Statistical Analyses……..………...………...………………….39 3.5. Results………….………………………………………………………...…..……………40 3.5.1. Culturable Bacteria Associated with the Rhizosphere and Root Interior of the Crops...……………………...…………………………………………………...…40 3.5.2. PLFA Profiles of Soil Bacterial Communities……………………………..….…....43 3.5.3. Community Structure of Endophytic, Rhizosphere and Bulk Soil Bacteria Associated with Crops using DGGE………..……..……………………………......45 3.5.4. Community Structure and Diversity of Bacterial Communities Associated with Crops assessed by 16S rRNA High-Throughput Sequencing……………………....51 3.5.5. Taxonomic Analysis of Bacterial Communities Associated with Crops assessed by 16S rRNA High-Throughput Sequencing………..…..…………..…………...…65
Recommended publications
  • Tesis Doctoral 2014 Filogenia Y Evolución De Las Poblaciones Ambientales Y Clínicas De Pseudomonas Stutzeri Y Otras Especies
    TESIS DOCTORAL 2014 FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta TESIS DOCTORAL 2014 Programa de Doctorado de Microbiología Ambiental y Biotecnología FILOGENIA Y EVOLUCIÓN DE LAS POBLACIONES AMBIENTALES Y CLÍNICAS DE PSEUDOMONAS STUTZERI Y OTRAS ESPECIES RELACIONADAS Claudia A. Scotta Botta Director/a: Jorge Lalucat Jo Director/a: Margarita Gomila Ribas Director/a: Antonio Bennasar Figueras Doctor/a por la Universitat de les Illes Balears Index Index ……………………………………………………………………………..... 5 Acknowledgments ………………………………………………………………... 7 Abstract/Resumen/Resum ……………………………………………………….. 9 Introduction ………………………………………………………………………. 15 I.1. The genus Pseudomonas ………………………………………………….. 17 I.2. The species P. stutzeri ………………………………………………......... 23 I.2.1. Definition of the species …………………………………………… 23 I.2.2. Phenotypic properties ………………………………………………. 23 I.2.3. Genomic characterization and phylogeny ………………………….. 24 I.2.4. Polyphasic identification …………………………………………… 25 I.2.5. Natural transformation ……………………………………………... 26 I.2.6. Pathogenicity and antibiotic resistance …………………………….. 26 I.3. Habitats and ecological relevance ………………………………………… 28 I.3.1. Role of mobile genetic elements …………………………………… 28 I.4. Methods for studying Pseudomonas taxonomy …………………………... 29 I.4.1. Biochemical test-based identification ……………………………… 30 I.4.2. Gas Chromatography of Cellular Fatty Acids ................................ 32 I.4.3. Matrix Assisted Laser-Desorption Ionization Time-Of-Flight
    [Show full text]
  • Chapter 1.0: Introduction
    CHAPTER 1.0: INTRODUCTION 1.1 Why study Antarctica? The Antarctic includes some of the most extreme terrestrial environments by very low temperature, frequent freeze-thaw and wet-dry cycles, low and transient precipitation, reduced humidity, rapid drainage and limited organic nutrients which are considered as unfavorable condition (Yergeau et al., 2006). Located in the Earth‟s south hemisphere, Antarctica has received considerable amount of attention due to its untapped resources. Renowned for its cold, harsh conditions, there is an abundance of microbial life which has undergone their own adaption and evolutionary processes to survive. Since, Antarctic microbial habitats have remained relatively conserved for many years; there are unique opportunities for studying microbial evolution (Vincent, 2000). Besides that, presence of psychrophiles and other extermophiles in the environment are interesting specimens of nature‟s wonder. Psychrophilic enzymes produced have high potential in biotechnology for example the conservation of energy by reducing the need of heat treatment, the application of eurythermal polar cyanobacteria for wastewater treatment in cold climates (Tang et al., 1997) and the integration of proteases, lipases and cellulases into detergents to improve its mode of action in cold water. 1.2 Antarctic microorganisms Although bacterial researches have been conducted since early 1900s by Ekelof (Boyd and Boyd, 1962), little is known about the presence and characteristics of bacteria in the Antarctica. Microorganisms dominate Antarctic biology compare to other continent (Friedmann, 1993) as well as they are fundamental to the functioning of Antarctic ecosystems. Baseline knowledge of prokaryotic biodiversity in Antarctica is still limited (Bohannan 1 and Hughes, 2003). Among these microorganisms, bacteria are an important part of the soil.
    [Show full text]
  • Plant Biotechnology
    The Scientific World Journal Plant Biotechnology Guest Editors: Khalid Mahmood Khawar, Selma Onarici, Cigdem Alev Ozel, Muhammad Aasim, Allah Bakhsh, and Abdul Qayyum Rao Plant Biotechnology The Scientific World Journal Plant Biotechnology Guest Editors: Khalid Mahmood Khawar, Selma Onarici, Cigdem Alev Ozel, Muhammad Aasim, Allah Bakhsh, and Abdul Qayyum Rao Copyright © 2013 Hindawi Publishing Corporation. All rights reserved. This is a special issue published in “The Scientific World Journal.”All articles are open access articles distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Contents Plant Biotechnology, Khalid Mahmood Khawar, Selma Onarici, Cigdem Alev Ozel, Muhammad Aasim, Allah Bakhsh, and Abdul Qayyum Rao Volume 2013, Article ID 736731, 2 pages AComparisonofIceColdWaterPretreatmentand-Bromonaphthalene Cytogenetic Method for Identification of Papaver Species, Amir Rezaei Osalou, Sheida Daneshvar Rouyandezagh, Behrouz Alizadeh, Celal Er, and Cafer Sirri Sevimay Volume 2013, Article ID 608650, 6 pages Induction and Analysis of the Alkaloid Mitragynine Content of a Mitragyna speciosa Suspension Culture System upon Elicitation and Precursor Feeding, Nor Nahazima Mohamad Zuldin, Ikram Md. Said, Normah Mohd Noor, Zamri Zainal, Chew Jin Kiat, and Ismanizan Ismail Volume 2013, Article ID 209434, 11 pages Annotation of Differentially Expressed Genes in the Somatic Embryogenesis of Musa and Their Location
    [Show full text]
  • Deinococcus Antarcticus Sp. Nov., Isolated from Soil
    International Journal of Systematic and Evolutionary Microbiology (2015), 65, 331–335 DOI 10.1099/ijs.0.066324-0 Deinococcus antarcticus sp. nov., isolated from soil Ning Dong,1,2 Hui-Rong Li,1 Meng Yuan,1,2 Xiao-Hua Zhang2 and Yong Yu1 Correspondence 1SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai 200136, Yong Yu PR China [email protected] 2College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China A pink-pigmented, non-motile, coccoid bacterial strain, designated G3-6-20T, was isolated from a soil sample collected in the Grove Mountains, East Antarctica. This strain was resistant to UV irradiation (810 J m”2) and slightly more sensitive to desiccation as compared with Deinococcus radiodurans. Phylogenetic analyses based on the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Deinococcus. Highest sequence similarities were with Deinococcus ficus CC-FR2-10T (93.5 %), Deinococcus xinjiangensis X-82T (92.8 %), Deinococcus indicus Wt/1aT (92.5 %), Deinococcus daejeonensis MJ27T (92.3 %), Deinococcus wulumuqiensis R-12T (92.3 %), Deinococcus aquaticus PB314T (92.2 %) and T Deinococcus radiodurans DSM 20539 (92.2 %). Major fatty acids were C18 : 1v7c, summed feature 3 (C16 : 1v7c and/or C16 : 1v6c), anteiso-C15 : 0 and C16 : 0. The G+C content of the genomic DNA of strain G3-6-20T was 63.1 mol%. Menaquinone 8 (MK-8) was the predominant respiratory quinone. Based on its phylogenetic position, and chemotaxonomic and phenotypic characteristics, strain G3-6-20T represents a novel species of the genus Deinococcus, for which the name Deinococcus antarcticus sp.
    [Show full text]
  • Access to Electronic Thesis
    Access to Electronic Thesis Author: Khalid Salim Al-Abri Thesis title: USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS Qualification: PhD This electronic thesis is protected by the Copyright, Designs and Patents Act 1988. No reproduction is permitted without consent of the author. It is also protected by the Creative Commons Licence allowing Attributions-Non-commercial-No derivatives. If this electronic thesis has been edited by the author it will be indicated as such on the title page and in the text. USE OF MOLECULAR APPROACHES TO STUDY THE OCCURRENCE OF EXTREMOPHILES AND EXTREMODURES IN NON-EXTREME ENVIRONMENTS By Khalid Salim Al-Abri Msc., University of Sultan Qaboos, Muscat, Oman Mphil, University of Sheffield, England Thesis submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in the Department of Molecular Biology and Biotechnology, University of Sheffield, England 2011 Introductory Pages I DEDICATION To the memory of my father, loving mother, wife “Muneera” and son “Anas”, brothers and sisters. Introductory Pages II ACKNOWLEDGEMENTS Above all, I thank Allah for helping me in completing this project. I wish to express my thanks to my supervisor Professor Milton Wainwright, for his guidance, supervision, support, understanding and help in this project. In addition, he also stood beside me in all difficulties that faced me during study. My thanks are due to Dr. D. J. Gilmour for his co-supervision, technical assistance, his time and understanding that made some of my laboratory work easier. In the Ministry of Regional Municipalities and Water Resources, I am particularly grateful to Engineer Said Al Alawi, Director General of Health Control, for allowing me to carry out my PhD study at the University of Sheffield.
    [Show full text]
  • Genome-Wide Studies of Mycolic Acid Bacteria: Computational Identification And
    Genome-wide Studies of Mycolic Acid Bacteria: Computational Identification and Analysis of a Minimal Genome Dissertation by Frederick Kinyua Kamanu In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia December, 2012 2 EXAMINATION COMMITTEE APPROVALS FORM The dissertation of Frederick Kinyua Kamanu is approved by the examination committee. Committee Chairperson: Prof. Vladimir B. Bajic Committee Co-Chair: Dr. John A.C. Archer Committee Member: Prof. Pierre Magistretti Committee Member: Prof. Xin Gao Committee Member: Prof. Christoph Gehring Committee Member: Prof. Kothandaraman Narasimhan 3 COPYRIGHT © December, 2012 Frederick Kinyua Kamanu All Rights Reserved 4 ABSTRACT Genome wide studies of mycolic acid bacteria: Computational Identification and Analysis of a Minimal Genome Frederick Kinyua Kamanu The mycolic acid bacteria are a distinct suprageneric group of asporogenous Gram- positive, high GC-content bacteria, distinguished by the presence of mycolic acids in their cell envelope. They exhibit great diversity in their cell and morphology; although primarily non-pathogens, this group contains three major pathogens Mycobacterium leprae, Mycobacterium tuberculosis complex, and Corynebacterium diphtheria. Although the mycolic acid bacteria are a clearly defined group of bacteria, the taxonomic relationships between its constituent genera and species are less well defined. Two approaches were tested for their suitability in describing the taxonomy of the group. First, a Multilocus Sequence Typing (MLST) experiment was assessed and found to be superior to monophyletic (16S small ribosomal subunit) in delineating a total of 52 mycolic acid bacterial species. Phylogenetic inference was performed using the neighbor- joining method.
    [Show full text]
  • Actinobacteria and Myxobacteria Isolated from Freshwater Snails and Other Uncommon Iranian Habitats, Their Taxonomy and Secondary Metabolism
    Actinobacteria and Myxobacteria isolated from freshwater snails and other uncommon Iranian habitats, their taxonomy and secondary metabolism Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades einer Doktorin der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Nasim Safaei aus Teheran / Iran 1. Referent: Professor Dr. Michael Steinert 2. Referent: Privatdozent Dr. Joachim M. Wink eingereicht am: 24.02.2021 mündliche Prüfung (Disputation) am: 20.04.2021 Druckjahr 2021 Vorveröffentlichungen der Dissertation Teilergebnisse aus dieser Arbeit wurden mit Genehmigung der Fakultät für Lebenswissenschaften, vertreten durch den Mentor der Arbeit, in folgenden Beiträgen vorab veröffentlicht: Publikationen Safaei, N. Mast, Y. Steinert, M. Huber, K. Bunk, B. Wink, J. (2020). Angucycline-like aromatic polyketide from a novel Streptomyces species reveals freshwater snail Physa acuta as underexplored reservoir for antibiotic-producing actinomycetes. J Antibiotics. DOI: 10.3390/ antibiotics10010022 Safaei, N. Nouioui, I. Mast, Y. Zaburannyi, N. Rohde, M. Schumann, P. Müller, R. Wink.J (2021) Kibdelosporangium persicum sp. nov., a new member of the Actinomycetes from a hot desert in Iran. Int J Syst Evol Microbiol (IJSEM). DOI: 10.1099/ijsem.0.004625 Tagungsbeiträge Actinobacteria and myxobacteria isolated from freshwater snails (Talk in 11th Annual Retreat, HZI, 2020) Posterbeiträge Myxobacteria and Actinomycetes isolated from freshwater snails and
    [Show full text]
  • The Rising of “Modern Actinobacteria” Era Jodi Woan-Fei Law1, Vengadesh Letchumanan1, Loh Teng-Hern Tan1, Hooi-Leng Ser1, Bey-Hing Goh2, Learn-Han Lee1*
    Review Article Progress in Microbes and Molecular Biology The Rising of “Modern Actinobacteria” Era Jodi Woan-Fei Law1, Vengadesh Letchumanan1, Loh Teng-Hern Tan1, Hooi-Leng Ser1, Bey-Hing Goh2, Learn-Han Lee1* 1Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. 2Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, 47500 Bandar Sunway, Selangor Darul Ehsan, Malaysia. Abstract: The term “Modern Actinobacteria” (MOD-ACTINO) was coined by a Malaysian Scientist Dr. Lee Learn-Han, who has great expertise and experience in the field of actinobacteria research. MOD-ACTINO is defined as a group of actinobacteria capable of producing compounds that can be explored for modern applications such as development of new drugs and cosmeceutics. MOD-ACTINO members consist of already identified or novel actinobacteria isolated from special environments: mangrove, desert, lake, hot spring, cave, mountain, Arctic and Antarctic regions. These actinobac- teria are valuable sources for various industries which can contribute directly/indirectly towards the improvement in many aspects of our lives. Keywords: modern; bioactive; actinobacteria; *Correspondence: Learn-Han Lee, Novel Bacteria and environment; bioprospecting Drug Discovery Research Group (NBDD), Microbiome and Biore-source Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash Uni- Received: 16th February 2020 versity Malaysia, 47500 Bandar Sunway, Selangor Darul Accepted: 23rd March 2020 Ehsan, Malaysia. lee. [email protected] Published Online: 29th March 2020 Citation: Law JW-F, Letchumanan V, Tan LT-H et al.
    [Show full text]
  • Atypica, and Granulicatella Adiacens in Biofilm of Complete Dentures
    [Downloaded free from http://www.j-ips.org on Thursday, November 1, 2018, IP: 183.82.145.117] Original Article Relative presence of Streptococcus mutans, Veillonella atypica, and Granulicatella adiacens in biofilm of complete dentures Binoy Mathews Nedumgottil Department of Prosthodontics and Implantology, Mahe Institute of Dental Sciences and Hospital, Puducherry, India Abstract Aims and Objective: Oral biofilms in denture wearers are populated with a large number of bacteria, a few of which have been associated with medical conditions such as sepsis and infective endocarditis (IE). The present study was designed to investigate the relative presence of pathogenic bacteria in biofilms of denture wearers specifically those that are associated with IE. Methods: Biofilm samples from 88 denture wearers were collected and processed to extract total genomic DNA. Eight of these samples were subjected to 16S rRNA gene sequencing analysis to first identify the general bacterial occurrence pattern. This was followed by species-specific quantitative polymerase chain reaction (qPCR) on entire batch of 88 samples to quantify the relative copy numbers of IE-associated pathogens. Results: 16S rRNA gene analysis of eight biofilm samples identified bacteria from Firmicutes, Actinobacteria, Proteobacteria, Bacteroidetes, and Fusobacteria species. Interestingly, Streptococcus mutans, Veillonella atypica, and Granulicatella adiacens from Firmicutes, all known to be associated with early-onset sepsis and IE was present in five of eight biofilm samples. The other three samples carried bacteria from genus Proteobacteria with Neisseria flava and Neisseria mucosa, which are known to be commensals, as dominant species. Species-specific qPCR of S. mutans V. atypica, and G. adiacens on 88 biofilm DNA samples identified the presence of S.
    [Show full text]
  • Bacterial Diversity Assessment in Antarctic Terrestrial and Aquatic Microbial Mats: a Comparison Between Bidirectional Pyrosequencing and Cultivation
    Bacterial Diversity Assessment in Antarctic Terrestrial and Aquatic Microbial Mats: A Comparison between Bidirectional Pyrosequencing and Cultivation Bjorn Tytgat1*, Elie Verleyen2, Dagmar Obbels2, Karolien Peeters1¤a, Aaike De Wever2¤b, Sofie D’hondt2, Tim De Meyer3, Wim Van Criekinge3, Wim Vyverman2, Anne Willems1 1 Laboratory for Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium, 2 Laboratory of Protistology and Aquatic Ecology, Department of Biology, Ghent University, Ghent, Belgium, 3 Laboratory of Bioinformatics and Computational Genomics, Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University, Ghent, Belgium Abstract The application of high-throughput sequencing of the 16S rRNA gene has increased the size of microbial diversity datasets by several orders of magnitude, providing improved access to the rare biosphere compared with cultivation-based approaches and more established cultivation-independent techniques. By contrast, cultivation-based approaches allow the retrieval of both common and uncommon bacteria that can grow in the conditions used and provide access to strains for biotechnological applications. We performed bidirectional pyrosequencing of the bacterial 16S rRNA gene diversity in two terrestrial and seven aquatic Antarctic microbial mat samples previously studied by heterotrophic cultivation. While, not unexpectedly, 77.5% of genera recovered by pyrosequencing were not among the isolates, 25.6% of the genera picked up by cultivation were not detected by pyrosequencing. To allow comparison between both techniques, we focused on the five phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Deinococcus-Thermus) recovered by heterotrophic cultivation. Four of these phyla were among the most abundantly recovered by pyrosequencing. Strikingly, there was relatively little overlap between cultivation and the forward and reverse pyrosequencing-based datasets at the genus (17.1– 22.2%) and OTU (3.5–3.6%) level (defined on a 97% similarity cut-off level).
    [Show full text]
  • Hellenic Plant Protection Journal
    December 2015 ISSN 1791-3691 Hellenic Plant Protection Journal Special Issue Abstracts 16th Hellenic Phytopathological Congress A semiannual scientifi c publication of the BENAKIBEB PHYTOPATHOLOGICAL INSTITUTE EDITORIAL POLICY The Hellenic Plant Protection Journal (HPPJ) (ISSN 1791-3691) is the scientifi c publication of the Benaki Phytopathological Institute (BPI) replacing the Annals of the Benaki Phytopathological Institute (ISSN 1790-1480) which had been published since 1935. Starting from January 2008, the Hellenic Plant Protection Journal is published semiannually, in January and July each year. HPPJ publishes scientifi c work on all aspects of plant health and plant protection referring to plant pathogens, pests, weeds, pesticides and relevant environmental and safety issues. In addition, the topics of the journal extend to aspects related to pests of public health in agricultural and urban areas. Papers submitted for publication can be either in the form of a complete research article or in the form of a suffi ciently documented short communication (including new records). Only original articles which have not been published or submitted for publication elsewhere are considered for publication in the journal. Review articles in related topics, either submitted or invited by the Editorial Board, are also published, normally one article per issue. Upon publication all articles are copyrighted by the BPI. Manuscripts should be prepared according to instructions available to authors and submitted in electronic form on line at http://www.hppj.gr. All submitted manuscripts are considered and Hellenic Plant Protection Journal Hellenic Plant published after successful completion of a review procedure by two competent referees. The content of the articles published in HPPJ refl ects the view and the offi cial position of the authors.
    [Show full text]
  • Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
    Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
    [Show full text]