Developments in Buoy Technology and Data Applications

Total Page:16

File Type:pdf, Size:1020Kb

Developments in Buoy Technology and Data Applications DEVELOPMENTS IN BUOY TECHNOLOGY AND DATA APPLICATIONS PRESENTATIONS AT THE DBCP TECHNICAL WORKSHOP (La Reunion, France, October 1997) INTERGOVERNMENTAL OCEANOGRAPHIC WORLD METEOROLOGICAL COMMISSION (OF UNESCO) ORGANIZATION DATA BUOY CO-OPERATION PANEL DEVELOPMENTS IN BUOY TECHNOLOGY AND DATA APPLICATIONS PRESENTATIONS AT THE DBCP TECHNICAL WORKSHOP (La Reunion, France, October 1997) DBCP Technical Document No. 12 1998 NOTES The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of the Intergovernmental Oceanographic Commission (of UNESCO), and the World Meteorological Organization concerning the legal status of any country, territory, :city or area-,. or of its authorities, or concerning the delimitation of its frontiers or boundaries. Editorial note: This publication is for the gre~ter part an offset reproduction of typescripts submitted by the authors and has been produced ·without additional revision by the Secretariats. FOREWORD The success of technical workshops at both the eleventh and twelfth sessions of the Data Buoy Cooperation Panel (DBCP) (respectively Pretoria and Henley-on-Thames, see DBCP Technical Publication No. 1 0) encouraged the panel to make such workshops a regular feature of its annual session, as a practical means of promoting cooperation and information exchange amongst all sections of the global buoy community, including buoy deployers, data users and communication systems providers. Consequently, a technical workshop on Developments in buoy technology and data applications took place during the first day and a half of the thirteenth session of the panel, held in St Denis, La Reunion, France, in October 1 997. Around 20 papers were read to more than 50 participants during the workshop, and the texts of 13 of these are included in this DBCP technical publication. In all cases the papers have been reprinted as received, without additional editorial intervention. TABLE OF CONTENTS FOREWORD TABLE OF CONTENTS PRESENTATIONS 1. Richard W. Reynolds, NOAA-National Centers for Environmental Prediction, USA Comparison of Drifting Buoy and Ocean Model Surface Currents . 1 2. Louis Vermaak, South African Weather Bureau, South Africa Drifting Buoy Data and Operational Weather Forecasting . 3 3. Eric A. Meindl, NOAA-National Data Buoy Center, USA Drifting Buoy Performance during TOGA ........................... 25 4. Pierre Blouch and Jean Rolland, Centre de Meteorologie Marine, France Evolution of the Performances of Air Pressure Measurement on the SVP-B Drifter 39 5. Julie Fletcher and John Burman, Meteorological Service of New Zealand Limited, New Zealand Update on the KIWI Buoy Recycling Business . 43 6. S.V. Motyzhev, Marine Hydrophysicallnstitute, Ukraine Method of Calculation of Characteristics of Diving Drifters with Satellite Communication for the Study of the Active Layer of Oceans and Seas . ..... 59 7. Pekka Jarvi, Vaisala, Finland Sources of Barometric Pressure Measurement Uncertainty 67 8. Pierre Blouch and Jean Rolland, Centre de Meteorlogie Marine, France Promising Results of the WOTAN Technique to Provide Wind Measurements on SVP-BW Drifters ........................................... 75 9. Richard W. Reynolds and Diane C. Stokes, NOAA-National Centers for Environmental Prediction, USA; Douglas May, Naval Research Laboratory, USA Impact of the Number of Drifting Buoys on Sea Surface Temperature (SST) Satellite Retrievals and Analyses . 81 1 0. Mark Swenson, NOAA/AOML, USA On Ocean-Atmosphere Coupling in the North Atlantic Ocean. 83 11. Etienne Charpentier, Technical Coordinator, DBCP A Methodology for Case Studies of Impact of Buoy Data upon Numerical Weather Prediction Using Adjoint Model Technique . 85 12. Hedinn Valdimarsson, Svend-Aage Malmberg and Mark Bushnell, Marine Research Institute, Iceland SVP Drifters in Icelandic Waters 1995-199 7, Preliminary Results . 91 13. D.T. Meldrum, Dunstaffnage Marine Laboratory, Scotland, United Kingdom Further Results from GPS Drifter Deployments . 1 01 LIST OF PARTICIPANTS - 1 - Comparison of Drifting Buoy and Ocean Model Surface Currents Richard W. Reynolds (National Centers for Environmental Prediction, Camp Springs, :MD, 20746, USA) Comparisons (e.g., see Acreo-Schertzer, et al, 1997) between tropical surface currents estimated from drifting buoys and surface currents from the National Centers for Environmental Prediction (NCEP) ocean model have shown important differences along the equator. Because of changes in the model and the availability of more recent data, the differences have been reexamined for the 1992-96 period. This version of the model used assimilation of temperature data and was forced by NCEP surface winds. In addition, the model surface temperatures were relaxed to the NCEP sea surface temperature analysis. The mean buoy field was obtained by first computing monthly mean locations and currents for all buoy observations which had an attached drogue. When the drogues are operational, the buoy is designed to follow the currents at 15 m. The buoy observations were averaged on a 1° latitude by 1.5° longitude grid which was spatially smoothed by a 5° latitude by 10.5°longitude box average. The model averages were computed in two ways. In the first version, the model fields at a depth of 15 m were simply averaged onto the 1o by 1. 5° grid. In the second version, monthly averaged model fields were sampled at the average buoy location. These "model" current observations were then processed in exactly the same way as the original buoy observations. The differences, defined as buoy minus model, for the zonal component of the current are shown in Figure 1. The upper panel shows the difference using the simple model average. This result is similar to the result of Acreo-Schertzer, et al. (1997) and shows large differences within 10° the equator with magnitudes as large as 30 em s·•. In general all model near equatorial currents, the westward flowing North and South Equatorial Currents and the eastward flowing North Equatorial Countercurrent, are too strong. However, when the model is sampled only at the buoy locations, the differences, which are shown in the lower panel, are much smaller with magnitudes usually below 5 em s·•. Although the differences in the lower panel are smaller, there are still important differences near the equator. However, the figure shows that the sampling strongly impacts the comparisons. To examine these results in more detail, an optimum interpolation (01) analysis (e.g., see Reynolds and Smith, 1994) of the currents from drifting buoys was computed. This was done by using the monthly averaged buoy and model currents. The model fields were used as a first guess, and the analysis was performed on the difference between the buoy data and the first guess. This resulted in monthly averaged analysis of the differences which was added to the first guess to produce the final 01 field. To determine if the 01 field using the drifting buoys is better that the original model field, the two fields were compared with independent currents measured at the Tropical Atmosphere Ocean (TAO) moorings. An example of these results for the zonal component of the current is shown at the equator and 165°E in the upper panel ofFigure 2. The results show that the 01, which is based both on the model and the buoys, is generally closer to the independent TAO current data than the model alone. In addition, the 01 relative error, shown in the lower panel of the figure, gives an indication of data availability. If there are no data, the relative error is one, and the 01 and the model are identical; if the relative error is zero, the buoy data are perfect, and the OI is based only on the buoy data. During this period, the data has an - 2 - important impact on the OI, with a relative error less than 0.5, except in the first half of 1994. However, in the eastern equatorial Pacific at 110°W and 140°W, the buoy data were more sparse. Thus, the relative errors were often above 0. 5 and the data could not correct the model currents. These results are encouraging. They show a comparison of buoy and model currents must use the same time and space sampling. In addition, they show that an OI analysis of the buoy current data can improve model surface currents. However, these results are only preliminary. The drifting buoy data were not actually assimilated into the model. Thus, the dynamical effect of these corrections on the model is unknown. Furthermore, the drifting buoy data are only available at one level. It is necessary to determine how assimilation at this level would influence other model levels. We plan to first improve the model assimilation using S(z) and then extend the assimilation to use surface current observations from drifting buoys and current observations from the TAO array. Figure Captions: Figure 1. Difference between the zonal surface currents from the drifting buoys and the model for 1992-96. In the upper panel all the model data were used; in the lower panel the model was only 1 sampled at the buoys locations (see text). The contour interval is 5 em s· , with negative contours dashed. Eastward moving currents are positive. Figure 2. Monthly zonal currents at the equator and 165°E from the TAO mooring, the model with assimilation, and the OI analysis which is based on both the drifting buoy data and the model. The lower panel shows the relative OI error where one indicates no data and zero indicates perfect data. References: Acreo-Schertzer, C. E., D. V. Hansen and M.S. Swenson, 1997: Evaluation and diagnostics of surface currents in the NCEP ocean analyses. J. Geophys. Res., 102, 21037-21048. Reynolds, R. W. and T. M. Smith, 1994: Improved global sea surface temperature analyses. J. Climate, 1, 929-948. - 2a - Figure 1 Mean U Difference: Buoy - Model All Model Data Used ~~-""'"'- ... 1 --, ' ·'"" ~ ~I •• _,w-- 30N 0 ~ •._.: : ~ I I I I 20N 10N EQ lOS 20S 30S 140E 160E 1BO 160W 140W 120W 100W BOW Mean U Difference: Buoy - Model Model Sampled at Buoys 30N 20N 10N EQ 10S I ~ ~ ~ .
Recommended publications
  • (SCOOP) the Weather Buoy
    Poster 18, AMS 27th WAF/23rd NWP The Results of the Field Evaluation of NDBC's Prototype Self-Contained Ocean Observations Payload (SCOOP) Richard H. Bouchard1, Rex V. Hervey1, Walt McCall2, Ryan Beets3, Michael D. Robbie3, Chris Wills3, John Tancredi3, Michael Vasquez4, Steven DiNapoli4 1NOAA’s National Data Buoy Center (NDBC), Stennis Space Center, MS 39529 USA 2University of Southern Mississippi, Stennis Space Center, MS 39529 USA 3PAE at NDBC, 4NVision Solutions, Inc. at NDBC Abstract: The National Oceanic and Atmospheric Administration's (NOAA) National Data Buoy Center (NDBC) is undertaking a fundamental and broad transformation Table 1: Evaluation Locations Prototype Location Evaluation Start Evaluation End of its ocean observing systems on moored buoys. This transformation is necessary to gain efficiencies in maintaining operational ocean observation networks and to Comment Payload (See Figure 1) Date Date increase their reliability. The Self-Contained Ocean Observations Payload (SCOOP) takes advantage of the advances in communications and small, efficient, multi- SCP01 11 km West of 42003 11/7/2014 5/5/2015 *Vaisala misaligned purpose sensors to reduce the size and costs of systems and expand the suite of available real-time ocean observations. NDBC has successfully completed a 180-day Waves Failed SCP03 6 km North of 42003 11/7/2014 5/5/2015 11/20/2014 field evaluation of three prototype systems in the Gulf of Mexico (Table 1). The field evaluations indicate that SCOOP generally meets or exceeds NDBC's established 12 km South-Southwest SCP02 11/9/2014 5/7/2015 criteria for the accuracy of its marine measurements and the detailed results will be presented.
    [Show full text]
  • Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans in Action Stennis Space Center August 17, 2016
    Eyes on the Ocean NDBC Buoys Supporting Prediction, Forecast and Warning for Natural Hazards for Oceans In Action Stennis Space Center August 17, 2016 Helmut H. Portmann Director, National Data Buoy Center National Weather Service August 17, 2016 1 2016 Atlantic Hurricane Season Near to above-normal Atlantic hurricane season is most likely this year 70 percent likelihood of 12 to 17 named storms Hurricane Alex January TS Bonnie May TS Colin June TS Danielle June Hurricane Earl August Fiona Gaston Hermine Ian Julia Karl Lisa Matthew Nicole Otto Paula Richard Shary Tobias Virginie Walter NationalNational Weather Data Buoy Service Center 2 Influence of La Nina Typical influence of La Niña on Pacific and Atlantic seasonal hurricane activity. Map by NOAA Climate.gov, based on originals by Gerry Bell NationalNational Weather Data Buoy Service Center 3 NOAA’s National Data Buoy Center NationalNational Weather Data Buoy Service Center 4 www. ndbc.noaa.gov www. ndbc.noaa.gov NationalNational Weather Data Buoy Service Center NDBC Observing Platforms Tsunami Weather Buoys in Place for > 30 Years Wx TAO 106 met/ocean WX buoys 47 C-MAN stations 55 TAO Climate Monitoring buoys + 4 current profiler moorings 39 DART Tsunami Monitoring stations NationalNational Weather Data BuoyService Center 6 National Data Buoy Center Electronics Labs Facilities at SSC, MS MCC Operates 24/7/365 Sensor Testing & Cal High Bay Fabrication Paint & Sandblasting Wind Tunnel & Environmental Chambers In-Water Testing Machine Shops El Nino - La Nina Detection NDBC maintains an
    [Show full text]
  • Addressing Sensing Capability Gaps Using Economical Profiling Technology
    | FEATURE | ADDRESSING SENSING CAPABILITY GAPS USING ECONOMICAL PROFILING TECHNOLOGY By Michael Rufo, director of Boston Engineering’s Advanced Systems Group, and David Shane, project manager and business development lead at Boston Engineering’s Advanced Systems Group Figure 1 - NOAA Testing MASED in Alaska. The ability to collect oceanic data quickly, accurately, and economically sensor family of platforms to support a range of applications across has a significant impact on the success of commercial, military, and multiple industries. The platform’s “plug-and-play” capabilities enable maritime research operations. Requirements and applications for the rapid integration and use of a myriad of commercial sensors. oceanic sensing vary significantly based on the type of information Boston Engineering’s platforms are capable of being widely distributed targeted in specific weather patterns, climate regions, and oceanic at reduced cost. zones. Boston Engineering’s new sensing technology platform is addressing a breadth of maritime data collection needs by reducing MASED Overview barriers created by high costs and harsh environments. The following MASED overview highlights how Boston Engineering MARITIME SENSING TECHNOLOGY SNAPSHOT is applying its maritime sensor platform to address specific needs. MASED—a Multipurpose Above/Below Surface Expendable Buoys, unmanned vehicles (UxVs), and sondes each have their Dropsonde—is the first product to collect ocean data during advantages, but high costs and data collection limitations can make developing hurricanes via multiple submerge-and-surface cycles. The it prohibitive to deploy these technologies. As an example, the data collected by MASED will allow researchers to better understand, average price tag of a tethered weather buoy can reach $375,000.
    [Show full text]
  • National Data Buoy Center Command Briefing for Marine Technology Society Oceans in Action
    National Data Buoy Center Command Briefing For Marine Technology Society Oceans in Action August 21, 2014 Helmut H. Portmann, Director National Data Buoy Center To provide• a real-time, end-to-end capability beginning with the collection of marine atmospheric and oceanographic data and ending with its transmission, quality control and distribution. NDBC Weather Forecast Offices/ IOOS Partners Tsunami Warning & other NOAA River Forecast Centers Platforms Centers observations MADIS NWS Global NDBC Telecommunication Mission Control System (GTS) Center NWS/NCEP Emergency Managers Oil & Gas Platforms HF Radars Public NOAA NESDIS (NCDC, NODC, NGDC) DATA COLLECTION DATA DELIVERY NDBC Organization National Weather Service Office of Operational Systems NDBC Director SRQA Office 40 Full-time Civilians (NWS) Mission Control Operations Engineering Support Services Mission Mission Information Field Production Technology Logistics and Business Control Support Technology Operations Engineering Development Facilities Services Center Engineering 1 NOAA Corps Officer U.S. Coast Guard Liaison Office – 1 Lt & 4 CWO Bos’ns NDBC Technical Support Contract –90 Contractors Pacific Architects and Engineers (PAE) National Data Buoy Center NDBC is a cradle to grave operation - It begins with requirements and engineering design, then continues through purchasing, fabrication, integration, testing, logistics, deployment and maintenance, and then with observations ingest, processing, analysis, distribution in real time NDBC’s Ocean Observing Networks Wx DART Weather
    [Show full text]
  • Metocean Data Needs Assessment and Data Collection Strategy Development for the Massachusetts Wind Energy Area
    PREPARED FOR: Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development for the Massachusetts Wind Energy Area October 16, 2015 CLASSIFICATION CLIENT’S DISCRETION 463 NEW KARNER RD. | ALBANY, NY 12205 |www.awstruepower.com |[email protected] M etocean Data Needs Assessment and Data Collection Strategy Development i DISCLAIMER Acceptance of this document by the client is on the basis that AWS Truepower is not in any way to be held responsible for the application or use made of the findings and that such responsibility remains with the client. KEY TO DOCUMENT CLASSIFICATION STRICTLY CONFIDENTIAL For recipients only CONFIDENTIAL May be shared within client’s organization AWS TRUEPOWER ONLY Not to be distributed outside AWS Truepower CLIENT’S DISCRETION Distribution at the client’s discretion FOR PUBLIC RELEASE No restriction DOCUMENT AUTHORS AND CONTRIBUTORS Matthew V. Filippelli Mike Markus Matt Eberhard Bruce H. Bailey Lesley Dubois AWS TRUEPOWER LLC 463 New Karner Road Albany, New York 12205 www.awstruepower.com Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development ii TABLE OF CONTENTS 1. INTRODUCTION 2 2. SOURCES OF METOCEAN DATA 5 3. METOCEAN DATA NEEDS FOR OFFSHORE WIND DEVELOPMENT 13 4. METOCEAN DATA COLLECTION STRATEGIES TO ADDRESS GAPS 33 5. STAKEHOLDERS AND PARTNERSHIP OPPORTUNITIES 61 6. CONCLUSIONS AND RECOMMENDATIONS 70 APPENDIX: METOCEAN DATA INVENTORY 73 Massachusetts Clean Energy Center Metocean Data Needs Assessment and Data Collection Strategy Development Page 1 of 98 Executive Summary The objective of this report is to provide the Massachusetts Clean Energy Center (MassCEC) with an assessment of information sources regarding the meteorological and oceanographic (metocean) conditions within the Bureau of Ocean Energy Management’s (BOEM) designated Massachusetts Wind Energy Area (MAWEA) and the Rhode Island/Massachusetts (RI/MA) Wind Energy Area, collectively, the WEAs.
    [Show full text]
  • Cmems Requirements for the Evolution of the Copernicus in Situ Component
    1 Copernicus Marine Service requirements for the evolution of the Copernicus In Situ Component Mercator Ocean International, EUROGOOS, and CMEMS partners Version 2 - March 2021 MERCATOR OCEAN INTERNATIONAL Parc Technologique du Canal - 8-10 rue Hermès - 31520 Ramonville-Saint-Agne, FRANCE Tél : +33 5 61 39 38 02 - Fax : +33 5 61 39 38 99 marine.copernicus.eu Société civile de droit français au capital de 2 000 000 € - 522 911 577 RCS Toulouse - SIRET 522 911 577 00016 mercator-ocean.eu CMEMS REQUIREMENTS FOR IN SITU OBSERVATIONS 2 Table of content INTRODUCTION ........................................................................................................... 4 THE ROLE OF IN-SITU OBSERVATIONS AND ITS ORGANIZATION IN CMEMS ............ 5 CMEMS REQUIREMENTS FOR THE EVOLUTION OF THE COPERNICUS IN SITU COMPONENT ............................................................................................................... 8 Global Ocean ............................................................................................................. 9 Arctic Basin ............................................................................................................... 11 Baltic Basin ................................................................................................................ 12 Iberia-Biscay-Ireland Basin ..................................................................................... 12 Black Sea Basin .......................................................................................................
    [Show full text]
  • Meteorological Warnings Study Group (Metwsg)
    METWSG/1-SoD 22/11/07 METEOROLOGICAL WARNINGS STUDY GROUP (METWSG) FIRST MEETING Montréal, 20 to 22 November 2007 SUMMARY OF DISCUSSIONS 1. HISTORICAL 1.1 The first meeting of the Meteorological Warnings Study Group (METWSG/1) was held at the International Civil Aviation Organization (ICAO) Headquarters in Montréal, Canada, 20 to 22 November 2007. 1.2 The meeting was opened by Dr. Olli M. Turpeinen, Chief Meteorology. 1.3 The names and addresses of the participants are listed in Appendix A. Mr. Juan Ayon Alfonso was elected Chairman of the meeting. The meeting was served by the Secretary of the METWSG, Raul Romero, Technical Officer in the Meteorological (MET) Section of the Air Navigation Bureau (ANB). 1.4 The meeting considered the following agenda items. Agenda Item 1: Opening of the meeting Agenda Item 2: Election of Chairman Agenda Item 3: Adoption of working arrangements Agenda Item 4: Adoption of the agenda Agenda Item 5: Review of the tasks of the study group Agenda Item 6: Amendment to provisions related to the content and issuance of SIGMET to meet the evolving needs of flight operations 6.1 Methods to improve the implementation of the issuance of SIGMETs 6.2 Development of a set of quantitative criteria to be included in Annex 3 for the threshold intensity of the weather phenomena to prompt the issuance of SIGMET (13 pages) METWSG.1.SoD.en.doc METWSG/1-SoD - 2 - 6.3 Amend the template for SIGMET and AIRMET to allow only the use of a closed line of coordinates, location indicators of waypoints or aerodromes to describe the area
    [Show full text]
  • EARTH SYSTEM MONITOR MONITOR 1 NOAA’S Offi Ce of Oceanic and Atmospheric Research: a Vehicle for Improving NOAA Services a Guide to NOAA’S Data and Richard W
    Vol. 17, No. 2 · November 2008 E NovemberARTH 2008 SYSTEMEARTH SYSTEM MONITOR MONITOR 1 NOAA’s Offi ce of Oceanic and Atmospheric Research: A Vehicle for Improving NOAA Services A guide to NOAA’s data and Richard W. Spinrad, Ph.D., CMarSci, Assistant hicles to explore the ocean and conduct research, information Administrator for Oceanic and Atmospheric including ships, buoys, high-tech remotely oper- services Research ated vehicles (ROVs), fl oats, gliders, and autono- mous underwater vehicles (AUVs). INSIDE In the decades and century to come, In August, NOAA launched the world’s only mankind will experience—and thus benefi t and vessel dedicated to ocean exploration and re- 2 potentially suffer from—extraordinary changes search, the NOAA Ship Okeanos Explorer. This Letter from the ship will allow scientists and students real-time NODC Director in our world’s climate, atmosphere, and oceans. These changes will impact our lives. NOAA’s access to ocean exploration through the Internet. This technology will allow a “scientists on call” 4 research to understand the interactions between Ocean Acidifi cation the ocean, atmosphere, and land is critical for approach to ocean exploration and will bring the reducing uncertainty in ocean into the classroom, allowing 5 climate forecasts, predicting students to participate in undersea The NOAA severe weather, and sustain- exploration. Okeanos Explorer is CoastWatch ably managing ecosystems. equipped with a variety of sensors Program Research conducted and systems, including modern through the Offi ce of Oceanic hull-mounted multibeam sonar for 6 seafl oor mapping. These maps will NOOSS Optimization and Atmospheric Research (OAR) will continue reduc- identify features for further investi- gation using tether-attached ROVs 7 ing the human costs—in both Unmanned Aircraft lives and dollars—of hazard- that can venture up to 6,000 meters Systems for ous weather and other ex- below the surface.
    [Show full text]
  • Surface Station Plots Decoding the S
    Surface and Upper-Air Observations Surface Observations Collect information for synoptic-scale weather Most surface observations are automated (e.g., Automated Surface Observing System) Also mesoscale networks (mesonet) such as Oklahoma and West TX Measurements taken at least hourly As early as the 1700s, human observations were taken in the U.S. Dr. Christopher M. Godfrey University of North Carolina at Asheville ATMS 103 ATMS 103 What’s Measured at the Surface? Surface Station Plots Temperature (°F) Information plotted on a map in compact Dewpoint temperature (°F) format Pressure (corrected and reported as MSLP in mb) Temperature, dewpoint, pressure, cloud Wind speed and direction (knots or m.p.h.) cover, wind speed and direction, visibility, Cloud cover at multiple levels current weather and pressure tendency Precipitation (amount and time of start/stop) Other current weather (distant thunder, towering cumulus, etc.) ATMS 103 ATMS 103 Decoding the Station Plot Cloud Cover No/very few clouds 1/8 coverage 2/8 coverage 3/8 coverage 4/8 coverage Temperature and dewpoint are in °F 5/8 coverage Wind speed is usually in knots (OK Mesonet uses m.p.h.) 6/8 coverage Pressure is reported in tenths of mb 7/8 coverage If first number >6, put a 9 in front of number reported Overcast If first number <4, put a 10 in front of number reported Sky obscured ATMS 103 ATMS 103 1 How to Read Wind Speed and Direction Surface Observation Example: Oklahoma Mesonet Meteorologists always describe where the wind is coming from!!
    [Show full text]
  • Status and Future Path of Evolving the NWS
    Status and Future Path of Evolving the NWS Dr. Louis W. Uccellini Director, National Weather Service NOAA Assistant Administrator for Weather Services January 26, 2017 – NWS Partners Meeting Seattle, WA January 15, 2017 GOES-16 Composite Color Full Disk Image 2 Outline • Transition • NWS HQ Organization • Budget • Portfolio Highlights • Weather-Ready Nation • NWS Evolve • Impact-based Decision Support Services 3 Transition 4 NWS HQ New HQ Office Field Office Existing HQ Office Organization CFO/CAO Office of the Chief of Staff John Potts George Jungbluth The Office of Enterprise Risk Management Assistant & Internal Audit Office International Affairs Administrator Madhouri Edwards AA Courtney Draggon DAA Assistant CIO Office of the Richard Varn (A) Chief Learning Officer Louis Uccellini Mary Erickson John Ogren (A) Office of Organizational Excellence Kevin Werner AR: Carven Scott Office of Planning & PR: Ray Tanabe Office of Chief Operating Programming for Service WR: Grant Cooper Officer Delivery CR: Chris Strager SR: Steven Cooper ER: Jason Tuell Kevin Cooley John Murphy Office of Analyze, National Office of Office of Office of Office of Office of Science & Forecast, & Centers for Regional Central Water Facilities Observations Dissemination Technology Support Env. Offices Processing Predict. Integration Office Prediction Deirdre Joe Pica Dave Michelle Ming Andy Bill Tom Graziano Jones Michaud Mainelli (A) Ji Stern Lapenta 5 FY 2017 Full Year Budget Target based on FY 2016 Enacted Level Composition by Portfolio Funds Breakdown Full Time
    [Show full text]
  • DBCP-TD-26.Pdf (4.3MB)
    ANNUAL REPORT FOR 2004 DBCP Technical Document No. 26 INTERGOVERNMENTAL OCEANOGRAPHIC WORLD METEOROLOGICAL COMMISSION (OF UNESCO) ORGANIZATION DATA BUOY COOPERATION PANEL ANNUAL REPORT FOR 2004 DBCP Technical Document No. 26 2005 N O T E The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of the Intergovernmental Oceanographic Commission (of UNESCO), and the World Meteorological Organization concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. TABLE OF CONTENTS FOREWORD i SUMMARY iii RÉSUMÉ v RESUMEN viii РЕЗЮМЕ xi REPORT 1. Current and planned programmes 1 2. Data flow 1 3. Data quality 3 4. Data archival 4 5. Technical developments 4 6. Communication system status 5 7. Administrative matters 8 ANNEXES I National reports on data buoy activities II Reports from the DBCP action groups III Reports from the data management centres IV Distribution of GTS and non-GTS platforms by country V Number of drifting buoy data on GTS by country and sensor VI Evolutions and distributions of RMS (Obs.-First Guess) (from ECMWF statistics) VII List of regional receiving stations VIII ARGOS receiving station network IX National focal points for the DBCP X Financial statements provided by IOC and WMO FOREWORD th I have pleasure in presenting the 18 Annual Report of the Data Buoy Cooperation Panel. Once again, as detailed in the report, the Panel has had a highly productive year, largely through the efforts of its Action Groups and its tireless Technical Coordinator.
    [Show full text]
  • DBCP-28 Doc 7
    WORLD METEOROLOGICAL ORGANIZATION INTERGOVERNMENTAL OCEANOGRAPHIC ___________ COMMISSION (OF UNESCO) _____________ DATA BUOY COOPERATION PANEL DBCP-29/ Doc. 7 rev. 3 (16-Sep-13) _______ TWENTY-NINTH SESSION ITEM: 7 PARIS, FRANCE ENGLISH ONLY 23-27 SEPTEMBER 2013 REPORTS BY THE DBCP ACTION GROUPS 2013 (Submitted by the Action Groups) Summary and purpose of the document This documents includes in its appendices the reports from the DBCP Action Groups on their respective activities during the last intersessional period. ACTION PROPOSED The Panel will review the information contained in this report and comment and make decisions or recommendations as appropriate. See part A for the details of recommended actions. _______________ Appendices: A. Report by the Global Drifter Programme (GDP) B. Report by the Tropical Moored Buoy Implementation Panel (TIP) C. Report by the EUCOS Surface Marine Programme (E-SURFMAR) D. Report by the International Buoy Programme for the Indian Ocean (IBPIO) E. Report by the DBCP-PICES North Pacific Data Buoy Advisory Panel (NPDBAP) F. Report by the International Arctic Buoy Programme (IABP) G. Report by the WCRP-SCAR International Programme for Antarctic Buoys (IPAB) H. Report by the International South Atlantic Buoy Programme (ISABP) I. Report by the Ocean Sustained Interdisciplinary Timeseries Environment observation System (OceanSITES) J. Report by the International Tsunameter Partnership (ITP) DBCP-29/Doc. 7 rev. 3, p. 2 -A- DRAFT TEXT FOR INCLUSION IN THE FINAL REPORT 7.1 Under this agenda item, the Panel was presented with reports by the DBCP Action Groups. Each group maintains an observational buoy program that supplies data for operational and research purposes.
    [Show full text]