Principle of Cross-Cutting Relations States That Any Structure Or Rock Unit Cross- Cutting Another Structure Or Rock Unit Will Be Younger

Total Page:16

File Type:pdf, Size:1020Kb

Principle of Cross-Cutting Relations States That Any Structure Or Rock Unit Cross- Cutting Another Structure Or Rock Unit Will Be Younger Unit B Unit A James Hutton conceived of the Principle of Uniformitarianism at Sicar Point, Scotland in 1785. Think about how much time would pass to create the rock record shown above. What sequence of events would occur to produce the above record? Unit B Unit A 1. Deposition of sediment comprising Unit A (Sedimentation rates in the deep ocean range from .0005 - .001 mm per year). How long would it take to accumulate 200 meters of sediment?) 2. burial compaction & lithification of Unit A, 3. deformation (folding) of Unit A, 4. uplift and erosion of Unit A, 5. Deposition of sediment (Unit B), 6. burial compaction & lithification of Unit B, 7. deformation (folding) of Unit B, 8. uplift and erosion of Unit B. These geologic events require millions of years of time! Layered sedimentary rock is typically deposited horizontally, but can be deformed by tectonic processes. Can you think of a depositional environment where sedimentary layers are not deposited horizontally? Geologists use sedimentary structures to determine whether sedimentary layers or beds are right-side up, vertical or overturned. The Principle of Uniformitarianism states that the “present is the key to the past.” Those processes operating at the earth’s surface today are inferred to have operated in the past, such as the mudcracks forming in a playa lake today. Note the blowing sand in the background will fill in the cracks. The mudcracks shown above formed over 1.1 billion years ago in a dry lake basin are now found in Glacier National Park, Montana. Raindrop impressions are preserved in 1.1 billion year old sedimentary rocks in the Belt Group rocks of Montana. Why do you think raindrop impressions were preserved in this sediment? What time period is this, and what had evolved? The Principle of Superposition states that younger sedimentary rock layers will overlie older sedimentary rock layers, providing the rock unit has not been overturned. The principle of cross-cutting relations states that any structure or rock unit cross- cutting another structure or rock unit will be younger. The fault line shown above cross-cuts a glacial moraine. The seismic event that cause uplift along the fault post- dates the formation of the moraine? Based on this same logic which event is older, the offset along the fault or the stream deposition that covers the fault. C B A Which formed first and last? A. The (dark colored) micaceous schist, B. the (light colored) plagioclase dike or C. the fault that offsets the dike? Use the principle of cross-cutting relations to figure out this mess! If you can numerically date the dikes, you can reconstruct the deformation history of this region of Washington. Which is older? The roof pendant comprised of contact meta-sedimentary rock or the plutonic rock? A B C The principle of inclusion states that the included body will be older than the rock containing the inclusion (in this case the clasts within the conglomerate). Which clast age will be the closest constraining age for the conglomerate? A (55 Ma), B (75 Ma), or C (100 Ma). Ma (million years). The principle of faunal succession utilizes evolutionary changes in the preserved life record to assign relative ages to rock units. Trilobites were dominant during the Cambrian Period (543-490 Ma) and went extinct by 245 Ma. Radiometric dating techniques have been used to assign numerical ages to evolutionary time periods. Ferns first evolved during the Carboniferous Period (363-290 Ma) and were dominant terrestrial plants. Conifers, flowering plants and grasses evolved later. During the Mesozoic Era dinosaurs flourished on the continental land masses. This Allosaurus footprint impression is found in Jurassic aged rock. Diplodocus was one of the largest land animals to walk the surface of the earth. It measured 90 feet long from head to tail. It lived during the Jurassic Period. Horses evolved 55 million years ago during the Eocene Epoch of the Tertiary Period. Warm-blooded mammals dominate the Cenozoic Era. Geologic Time Scale Do not memorize the geologic time scale. Note that the major subdivisions such as eons represent major developments in the Earth’s history. The three eras (Paleozoic, Mesozoic and Cenozoic) are all contained within Phanerozoic eon (largely defined by fossil preservation in the life record). Periods are defined by major evolutionary changes, such as the evolution of early fish in the Ordovician period (505-435 Ma ago) of the Paleozoic era (545-245 Ma). Why do you think that the more recent portion of the geologic time scale has greater detail (defined by epochs)? Unconformities represent breaks or missing time in the rock or geologic record. Unconformities, such as the angular unconformity shown on the left, form because of erosional hiatuses or long periods on non-deposition between depositonal events. Think about Mercer Island. When where our glacial sediments deposited? About 15,000 years ago. When do you expect to see more sediment deposited over University Hill? 60,000 years in the future during the next glacial cycle. That’s 75,000 years between depositional events! Three major types of unconformities are recognized in the field: 1. Nonconformity, 2. Angular Unconformity, and 3. Disconformity. Use the diagrams of the three types of unconformities to determine the sequence of events that occur to form each type of unconformity. Remember that the unconformity represents missing time between the two rock units. Angular unconformities and nonconformities are the easiest unconformities to recognize in the field. Why do you think this is case? How could you determine in the field the difference between a nonconformity and an igneous intrusion contacting country rock? What type of unconformity is shown above? How do you recognize it? Disconformity Angular Unconformity Stages of formation of a disconformity and an angular unconformity. Formation of a Nonconformity A.Magma intruded into pre-existing sedimentary “country rock. Note that a contact metamorphic zone will form where the magma contacted and reheated the country rock. B. Uplift and erosion of country rock exposing the intrusive body to the surface of the earth. Note that country rock has been eroded. C. Deposition of new sedimentary layers over the eroded surface of the igneous (granitic) intrusion or metamorphic rock. D. How would you differentiate a nonconformity from a contact metamorphic zone (both have plutonic igneous rock adjacent to sedimentary rocks)? What type of unconformity exists at Sicar Point, Scotland, where James Hutton developed ideas related to the Principle of Uniformitarianism? Draw the unconformity. What type of unconformity exists at Sicar Point, Scotland, where James Hutton developed ideas related to the Principle of Uniformitarianism? Draw the unconformity. Is this where you would map it? What type of unconformity exists at the base of the Grand Canyon. The lower rock unit is crystalline plutonic and metamorphic. The rock unit lying above is layered meta-sedimentary deposited in coastal setting. You have already determined why disconformities are the most difficult unconformities to recognize in the field. What types of geologic evidence might you use to recognize disconformities? Fossil evidence or buried paleosols (old soils or weathering zones that require time to form prior to burial). The Grand Canyon has several unconformities recognized within its rock record. Five well-known unconformities are shown on the above cross-section of the Grand Canyon. Relative dating techniques are based on stratigraphic principles can be used to differentiate the relative age rock units and landforms. Relative dating techniques by themselves cannot be used to assign independent numerical ages. Numerical dating allows geologist to assign actual ages to a deposit or landform. Many of the methods are based on the ratio radioactive isotopes and their respective decay products measured in a material to be dated. In many cases relative dating techniques are used in tandem with numerical dating techniques to constrain the age of a landform or deposit. Unit A (225 m.y. old) Unit B (how old is it?) Unit C (275 m.y. old) .
Recommended publications
  • The Sierra Nevada Batholith a Synthesis. of Recent Work Across the Central Part
    I _; The Sierra Nevada Batholith A Synthesis. of Recent Work Across the Central Part By PAUL C. BATEMAN, LORIN ~- CLARK, N. KING HUBER, JAMES G. MOORE, and C. DEAN RINEHART SHORTER CONTRIBU.TIONS TO GENERAL GEOLOGY· G E 0 L 0 G I CAL SURVEY P R 0 FE S S I 0 N A L PAPER 414-D Prepared in cooperation with the State of Caltfornia, Division of Mines and Geology · ti II R fA u 0 F u' N f I ._rBRARV SPUI\ANf:.. !NASH. JUN 31971 . ·~-~ - ~ ... -- --s PtfASf RfT,fJR~ fO liBRARY UNITED S.TATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 CONTENTS Page Abstract------------------------------------------- D1 Constitution' of the batho1ith-Continued Introduction ______________________________________ _ 2 Contact relations _______________ ~ ______ - -- _----- D22 Genernl geologic relations _______________________ _ 2 Contacts between different granitic rocks _____ - 22 Previous geologic work _________________________ _ 4 Contacts between granitic rocks and meta- Acknowledgments _____________________________ _ 5 morphic rocks or diorite ___________ -- __ ---- 22 Wu.llrocks u.nd roof rocks ___________________________ _ 5 Felsic dike swarms __________________ - ___ -------- 24 Pu.leozoic rocks ________________________________ _ 5 Mafic dike swarms _________________________ ----- 25 Mesozoic rocks ________________________________ _ 6 Structure
    [Show full text]
  • Module 22A Geological Laws GEOLOGIC LAWS
    Module 22A Geological Laws GEOLOGIC LAWS Geologic Laws ❑ Superposition ❑ Original Horizontality ❑ Original Continuity ❑ Uniformitarianism ❑ Cross-cutting Relationship ❑ Inclusions ❑ Faunal Succession Missing strata ❑ Unconformity ❑ Correlation Law of Superposition ❑ In an undisturbed rock sequence, the bottom layer of rock is older than the layer above it, or ❑ The younger strata at the top in an undisturbed sequence of sedimentary rocks. Law of Superposition Undisturbed strata Law of Superposition Disturbed strata Law of original horizontality ❑ Sedimentary rocks are laid down in horizontal or nearly horizontal layers, or ❑ Sedimentary strata are laid down nearly horizontally and are essentially paralel to the surface upon which they acummulate Law of Original Continuity ❑ The original continuity of water-laid sedimentary strata is terminated only by pincing out againts the basin of deposition, at the time of their deposition Law of Original Continuity Law of Original Continuity Law of Original Continuity NOTE: This law is considerable oversimplification. The last discoveries indicate that the termination is not necessarily at a basin border. Facies changes may terminated a strata. Uniformitarianism ❑ James Hutton (1726-1797) Scottish geologist developed the laws of geology ❑ Uniformitarianism is a cornerstone of geology ❑ Considered the Father of Modern Geology Uniformitarianism ❑ Uniformitarianism is based on the premise that: ➢ the physical and chemical laws of nature have remained the same through time ➢ present-day processes have operated throughout geologic time ➢ rates and intensities of geologic processes, and their results may have changed with time ❑ To interpret geologic events from evidence preserved in rocks ➢ we must first understand present-day processes and their results Uniformitarianism is a cornerstone of geology Uniformitarianism MODIFIED STATEMENT “The present is the key to the past" • The processes (plate tectonics, mountain building, erosion) we see today are believed to have been occurring since the Earth was formed.
    [Show full text]
  • GY 111 Lecture Notes Metamorphism 3: Contact Metamorphism
    GY 111 Lecture Notes D. Haywick (2008-09) 1 GY 111 Lecture Notes Metamorphism 3: Contact Metamorphism Lecture Goals: A) Metamorphic Aureoles B) Isograds C) Index minerals and metamorphic grade Reference: Press et al., 2004, Chapter 9; Grotzinger et al., 2007, Chapter 6; GY 111 Lab manual Chapter 4 A) Metamorphic Aureoles Contact metamorphism is induced by plutons as they pass upward through the lithosphere and crust toward the surface of the Earth, or by other magma-filled intrustions like dikes and sills. These bodies all contain molten rock (magma) which heats the enclosing parent rock to high temperatures and therefore induces heat only metamorphism. As previously discussed, heat only metamorphism is called contact metamorphism. Unlike regional metamorphism, contact metamorphism is generally localized to the immediate vicinity of the intrusion. In fact, there is a zone of metamorphism that surrounds the intrusion like a halo or an envelop which is officially called a metamorphic aureole (see cartoon at the top of the next page and the image to the left from http://newterra.chemeketa.edu). Within the aureole, metamorphic grade of the parent rock varies from high nearest the intrusion, to low someway from the contact. The width of the metamorphic aureole (or the width of the zone of contact metamorphism) depends on several factors such as the size and GY 111 Lecture Notes D. Haywick (2008-09) 2 temperature of the intrusion (dikes and sills are small and therefore induce “thin” aureoles whereas large bodies like plutons and batholiths induce “thick” aureoles), the amount of time the parent rocks were in contact with the intrusion and the type of parent rock.
    [Show full text]
  • Homework # 4 Relative Dating Section: Name: Date: 1. the Cross
    Homework # 4 Relative Dating Section: Name: Date: 1. The cross section below represents a portion of 5. The sequence of rock types found in the walls Earth's crust. Letters A through D are locations of the Grand Canyon are shown. The names within the rock units. of rock formations are shown and the upper and lower boundaries of each formation are indicated by dashed lines. The rock layers have not been overturned. At which location is quartzite most likely found? The sequence of rock layers in the cross section A. A B. B C. C D. D provides evidence that the Muave formation is A. younger than the Temple Butte, but older than the Bright Angel B. younger than both the Temple Butte and 2. Base your answer(s) to the following question(s) the Bright Angel on the geologic cross section below, which shows rock units 1 through 7 that have not been C. older than the Temple Butte, but younger overturned. Some of the rock units contain than the Bright Angel New York State index fossils. An unconformity exists between rock units 5 and 6. D. older than both the Temple Butte and the Bright Angel Key Basalt Volcanic ash Contact metamorphism 6. The geologic cross section below shows bedrock layers A through D. Line XY is a fault. What evidence shown in the cross section indicates that the basalt rock unit is the youngest rock unit? 3. Bedrock from which entire geologic time period is missing between rock units 5 and 6? The fault most likely occurred after A.
    [Show full text]
  • Chapter 10. Metamorphism & Metamorphic Rocks
    Physical Geology, First University of Saskatchewan Edition is used under a CC BY-NC-SA 4.0 International License Read this book online at http://openpress.usask.ca/physicalgeology/ Chapter 10. Metamorphism & Metamorphic Rocks Adapted by Karla Panchuk from Physical Geology by Steven Earle Figure 10.1 Grey and white striped metamorphic rocks (called gneiss) at Pemaquid Point were transformed by extreme heat and pressure during plate tectonic collisions. Source: Karla Panchuk (2018) CC BY 4.0. Photos by Joyce McBeth (2009) CC BY 4.0. Map by Flappiefh (2013), derivative of Reisio (2005), Public Domain. Learning Objectives After reading this chapter and answering the review questions at the end, you should be able to: • Summarize the factors that influence the nature of metamorphic rocks. • Explain how foliation forms in metamorphic rocks. • Classify metamorphic rocks based on their texture and mineral content, and explain the origins of both. • Describe the various settings in which metamorphic rocks are formed and explain the links between plate tectonics and metamorphism • Describe the different types of metamorphism, including burial metamorphism, regional metamorphism, seafloor metamorphism, subduction zone metamorphism, contact metamorphism, shock metamorphism, and dynamic metamorphism. • Explain how metamorphic facies and index minerals are used to characterize metamorphism in a region. • Explain why fluids are important for metamorphism and describe what happens during metasomatism. Chapter 10. Metamorphism & Metamorphic Rocks 1 Metamorphism Occurs Between Diagenesis And Melting Metamorphism is the change that takes place within a body of rock as a result of it being subjected to high pressure and/or high temperature. The parent rock or protolith is the rock that exists before metamorphism starts.
    [Show full text]
  • A Multi-Method Study of Metamorphism and Fluid Flow During Contact Metamorphism of the May Lake Interpluton Screen, Yosemite National Park, California
    San Jose State University SJSU ScholarWorks Master's Theses Master's Theses and Graduate Research Summer 2017 A Multi-method Study of Metamorphism and Fluid Flow During Contact Metamorphism of the May Lake Interpluton Screen, Yosemite National Park, California Susan Marie Scudder San Jose State University Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses Recommended Citation Scudder, Susan Marie, "A Multi-method Study of Metamorphism and Fluid Flow During Contact Metamorphism of the May Lake Interpluton Screen, Yosemite National Park, California" (2017). Master's Theses. 4860. DOI: https://doi.org/10.31979/etd.6d9g-f9j2 https://scholarworks.sjsu.edu/etd_theses/4860 This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact [email protected]. A MULTI-METHOD STUDY OF METAMORPHISM AND FLUID FLOW DURING CONTACT METAMORPHISM OF THE MAY LAKE INTERPLUTON SCREEN, YOSEMITE NATIONAL PARK, CALIFORNIA A Thesis Presented to The Faculty of the Department of Geology San José State University In Partial Fulfillment of the Requirements for the Degree Master of Science by Susan Marie Scudder August 2017 © 2017 Susan Marie Scudder ALL RIGHTS RESERVED The Designated Thesis Committee Approves the Thesis Titled A MULTI-METHOD STUDY OF METAMORPHISM AND FLUID FLOW DURING CONTACT METAMORPHISM OF THE MAY LAKE INTERPLUTON SCREEN, YOSEMITE NATIONAL PARK, CALIFORNIA by Susan Marie Scudder APPROVED FOR THE DEPARTMENT OF GEOLOGY SAN JOSÉ STATE UNIVERSITY August 2017 Dr.
    [Show full text]
  • Structure Stratigraphy and Contact Relationships in Mesozoic Volcanic and Sedimentary Rocks East of Pemberton Southwestern British Columbia
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1992 Structure stratigraphy and contact relationships in Mesozoic volcanic and sedimentary rocks east of Pemberton southwestern British Columbia Janet M. Riddell The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Riddell, Janet M., "Structure stratigraphy and contact relationships in Mesozoic volcanic and sedimentary rocks east of Pemberton southwestern British Columbia" (1992). Graduate Student Theses, Dissertations, & Professional Papers. 7499. https://scholarworks.umt.edu/etd/7499 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. Maureen and Mike MANSFIELD LIBRARY Copying allowed as provided under provisions of die Fair Use Section of the U.S. COPYRIGHT LAW, 1976. Any copying for commercial purposes or financial gain may be under^en only with the author’s written consent. MontanaUniversity of STRUCTURE, STRATIGRAPHY AND CONTACT RELATIONSHIPS IN MESOZOIC VOLCANIC AND SEDIMENTARY ROCKS, EAST OF PEMBERTON, SOUTHWESTERN BRITISH COLUMBIA by Janet M. Riddell B.Sc., University of British Columbia, Vancouver, 1984 presented in partial fulfillment of the requirements for the degree of Master of Science University of Montana 1992 Approved by: Cqairman, Board of Examiners Dean, Graduate ScfeoT ' Date UMI Number: EP38300 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Appendix B Classification of Metamorphic and Other Composite- Genesis Rocks, Including Hydrothermally Altered, Impact-Metamorphic, Mylonitic, and Cataclastic Rocks
    North American Geologic-Map Data Model Steering Committee Science Language for composite-genesis materials, v. 1.0 Science Language Technical Team, Composite-Genesis Subgroup 12/18/04 APPENDIX B CLASSIFICATION OF METAMORPHIC AND OTHER COMPOSITE- GENESIS ROCKS, INCLUDING HYDROTHERMALLY ALTERED, IMPACT-METAMORPHIC, MYLONITIC, AND CATACLASTIC ROCKS Version 1.0 North American Geologic-map Data Model Steering Committee Science Language Technical Team (SLTT) Composite-Genesis Subgroup This document should be cited as: North American Geologic-Map Data Model Science Language Technical Team, 2004, Report on progress to develop a North American science-language standard for digital geologic-map databases; Appendix B – Classification of metamorphic and other composite-genesis rocks, including hydrothermally altered, impact-metamorphic, mylonitic, and cataclastic rocks, Version 1.0 (12/18/2004), in Soller, D.R., ed., Digital Mapping Techniques ’04—Workshop Proceedings: U.S. Geological Survey Open-File Report 2004-1451, 56 p. Appendix B accessed at http://pubs.usgs.gov/of/2004/1451/sltt/appendixB/. [This report was formerly available at the North American Geologic Map Data Model Steering Committee website as http://nadm-geo.org/sltt/products/sltt_composite_genesis_12_18_04.doc.] 1 North American Geologic-Map Data Model Steering Committee Science Language for composite-genesis materials, v. 1.0 Science Language Technical Team, Composite-genesis Subgroup 12/18/04 TABLE OF CONTENTS 1 EXECUTIVE SUMMARY ............................................................................................................
    [Show full text]
  • The Anatomy of a Batholith W. S. Pitcher
    Jl geol. Soc. Lond, Vol. 135. 1978, pp. 157-182, !0 figs., 1 table. Printed in Northern Ireland The anatomy of a batholith W. S. Pitcher President's anniversary address 1977 CONTENTS 1. Preamble 158 2. Regional structural setting 158 3. Setting in terms of plate tectonics 160 4. A multiple and composite batholith 161 (A) Units and super-units 161 (B) A segmented batholith 161 (C) A long history of episodic emplacement 163 (D) Times of intrusion and cooling 163 (E) Thermal effects of short duration 164 5. Structural control of emplacement 164 (A) Form of the plutons and the structural control of their contacts 164 (B) The plutonic lineament 166 (C) Intrusion mechanisms 166 6. The composition of the batholith 167 (A) The gabbro precursor 167 (i) Cumulates and non-cumulates 167 (ii) The role of hornblende: the source of the volatile phase 168 (iii) Gabbro emplacement 168 (B) The granitoids: A quartz diorite--tonalite batholith 168 (i) The diorites and tonalites 168 (ii) The granites of the cryptically-layered plutons, the rectilinear plutons and ring complexes 169 (iii) The big-feldspar granites 170 (iv) An order in space and time 171 (v) The associated dyke-swarms: synplutonic dykes 171 (vi) The xenolith content 171 (vii) A simple calc-alkaline differentiation process 172 7. Comments on the Arequipa segment: super-units and metallogenesis 173 8. The plutonic-volcanic interface: the centred ring-complexes 173 9. A general model 175 SUMMARY: The Mesozoic-Cenozoic Coastal Batholith of Peru is a multiple intrusion of gabbro, tonalite and granite occupying the core of the Western Cordillera over a length of 1600 km.
    [Show full text]
  • The Nature of Batholiths
    The Nature of Batholiths By WARREN HAMILTON and W. BRADLEY MYERS SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 554-C A survey offeatures of U. S. batholiths leads to the interpretation that these complexes are generally thin and that they crystallized beneath covers consisting largely of their own volcanic ejecta UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1967 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D-C. 20402 - Price 30 cents (paper cover) CONTENTS Page Page Abstract.._ _____---__--_-_-_-_---__________________ Cl Regional descriptions and interpretations Continued Introduction.______________________________________ 2 New England Appalachians.___________________ C13 Regional descriptions and interpretations ______________ 2 Erosion intervals_____________________________ 15 Sierra Nevada batholith-________________________ 2 Strontium isotopes.___________________________ 16 Idaho batholith_______________________________ 5 Origin and emplacement of batholiths____-_-__--_--_ 17 Boulder batholith.______________________________ 6 The environment of batholiths _________________ 18 Volcanic ash___________________________________ 9 Origin of granitic magmas._________-_-___-__-- 18 Tertiary plutons of Cascade Range _______________ 9 Emplacement of batholiths______________ ____ 21 Aleutian Islands._______________________________ 11 Batholiths
    [Show full text]
  • Metamorphic Rocks & Processes
    METAMORPHIC ROCKS & PROCESSES 2005 Andrew Alden Lava flow (above) bakes mud layer (below) into a brick red shale during the process of CONTACT metamorphism Metamorphic rocks and processes • Metamorphism comes from the Greek words “Meta” - change “Morphe” - form • Metamorphic rocks form by solid-state (no melting) transformation of preexisting rock by processes that take place beneath Earth’s surface. • Chemical, mineralogical and structural adjustments of solid rocks to physical and chemical changes at depths below the region of sedimentation http://amonline.net.au/geoscience/images/ earth_diagrams/rock_cycle.gif Any rock can be metamorphosed Chernicoff and Whitney (2002) Why Study Metamorphic Rocks? • Studies of metamorphic rocks provide insights into the physical and chemical changes that take place deep within Earth. The presence of index minerals in metamorphic rocks allows geologists to assess the temperatures and pressures the parent rock encountered. • Knowledge of metamorphic processes and rocks is valuable, because metamorphic minerals and rocks have economic value. For example, slate and marble are building materials, garnets are used as gemstones and abrasives, talc is used in cosmetics, paints, and lubricants, and asbestos is used for insulation and fireproofing. Why Study Metamorphic Rocks? Metamorphic rocks are some of the oldest on Earth, are widely exposed in the core areas, known as shields, of continents, and make up a large portion of the roots of mountain ranges. Wicander and Monroe (2002) Why Study Metamorphic Rocks?
    [Show full text]
  • Stratigraphy, Structure, and Economic Geology of the Iliamna Quadrangle, Alaska
    Stratigraphy, Structure, and Economic Geology of the Iliamna Quadrangle, Alaska GEOLOGICAL SURVEY BULLETIN 1368-B Stratigraphy, Structure, and Economic Geology of the Iliamna Quadrangle, Alaska By ROBERT L. DETTERMAN and BRUCE L. REED GEOLOGY OF THE ILIAMNA QUADRANGLE , ALASKA GEOLOGICAL SURVEY BULLETIN 1368- B A comprehensive study of Mesozoic to Holocene sedimentary, volcanic, and plutonic rocks of the Iliamna quadrangle UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress Cataloging in Publication Data Detterman, Robert L. Stratigraphy, structure, and economic geology of the Iliamna quadrangle, Alaska. (Geology of the Iliamna quadrangle, Alaska) (Geological Survey bulletin ; 1368-B) Bibliography: p. B82 - B86. Supt.ofDocs.no.: I 193:1368-6 1. Geology-Alaska-Alaska Peninsula. I. Reed, Bruce L., 1934- joint author. II. Title. III. Series. IV. Series: United States. Geological Survey. Bulletin ; 1368-B. QE75.B9 no. 1368-B [QE84.A34] 557.3'08s [557.98'4] 79-607115 For sale by the Superintendent of Documents, U. S. Government Printing Omce Washington, D. C. 20402 Stock Number 024-001-03263-5 CONTENTS Page Abstract ________________________________________ Bl Introduction _________________________________________ 2 Previous work ______________________________________ 3 Present investigations ______________________________ 4 Acknowledgments ___________________________________ 5 Geologic setting ___________________________________
    [Show full text]