Properties of Plastic Films for Use As Waterproofing Materials in Underground Heat Distribution Systems

Total Page:16

File Type:pdf, Size:1020Kb

Properties of Plastic Films for Use As Waterproofing Materials in Underground Heat Distribution Systems c/ — °\'A ' %/ T~&~ * §f ur NATIONAL BUREAU OF STANDARDS REPORT 5967 Report on Project 4881 Properties of Plastic Films for Use as Waterproofing Materials in Underground Heat Distribution Systems by A. G. Roberts for Office of the Chief of Engineers bureau of Yards and Docks Headquarters U.S. Air Force U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS THE NATIONAL BUREAU OF STANDARDS Functions and Activities The functions of the National Bureau of Standards are set forth in the Act of Congress, March 3, 1901, as amended by Congress in Public Law 619, 1950. These include the development and maintenance of the national standards of measurement and the provision of means and methods for making measurements consistent with these standards; the determination of physical constants and properties of materials; the development of methods and instruments for testing materials, devices, and structures; advisory services to Government Agencies on scientific and technical problems; invention and development of devices to serve special needs of the Government; and the development of standard practices, codes, and specifications. The work includes basic and applied research, development, engineering, instrumentation, testing, evaluation, calibration services, and various consultation and information services. A major portion of the Bureau’s work is performed for other Government Agencies, particularly the Department of Defense and the Atomic Energy Commission. The scope of activities is suggested by the listing of divisions and sections on the inside of the front cover. Reports and Publications The results of the Bureau’s work take the form of either actual equipment and devices or published papers and reports. Reports are issued to the sponsoring agency of a particular project or program. Published papers appear either in the Bureau’s own series of publications or in the journals of professional and scientific societies. The Bureau itself publishes three monthly peri- odicals, available from the Government Printing Office: The Journal of Research, which presents complete papers reporting technical investigations; the Technical News Bulletin, which presents summary and preliminary reports on work in progress; and Basic Radio Propagation Predictions, which provides data for determining the best frequencies to use for radio communications throughout the world. There are also five series of nonperiodical publications: The Applied Matiiom Series, Circulars, Handbooks, Building Materials and Structures Reports, am! > .ancon Publications. Information on the Bureau’s publications can be found in NBS Circular 460. Publications of the National Bureau of Standards ($1.25) and its Supplement ($0.75), available from the Superin- tendent of Documents, Government Printing Office. Inquiries regarding the Bureau’s reports and publications should be addressed to the Office of Scientific Publications, National Bureau of Standards, Washington 25, D. C. NATIONAL BUREAU OF STANDARDS REPORT MBS PROJECT MBS REPORT 1003-12-4881 July 11 , 1958 5967 Properties of Plastic Films for Use as Waterproofing Materials in Underground Heat Distribution Systems by A. G. Roberts Plastics Section Organic and Fibrous Materials Division IMPORTANT NOTICE NATIONAL BUREAU OF ST progress accounting documents Intended fur use within the formally published It Is subjected Approved for public release by the He additional evaluation and i g, reproduction, or open-literature Director of the National listing of this Report, either Institute of tssion Is obtained in writing from She Oltke of the Director, Nr Standards and Technology (NIST) Such permission is not needed, however, by the Government prepared If that agency wlshee on October 9, 2015. y to reproduce additional copit U. S. DEPARTMENT OF COMMERCE NATIONAL BUREAU OF STANDARDS Properties of Plastic Films for Use as Waterproofing Materials in Underground Heat Distribution Systems by A. G. Roberts INTRODUCTION A difficult problem in the engineering of underground heat distribution systems is the long-term sealing of the system against external water and moisture that can impair or destroy the heat barrier property of the insulation. Water can also cause serious corrosion to the heat carrying pipe, or to the outer metal shell often used in such systems. In a typical heat* distribution system conforming to present recommended^) good engineering practice, the heat carrying pipe is surrounded by an adequate thickness of thermal insulating material held in place by a non-water tight wrapping which permits diffusion of water vapor from the insulation to a surrounding air space enclosed by a masonry or metal outer shell. Waterproofing of the outer shell against earth has generally been best accomplished by use of coal tar bitumastic materials. While these materials are excellent waterproofers as long as they remain in place, difficulties arise from their tendency to flow at elevated temperatures, such as might occur in the event of a heat pipe break or if seepage of external moisture reduced the insulating value of the insulation. Also, the adhesion of the bitumen (or other material) is sometimes poor because of the difficulty of obtaining in the field the cleanliness of surface required for good adhesion. The use of tapes or sheet wrappings of pressure sensitive polyvinyl chloride or polyethylene sheeting materials has 1 been considered an adequate alternative' ' to the use of the bituminous or other coating materials. Here also, trouble has been encountered because of the limitations of these plastic sheet materials at the elevated temperatures often met with in service and because of adhesion and bonding problems in the field. The rapid technical advances that have characterized the plastics field raise the possibility that new plastic sheet materials may be developed, or may already be available, having improved properties making them more suitable for use as exterior waterproof membranes in heat distribution systems. *Numbers in parentheses refer to the Bibliography at the end of this report. 2 To determine the present status of plastic film or_ sheet materials in relation to the waterproofing requirements of modern underground heat distribution systems, an extensive survey was made of the available literature and technical information on the physical and chemical properties of plastics. The results of this study are summarized in this report. Asphalts, coal tar pitches, and impregnated felts, although good waterproof ers within certain temperature limits, were outside the scope of the present survey on plastic films. Adhesives are considered only to the extent that they constitute essential adjuncts to the use of plastic film. Pressure-sensitive tapes, since they consist of a film plus adhesive, also are treated as secondary to the basic problem of developing a suitable film material. Concise descriptions are given of the test methods generally employed in evaluating the properties of plastic films. Application techniques for plastic film materials are discussed. An extensive, selected bibliography is given. Chief emphasis has been placed, however, on the most important properties of the plastic materials themselves. Indications are that among the new materials that have or will soon become available, there are several which give excellent promise of fulfilling, at reasonable cost, the rigorous requirements of application in underground heat distribution systems. PROPERTIES OF FILM MATERIALS The film properties considered to be of greatest importance for the intended application in underground heat distribution systems are as follows: WATER RESISTANCE Water vapor permeability Water absorption TEMPERATURE RESISTANCE Flow temperature or melting point Maximum service temperature (220°F required) Minimum service temperature ( 0°F required) Heat seal temperature - 3 - RESISTANCE TO SOIL CONDITIONS Acids, bases, and salts Fungi and bacteria Rodents and insects NATURAL WEATHERING RESISTANCE Resistance to oxygen and ultraviolet radiation STRENGTH Tensile strength Elongation Bursting strength Folding endurance TOUGHNESS Abrasion resistance Puncture resistance Tearing strength ELECTRICAL RESISTIVITY Volume resistivity SPECIFIC GRAVITY or DENSITY COST In considering the above properties in relation to available plastics, it was possible immediately to eliminate a large number of materials as unsatisfactory, so that attention could be concentrated only on potentially suitable materials. Thus, thermosetting plastics in general were' ruled out because of their rigidity and non-availability in film form. Elastomeric materials were not considered because rubber-like stretch is not an advantageous property in the present application. Among thermoplastic materials, the cellulose derivatives were eliminated either because of poor moisture resistance, poor fungal resistance, or poor resistance to elevated temperatures. Vinyl chloride-acetate copolymers are unsuitable because they soften at relatively low temperatures. Polyvinyl alcohol is soluble in water. Rubber hydrochloride film (Pliofilm) has a rather high water absorption and softens at moderately elevated temperatures. After due consideration, the following types of plastics were selected as worthy of detailed study for purposes of their possible usefulness in underground heat distribution systems. Those marked with an asterisk (*) are new and highly promising materials: ) - 4 - Polyester (Mylar) Polyethylene (conventional type) *Polye thylene (high-density type) *Polypropylene ^Polycarbonate
Recommended publications
  • Assessment of the Properties of Poly (Lactic Acid) Sheets with Different Amounts of Post-Consumer Recycled Poly (Lactic Acid)
    ASSESSMENT OF THE PROPERTIES OF POLY (LACTIC ACID) SHEETS WITH DIFFERENT AMOUNTS OF POST-CONSUMER RECYCLED POLY (LACTIC ACID) By Chaiyatas Chariyachotilert A THESIS Submitted to Michigan State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Packaging 2011 ABSTRACT ASSESSMENT OF THE PROPERTIES OF POLY (LACTIC ACID) SHEETS WITH DIFFERENT AMOUNTS OF POST-CONSUMER RECYCLED POLY (LACTIC ACID) By Chaiyatas Chariyachotilert The main objective of this research was to evaluate the properties of sheet containing mechanically recycled post-consumer polylactic acid (PLA) bottle flakes blended with virgin PLA resin. PLA bottles were flaked, cleaned, blended with virgin resin and then extruded and thermoformed into trays. The molecular weight, physical, optical, thermal and mechanical properties of sheet containing 0, 20, 40, 60, 80 and 100 wt.-% recycled content were evaluated. Cleaning conditions were evaluated using response surface methodology, and conditions of 15 min, 85 °C, 1 wt.-% NaOH, and 0.3 wt.-% surfactant were adopted for cleaning the PLA flake. Virgin PLA sheet possessed superior properties to recycled sheet with statistically significant differences at α=0.05. PLA sheets were darker and absorbed more UV light in the 260 to 285 nm range when 20% or more recycled content was added. At 40% recycled content, the sheet had increased blue and red tones and the mechanical properties in the cross-machine direction decreased. At 60% recycled content or above, reduction of weight average molecular weight (Mw), tensile strength and tensile strength at yield in the machine direction (MD) were found. At 80% recycled content, the melting temperature and modulus of elasticity in the MD decreased.
    [Show full text]
  • BPF – Understanding the Debate About Plastic
    Understanding the debate about plastic At a time when a ‘climate emergency’ has been declared, it is important that people understand that ‘plastic free’ does not necessarily mean ‘better for the environment’. For example, researchers found that switching to alternative materials could quadruple what they dubbed ‘the environmental cost.’ Plastic will – and should – continue to play a vital role in all our lives going forward. That may surprise many of you. But this document helps explain why. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, British Plastics Federation recording and/or otherwise, without the prior written permission of the publishers. While all reasonable steps have been taken to ensure that the information BPF House, 6 Bath Place contained within this document is correct, the British Plastics Federation can London, EC2A 3JE make no warranties or representations of any kind as to the content and, to the maximum extent permitted by law, accept no liability whatsoever for the First published in 2019 same including without limit, for direct, indirect or consequential loss, business © 2019 British Plastics Federation interruption, loss of profits, production, contracts or goodwill. Contents The enemy is not plastic, it is plastic waste 2 Key facts and figures 3 The right to choose (wisely) 4 Making a difference 5 Government proposals and the industry’s position 6 Why do we need single-use plastic? 8 Extended producer responsibility 10 Taxing plastic packaging based upon the amount of recycled content 12 Deposit return schemes 14 Exporting plastic waste for recycling 16 Biodegradable and oxo-degradable plastics 18 Marine litter 20 1 The enemy is not plastic, it is plastic waste Plastic brings many benefits, enabling many other cutting-edge technologies and keeping the weight and fuel emissions of vehicles down.
    [Show full text]
  • Medical Device Packaging: Innovations in Design and Testing
    2nd Annual MEDICAL DEVICE PACKAGING: INNOVATIONS IN DESIGN AND TESTING APRIL 30 - MAY 1, 2015 | BETHESDA, MD Optimizing Medical Device Package Design through Incorporating End User Feedback, Leveraging Legacy Testing Studies & Identifying Innovative Materials, while Maintaining Validation & Verification Standards through Examining Test Methods to Satisfy Global Regulatory Expectations DISTINGUISHED PRESENTERS INCLUDE: Abhishek Gautam Daniel Burgess Dhuanne Dodrill Manager, Packaging Engineering Principal Packaging Engineer Chairman CONMED CORPORATION BOSTON SCIENTIFIC ASTM INTERNATIONAL COMMITTEE F02 Catherine Olson, MSN, RN Charlie Rivera Director, Institute for Quality, Safety and Corporate Packaging Operations Manager A.J. Gruber Injury Prevention CONMED CORPORATION Executive Vice President EMERGENCY NURSES ASSOCIATION ISTA Nora Crivello Philip Desjardins Vice President Dawn Fowler Counsel WESTPAK INC. Senior Manager, Labeling & ARNOLD & PORTER LLC Documentation Shirley Gibson ENDOLOGIX Michael H. Scholla, Ph.D. Associate Vice President of Nursing Global Director, Regulatory and VCU HEALTH SYSTEM Tomas Pla Standard Sr. Development Packaging Engineer DUPONT PACKAGING Paul Marshall EXACTECH Manager, Global Packaging Art Castronovo Technologies Jonathan Bull Dir. of Labeling and Packaging SMITH & NEPHEW Director Gas and Heat Sterilization Engineering JOHNSON & JOHNSON SMITHS MEDICAL Santosh Madival Sr. Packaging Engineer Rod Patch Rients Van Werven EDWARDS LIFESCIENCES Senior Director, Execution Excellence Manager GSG Package Development COE Packaging and Product Labeling Ron Valerio JOHNSON & JOHNSON ETHICON ENDO-SURGERY Sr. Manager Medical UFP TECHNOLOGIES Darian Flewellen Dawn Hamblett Development Engineer, Packaging OR Clinical Product Coordinator Maimunatu Mansaray EXACTECH GEORGE WASHINGTON Operating Room Nurse UNIVERSITY HOSPITAL HOWARD UNIVERSITY HOSPITAL Alison Tyler Director of Technology Katie Tran Ewald Heersema BEACON CONVERTERS, INC. Lab Supervisor Technical Business Manager WESTPAK ZOTEFOAMS INC Chetan Patadiya Sr.
    [Show full text]
  • Year One of Positive Plastics Our Four-Point Plan for a Future with Less Waste
    Year one of positive plastics Our four-point plan for a future with less waste. # PositivePlasticsPledge 2 Klöckner Pentaplast Sustainable protection of everyday needs At kp we have always known the value We still have some way to go, but by of plastic – its unique place in the lives of collaborating closely with our partners in communities we are very much part of the community, governments and local and its irreplaceable attributes that protect authorities, business and industry, and and package our products – in particular environmental groups we are quite literally dramatically avoiding food waste, delivering closing the loop when it comes to plastic medication and protecting the integrity packaging. We are helping reduce leakage of countless other products. Embedded in and littering of plastics into the environment, the fabric of our company is our primary ensuring plastics are valued and packaging is purpose – the sustainable protection of optimally designed for circularity. everyday needs – it’s why we exist; it’s why In the last year, the world of plastics has we do what we do. changed at an unprecedented rate and We’re determined to help we continue our determination to help make the world of plastics make it a sustainable one for society and for our environment. It’s exciting, it’s been sustainable for society successful and we have learned so much and for our environment. in the process. We are proud to share our first year of achievements with you and we We are also fully aware of our huge look forward to another challenging and responsibility to design products and transformational year ahead – we hope packaging to achieve closed-loop solutions.
    [Show full text]
  • Improving Plastics Management: Trends, Policy Responses, and the Role of International Co-Operation and Trade
    Improving Plastics Management: Trends, policy responses, and the role of international co-operation and trade POLICY PERSPECTIVES OECD ENVIRONMENT POLICY PAPER NO. 12 OECD . 3 This Policy Paper comprises the Background Report prepared by the OECD for the G7 Environment, Energy and Oceans Ministers. It provides an overview of current plastics production and use, the environmental impacts that this is generating and identifies the reasons for currently low plastics recycling rates, as well as what can be done about it. Disclaimers This paper is published under the responsibility of the Secretary-General of the OECD. The opinions expressed and the arguments employed herein do not necessarily reflect the official views of OECD member countries. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. For Israel, change is measured between 1997-99 and 2009-11. The statistical data for Israel are supplied by and under the responsibility of the relevant Israeli authorities. The use of such data by the OECD is without prejudice to the status of the Golan Heights, East Jerusalem and Israeli settlements in the West Bank under the terms of international law. Copyright You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given.
    [Show full text]
  • Critical Guidance Protocol for PE Film and Flexible Packaging
    Critical Guidance Protocol for PE Film and Flexible Packaging Document number – FPE-CG-01 Revision date – August 17, 2021 Introduction – Scope, significance and use This is a comprehensive laboratory scale evaluation, or protocol, that can be used to assess the compatibility of PE-based films and flexible packaging innovations with film reclamation systems sourcing post-consumer film from store drop-off collection points or, in some cases, curbside collection. This test can be used to evaluate the impact of innovative PE film packaging components for which recycling compatibility is unknown or for which data is notably lacking. As examples: mono- and multi-layer constructions, coatings, additives (including compatibilizers along with innovative material), printing inks and pigments, labels with polymer substrate (paper labels are out of scope for Critical Guidance), adhesives, or new PE resin co- polymer or multi-material compositions. This test requires assessment of the effect of the packaging in blown film. This test evaluates compatibility of the flexible packaging innovation with current, industrial-scale, film-to- film recycling processes. Plastic film is generally defined as plastic items with a thickness of less than 10 mils (i.e., 0.010” or 0.25 mm) that are at least 95 percent (by weight) plastic with up to 5 percent other closely bonded or impregnated material, which may include printing, coatings, or fillers. Film, when used in packaging, is referred to as flexible packaging. The shape of flexible packaging typically changes when it is full of a product compared to when it is empty, whereas the shape of rigid packaging generally remains the same.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Packaging Engineering at Rutgers
    Packaging Engineering at Rutgers ackaging engineers formulate and construct innova- tive packaging systems that increase functionality through the development of materials, design, evalu- Pation, manufacturing process, distribution, and sustainability components. They also address factors related to shelf life, tamper resistance, and quality. Packaging engineers collabo- Packaging Engineering Degrees rate with colleagues in research and development, manu- Offered and Curricular Options facturing, marketing, graphic design, and regulatory depart- ments to address technical and marketing challenges. % BS Applied Sciences in Engineering 10 0 Packaging Engineering Concentration The Rutgers Packaging Engineering program is the second EMPLOY- oldest in the nation and has the distinction of being the only MENT BS/MS Five-Year Dual Degree packaging program housed within an engineering school. PAST BS/MBA Five-Year Dual Degree 10 YEARS Student learning includes a multi-disciplinary curriculum MS drawing from the fields of chemical, industrial, materials, and mechanical engineering, as well as hands-on research, control testing, and product design with actual industry mate- rials, products, and lab equipment. The program opens doors to rewarding packaging careers in industries as diverse as consumer goods, cosmetics, food, and pharmaceuticals with Packaging Engineering a unique focus on innovation, efficiency, global marketability, Highlights and environmental sustainability. » Only US packaging program housed within “Packaging an engineering school. engineering has » Faculty members include senior execu- provided me with a tives from major beauty, consumer product, variety of learning pharmaceutical and food manufacturing and internship corporations. opportunities that » State-of-the-art laboratory facilities for 3D will help me reach design, modeling, and tool cutting software my full potential to create original product packaging.
    [Show full text]
  • TSCA Inventory Representation for Products Containing Two Or More
    mixtures.txt TOXIC SUBSTANCES CONTROL ACT INVENTORY REPRESENTATION FOR PRODUCTS CONTAINING TWO OR MORE SUBSTANCES: FORMULATED AND STATUTORY MIXTURES I. Introduction This paper explains the conventions that are applied to listings of certain mixtures for the Chemical Substance Inventory that is maintained by the U.S. Environmental Protection Agency (EPA) under the Toxic Substances Control Act (TSCA). This paper discusses the Inventory representation of mixtures of substances that do not react together (i.e., formulated mixtures) as well as those combinations that are formed during certain manufacturing activities and are designated as mixtures by the Agency (i.e., statutory mixtures). Complex reaction products are covered in a separate paper. The Agency's goal in developing this paper is to make it easier for the users of the Inventory to interpret Inventory listings and to understand how new mixtures would be identified for Inventory inclusion. Fundamental to the Inventory as a whole is the principle that entries on the Inventory are identified as precisely as possible for the commercial chemical substance, as reported by the submitter. Substances that are chemically indistinguishable, or even identical, may be listed differently on the Inventory, depending on the degree of knowledge that the submitters possess and report about such substances, as well as how submitters intend to represent the chemical identities to the Agency and to customers. Although these chemically indistinguishable substances are named differently on the Inventory, this is not a "nomenclature" issue, but an issue of substance representation. Submitters should be aware that their choice for substance representation plays an important role in the Agency's determination of how the substance will be listed on the Inventory.
    [Show full text]
  • Packaging Technology
    PACKAGING TECHNOLOGY KAZAKH NATIONAL AGRARIAN UNIVERSITY ALMATY, KAZAKHSTAN 19 - 30 OCT. 2015 by ROSNITA A. TALIB BSc (Food Sc & Tech), MSc. (Packaging Engineering) UPM PhD (Materials Engineering) Sheffield, UK. Department of Process and Food Engineering Faculty of Engineering 43400 UPM Serdang, Selangor Universiti Putra Malaysia Email: [email protected] Course Outcomes Students are able to : 1. To describe the functions, basic packaging design elements and concepts 2. To analyse various types of packaging materials for use on appropriate food 3. To differentiate standard test methods for packaging quality control 4. Describe various types of packaging equipment in food industry References/Textbooks 1. Soroka, W. (2009) Fundamentals of Packaging Technology. Naperville. Instituue of Packaging Professionals. 2. Klimchuk, M.R. and Krasovec, S.A. (2006) Packaging Design Successful Product Branding from Concept to Shelf. Hoboken. John Wileys & Sons 3. Morris, S.A. (2010). Food Packaging Engineering. Iowa: Blackwell Publishing Professional. 4. Robertson, G.L. (2006). Food Packaging - Principles and Practice (2nd Edition). Boca Raton: CRC Press. 5. Kelsey, R.J. (2004). Handbook of Package Engineering (4th Edition). Boca Raton: CRC Press. Package vs Packaging - Simple examples of package: boxes on the grocer's shelf and wrapper on a candy bar. - The crate around a machine or a bulk container for chemicals. - Generically, package is any containment form. - Package (noun) is an object. A physical form that is intended to contain, protect/preserve; aid in safe, efficient transport and distribution; and finally act to inform and motivate a purchase decision on the part of a consumer. Package vs Packaging Packaging is Packaging also - Packaging is a verb, reflecting the ever-changing nature of the The development and production of medium.
    [Show full text]
  • Chapter 2 the Solid Materials of the Earth's Surface
    CHAPTER 2 THE SOLID MATERIALS OF THE EARTH’S SURFACE 1. INTRODUCTION 1.1 To a great extent in this course, we will be dealing with processes that act on the solid materials at and near the Earth’s surface. This chapter might better be called “the ground beneath your feet”. This is the place to deal with the nature of the Earth’s surface materials, which in later sections of the chapter I will be calling regolith, sediment, and soil. 1.2 I purposely did not specify any previous knowledge of geology as a prerequisite for this course, so it is important, here in the first part of this chapter, for me to provide you with some background on Earth materials. 1.3 We will be dealing almost exclusively with the Earth’s continental surfaces. There are profound geological differences between the continents and the ocean basins, in terms of origin, age, history, and composition. Here I’ll present, very briefly, some basic things about geology. (For more depth on such matters you would need to take a course like “The Earth: What It Is, How It Works”, given in the Harvard Extension program in the fall semester of 2005– 2006 and likely to be offered again in the not-too-distant future.) 1.4 In a gross sense, the Earth is a layered body (Figure 2-1). To a first approximation, it consists of concentric shells: the core, the mantle, and the crust. Figure 2-1: Schematic cross section through the Earth. 73 The core: The core consists mostly of iron, alloyed with a small percentage of certain other chemical elements.
    [Show full text]
  • Recycling Roadmap
    BRITISH PLASTICS FEDERATION RECYCLING ROADMAP SUPPORTED BY The British Plastics Federation (BPF) is the trade association representing the entire plastics supply chain in the UK, from polymer producers and distributors, converters, equipment suppliers and recyclers. The BPF works in close collaboration with its member companies and liaises closely with government departments, as well as a broad range of non-governmental stakeholders such as charities, brands and retailers. The plastics industry is one of the UK manufacturing sector’s biggest strengths, comprising around 6,200 companies and directly employing 180,000 people. This report has been produced by the British Plastics Federation. The BPF would like to thank Keith Freegard of Keith Freegard Consulting Ltd for all his work on this report and all other reviewers who have provided valuable comments and feedback during its production. This report does not necessarily reflect the views of individual companies mentioned in this report and information provided by companies does not necessarily reflect the views of the BPF. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording and/or otherwise, without the prior written permission of the publishers. While all reasonable steps have been taken to ensure that the information contained within this document is correct, the British Plastics Federation can make no warranties or representations of any kind as to the content and, to the maximum extent permitted by law, accept no liability whatsoever for the same including without limit, for direct, indirect or consequential loss, business interruption, loss of profits, production, contracts or goodwill.
    [Show full text]