Submerged Turret Loading of Oil in Ice

Total Page:16

File Type:pdf, Size:1020Kb

Submerged Turret Loading of Oil in Ice SUBMERGED TURRET LOADING OF OIL IN ICE Sveinung Løset1, Arnor Jensen1 and Ola Ravndal2 1Department of Structural Engineering, Norwegian University of Science and Technology, Trondheim 2Navion ASA, Stavanger ABSTRACT One of the keys to an efficient loading of oil in the Arctic offshore is probably a subsea solution where the interference with ice is at a minimum. Therefore an attempt to assess the performance of an Arctic Shuttle Barge System including a subsea mooring and loading terminal was done at a model- scale of 1:25 in the Hamburg Ship Model Basin (HSVA) ice tank in 1999. The system consists of a barge of about 120 000 tons loaded displacement and 80 000 tons ballast displacement (90 000 DWT, length overall Loa = 265.5 m,) and a pusher/icebreaker of about 8000 tons displacement (2000 DWT, Loa = 86 m). The pusher serves as the main propulsion and connects/disconnects to a notch in the aft of the barge. The operational performance and forces exerted on the barge, the pusher and the mooring system, including a riser, were investigated. The system was pushed by the pusher through level ice or towed through level ice and pressure ridges by the mooring system. The latter simulated the moored condition in drifting ice. This paper describes the test set-up, procedures and performance of the concept when manoeuvring into the loading position in level ice. The maximum ice breaking force was about 23000 kN during a ridge event. The paper also elaborates on the use of a wedged plough and ice milling propellers to avoid ice from interfering with the mooring lines and riser. Finally we have a brief discussion on how the transhipment at the ice edge could be done. 1. INTRODUCTION Plans for exploitation of hydrocarbon resources discovered in the European Arctic are still in an early stage. Currently, plans are being made for gas production from the huge gas reserves in the Shtockmanovskoye field in the eastern Barents Sea and oil production from some fields in the Pechora Sea. At the moment there is no oil production in the Barents Sea except for minor production on the Kolguyev Island. This production is based on summer shipping of the crude oil. Onshore, oil has been produced since 1988 from the Kharyaga oil field and recently from the Ardalin oil field, both in Nenets okrug. This oil is shipped Southwest to Yaroslavl through the Transneft pipeline. Offshore, waves and ice loads will govern the design of oil production and off-take systems. For instance, the ice regime makes demands beyond the tremendous challenge the oil industry faced in the North Sea almost three decades ago. Structures and vessels shall apply environmentally sound and cost-effective technologies as well as securing human safety in a hostile environment. Onshore, the infrastructure, including the foundation for pipelines on permafrost and river crossings are major concerns. The paper gives a brief introduction to some of the problems we foresee connected to export of oil from a sea with drift ice present most of the year. Further, the paper elaborates on the major findings from the current study of the Arctic Shuttle Barge System and discuss a possible transhipment at the ice edge. 2. TECHNICAL CONCERNS WITH LOADING OF OIL IN THE ARCTIC OFFSHORE 2.1 History On a larger scale there is no proper experience with production and export of oil and gas from the Arctic offshore using icebreakers and tankers. The petroleum activity in the early 1970's in the Beaufort Sea never came to a stage where real offshore production was a part of the scenario. However, several exploration wells were drilled offshore. Fig. 1a shows the distribution by year of wells drilled by the different types of structures. There is no obvious trend of one structure displacing another, it is rather governed by water depth and ice conditions on the drill site (Masterson et al., 1991). Fig. 1b shows cost indications pertaining to the different types of structures. Further, Masterson et al. conclude that there seems to be a good potential for developing turret moored solutions for deeper water areas such as the Chukchi Sea. A ship shape turret moored system would have the advantage of being capable of operating in severe wave conditions as well as coping with the dynamic conditions of an ice field. (a) (b) Fig. 1. (a) Types of structures by year in the Beaufort Sea, and (b) cost of Beaufort Sea islands. The costs quoted are in US $ (Masterson et al., 1991). 2.2 Ice drift The motion of the ice is a crucial question when planning an off-take system. Let us now focus on the drift of four Argos positioned buoys (Buoys 06640, 22435, 24050 and 24051) that were deployed on the drift ice in the Pechora Sea during mid-April 1998 (Løset and Onshuus, 1999). The drift of the four buoys is shown in Fig. 2. (a) (b) (c) (d) Fig. 2. Drift of: (a) Buoy 06640, period 17.04-30.06.98; (b) Buoy 22435, 17.04-30.05.98;(c) Buoy 24050, period 17.04-10.06.98 and (d) Buoy 24051, period 20.04-23.06.98. The drift is mainly governed by wind, waves, ocean currents and tidal forcing. Let us look for mathematical properties of the motion. On a large time scale the motion is clearly stochastic, and with the exception of periods with rather straight-lined movement, it resembles Brownian motion: Though mathematically attractive, Brownian motion is obviously not suited to describe ice motion on a smaller time scale. Since ice floes are generally large and heavy objects, the direction and absolute value of their speed can not change instantly. But the question is, how fast does it change? Let us study the latitude and longitude position values as functions of time, and assume that they can be expressed as sums of harmonic functions. Denoting longitude X(t), we get m (1) X (t) = å Ai coss it + Bi sins it i=1 As this is a deterministic function, we need to guess what are the m frequencies of interest. If the N t , X original longitude time series is given as n j j s j =1 , the least square approximations of the coefficients Ai and Bi are N $ 2 Ai = å X j coss it j N j =0 N (2) $ 2 Bi = å X j sins i t j N j =0 With the frequencies and weights at hand, we could turn Eq. (1) into a stochastic model, by changing Ai and Bi to Gaussian random variables. We can derive a continuous model on the latitude/longitude under the assumption that it is given by the sum of 20 000 harmonic functions, with frequencies ranging from 10 minutes to 2 months. If we assume that this model is a valid representation of the ice dynamics, Fig. 3 gives an impression of the movements during a 24-hour period. Fig. 3. Modelled movement of the ice drift. Dots every 10 minutes. We see that the model predicts rather steady motion of the ice, but occasionally the ice drift may change to the opposite direction in roughly half an hour. This is a major concern for the conventional loading concept where the tanker, say 90 000DWT, is staying in the wake behind the platform/tower as shown in Fig. 4. This situation should call for a subsea loading concept where there is a minimum of interference with the sea ice and the tanker can 'ice-vane' all depending on the movement of the drift ice. Fig. 4. Sketch of a typical loading system where the tanker is located in the wake of the loading platform/tower. 2.3. A new approach to loading and export of oil in ice With the concerns indicated above in mind, recently we have made several efforts to demonstrate that new techniques such as the Submerged Turret Loading (STL) can be utilised for the purpose of loading and export of oil in ice (Løset et al., 1998; Jensen et al., 2000a,b). In open water this concept proves an excellent performance. In Arctic waters, such as the Eastern Barents Sea, the presence of drifting ice implies of course additional challenges such as loads from level ice and pressure ridges. The use of the barge concept for export of oil includes the following four major phases: · initial approach to the loading facility · final approach and hook-up · loading and departure. The physical environment and its rate of change will have impact on each of these operations and especially affect the feasibility, time consumption, and thus the regularity. The initial approach includes the last part of the transit where the tanker is in a more or less straight transit mode heading against or with the ice drift. For this phase it is believed that the shuttle tanker typically will run at 1 to 2 knots in 1.2 m thick level ice, i.e. 2 to 4 nautical miles in 2 hours without icebreaker support (Jensen et al., 2000a). The concerns are then the ice breaking performance of the tanker and the manoeuvrability. The final approach and hook-up include sailing from the end of the initial phase to the loading position. This phase also includes manoeuvring time and hook-up time. Jensen et al. (2000a) suggest that the time consumption will be maximum four hours when unescorted and about one hour when escorted (Jolles et al., 1997). In this phase the major concerns are the horizontal positioning (becoming increasingly important in shallow waters due to less horizontal flexibility of the buoy), ice breaking performance of the tanker and loads on the tanker.
Recommended publications
  • DNVGL-RU-SHIP Pt.5 Ch.10 Vessels for Special Operations
    RULES FOR CLASSIFICATION Ships Edition July 2017 Part 5 Ship types Chapter 10 Vessels for special operations The content of this service document is the subject of intellectual property rights reserved by DNV GL AS ("DNV GL"). The user accepts that it is prohibited by anyone else but DNV GL and/or its licensees to offer and/or perform classification, certification and/or verification services, including the issuance of certificates and/or declarations of conformity, wholly or partly, on the basis of and/or pursuant to this document whether free of charge or chargeable, without DNV GL's prior written consent. DNV GL is not responsible for the consequences arising from any use of this document by others. The electronic pdf version of this document, available free of charge from http://www.dnvgl.com, is the officially binding version. DNV GL AS FOREWORD DNV GL rules for classification contain procedural and technical requirements related to obtaining and retaining a class certificate. The rules represent all requirements adopted by the Society as basis for classification. © DNV GL AS July 2017 Any comments may be sent by e-mail to [email protected] If any person suffers loss or damage which is proved to have been caused by any negligent act or omission of DNV GL, then DNV GL shall pay compensation to such person for his proved direct loss or damage. However, the compensation shall not exceed an amount equal to ten times the fee charged for the service in question, provided that the maximum compensation shall never exceed USD 2 million.
    [Show full text]
  • " (Acaw Ai O, 1 May 16, 1961 T
    May 16, 1961 T. T. UNDE 2,984,202 LASHING ARRANGEMENT FOR PUSHER TOWBOAT AND BARGE Filed Jan. 6, 1958 2 Sheets-Sheet INVENTOR. 77/CAMAS 7 AUWDA " (acAW ai O, 1 May 16, 1961 T. T. LUNDE 2,984,202 LASHING ARRANGEMENT FOR PUSHER TOWBOAT AND BARGE Filed Jan. 6, 1958 2. Sheets-Sheet 2 AF/G6 INVENTOR. 77/OMAS 7 A. WDA A77ORway 2,984,202 United States Patent Office Patented May 16, 1961 2 Fig. 3 is a schematic top elevational view of the barge and towboat; Fig. 4 is a side elevational view of the towboat pusher 2,984,202 plpe; LASHING ARRANGEMENT FOR PUSHER 5 Fig. 5 is a front elevational view of the towboat TOWBOAT AND BARGE pusher-pipe; Thomas T. Lunde, 233 Cervantes Blvd., Fig. 6 is an exploded perspective view of the barge San Francisco, Calif. pusher-block; Fig. 7 is a perspective view of the barge pusher-block Filed Jan. 6, 1958, Ser. No. 707,425 O engaged with the towboat pusher-pipe; and 10 Claims. (C. 114-235) Fig. 8 is a perspective view of a special towline fitting. Referring now specifically to Figs. 1, 2 and 3, a pusher towboat , of conventional design, is shown in pushing contact with a load-carrying barge 2, in its un This invention relates to a method and apparatus for 15 laden condition in Fig. 1 and in its laden condition in lashing a pusher vessel or towboat to a load-carrying Fig. 2 as illustrated by the relative freeboard indicated in pushed vessel or barge.
    [Show full text]
  • Beach Nourishment Techniques: Report 1: Dredging Systems For
    BEACH NOURISHMENT TECHNIQUES R ep ort I DREDGING SYSTEMS FOR BEACH NOURISHMENT FROM OFFSHORE SOURCES by Thomas W. Richardson Hydraulics Laboratory U. S. Army Engineer Waterways Experiment Station P. O. Box 631, Vicksburg, Miss. 39180 September 1976 Report I of a Series Approved For Public Release; Distribution Unlimited TA 7 Prepared for Office, Chief of Engineers, U. S. Army .W34t Washington, D. C. 2 0 3 14 H-76-13 1976 Voi. 1 C . 3 BUREAU OF RECLAMATION LIBRARY DENVER, CO Destroy this report when no longer needed. Do not return it to the originator. P.yi!P.A.y .P f RECLAMATION DENVER LIBRARY 92071163 o'5 i Unclassified SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER Technical Report H-76-13 4 . T I T L E (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED BEACH NOURISHMENT TECHNIQUES; Report 1, DREDGING SYSTEMS FOR BEACH NOURISHMENT Report 1 of a series FROM OFFSHORE SOURCES 6. PERFORMING ORG. REPORT NUMBER 7. A U TH O R fsj 8. CONTRACT OR GRANT NUMBERS Thomas W. Richardson 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS U. S. Army Engineer Waterways Experiment Station Hydraulics Laboratory P. 0. Box 631, Vicksburg, Miss. 39180 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE September 1976 Office, Chief of Engineers, U. S. Army Washington, D. C. 2031** 13. NUMBER OF PAGES 83 1 4 . MONITORING AGENCY NAME & ADDRESSfi/ different from Controlling Office) 15.
    [Show full text]
  • Environmentally-Friendly Dredging in the Bisan-Seto Shipping Route
    Environmentally-friendly dredging in the Bisan-Seto Shipping Route Seiki Takano1, Kazuhiro Someya2, Hidetoshi Nishina3, Ryoichi Takao⁴ , Shinji Yamamoto⁵ , Yuji Inoue⁶ Abstract:Japan’s Bisan-Seto Shipping Route serves as both a key a route for domestic shipping between Osaka and Kyushu and as an international sea trade route. Between fiscal year 1963 and 1972, the Ministry of Land, Infrastructure and Transport implemented a government-controlled program to improve this sea route. Approximately 38.4 million cubic meters of solids, including bedrock, were dredged to increase the depth of the northern shipping route to –19 m, the southern and connecting shipping route to –13 m, and the Mizushima Shipping Route to –17 m. The Ministry of Land, Infrastructure and Transtport performed every few years this dredging in response to the complex surrounding geography and tidal characteristics of the shipping route, which cause sediment build-up and reduce the functionality of the shipping route. The dredging involves barge-loading pump dredgers, with the dredged material loaded onto barges for transportation to disposal areas. This work lead to the overflow of turbid water from hopper of barges into surrounding sea areas, causing marine turbidity. The most recent Bisan-Seto Shipping Route dredging program was carried out over a five-year period, from fiscal year 2001 through 2005. The program incorporated studies on environmentally-friendly dredging methods that do not generate turbidity, leading to the selection of a method that recirculates overflow water from the barge to the dredger suction inlet, and realized an approach to prevent the generation of turbidity without reducing dredging efficiency.
    [Show full text]
  • Reference Manual on Maritime Transport Statistics 1
    Reference Manual on Maritime Transport Statistics 1 2019 Reference Manual on Maritime Transport Statistics Version 4.1 (October 2019) Reference Manual on Maritime Transport Statistics 2 Reference Manual on Maritime Transport Statistics 3 INTRODUCTION ........................................................................................................................................................7 PART I: METHODOLOGY, DEFINITIONS AND CLASSIFICATIONS .................................................................................8 3.1 Ports ................................................................................................................................................... 14 3.1.1 List of ports ................................................................................................................................. 14 3.1.2 Port ............................................................................................................................................. 15 3.1.3 Statistical port (reporting port) .................................................................................................... 15 3.1.4 Main port .................................................................................................................................... 16 3.1.5 Other port (data set A3) .............................................................................................................. 16 3.1.6 UN/LOCODE ...............................................................................................................................
    [Show full text]
  • Prevalence of Heavy Fuel Oil and Black Carbon in Arctic Shipping, 2015 to 2025
    Prevalence of heavy fuel oil and black carbon in Arctic shipping, 2015 to 2025 BRYAN COMER, NAYA OLMER, XIAOLI MAO, BISWAJOY ROY, DAN RUTHERFORD MAY 2017 www.theicct.org [email protected] BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ACKNOWLEDGMENTS The authors thank James J. Winebrake for his critical review and advice, along with our colleagues Joe Schultz, Jen Fela, and Fanta Kamakaté for their review and support. The authors would like to acknowledge exactEarth for providing satellite Automatic Identification System data and for data processing support. The authors sincerely thank the ClimateWorks Foundation for funding this study. For additional information: International Council on Clean Transportation 1225 I Street NW, Suite 900, Washington DC 20005 [email protected] | www.theicct.org | @TheICCT © 2017 International Council on Clean Transportation TABLE OF CONTENTS Executive Summary ................................................................................................................. iv 1. Introduction and Background ............................................................................................1 1.1 Heavy fuel oil ................................................................................................................................... 2 1.2 Black carbon .................................................................................................................................... 3 1.3 Policy context ..................................................................................................................................4
    [Show full text]
  • Inland Waterways Audit Techniques Guide
    Inland Waterways Audit Techniques Guide NOTE: This document is not an official pronouncement of the law or the position of the Service and can not be used, cited, or relied upon as such. This guide is current through the publication date. Since changes may have occurred after the publication date that would affect the accuracy of this document, no guarantees are made concerning the technical accuracy after the publication date. Contents Preface............................................................................................................................................. 2 Chapter 1 - Overview of the Inland Waterway Industry................................................................. 3 I. General.................................................................................................................................... 3 II. Economic Impact.................................................................................................................... 3 III. Reporting Requirements ....................................................................................................... 4 IV. Industry Organizations and Trade Associations ................................................................... 4 V. Useful Internet Sites .............................................................................................................. 4 Chapter 2 - Pre-Audit Analysis ....................................................................................................... 6 I. Pre-Audit Planning .................................................................................................................
    [Show full text]
  • Shipbreaking" # 54
    Shipbreaking Bulletin of information and analysis on shipbreaking # 54 Overview: from October 1 to December 31, 2018 + Overview 2018 March 1, 2019 Stellar Fair, beached at Chittagong, p 40. © Shipbreaking / Facebook group Robin des Bois - 1 - Shipbreaking # 54 – March 2019 4th quarter overview Content Content 2 Oil tanker 23 Bulk carrier 39 4th quarter overview 2 American Eagle Tankers 24 Stellar Fair, Polaris Shipping 40 Greece, clening up in Eleusis 3 Nordic American Tankers 28 Miscellanous: cement carrier, heavy 41 Car carrier, the International Car Show 4 Chemical tanker 32 load carrier, dredger Car ferries, asbestos palaces 5 Gas carrier 33 pusher-tug, other 43 General cargo ship 8 Combination carrier (OBO) 33 2018 overview 44 Container ship, the Kings of Box 13 Drilling ship 34 A gloomy year for safety 44 in Chaos Transocean Tons, cash, deflagging 45 CSL Virginia 15 Offshore service vessel 35 China, Turkey, Europe 45 Reefer 20 Safety standby vessel 38 France: Rio Tagus, one step forward 48 Factory-ship 21 Pipe-layer vessel 38 Ro Ro 22 Research vessel 38 Sources 49 October-November-December 2018 182 ships, +43%. 1,7 million tons, +51% compared to the 3rd quarter. Decrease compared to the first two quarters. The end- of-year big rush did not happen, it was done in small steps. Bangladesh crushes the market with 48% of the tonnage to be scrapped far ahead of India (28%), then Pakistan (5%). 158 ships scrapped in Asia, 95% of the global tonnage. Of these, 60 were built in the European Union and Norway and 61 belonged to shipowners from the European Union or the European Economic Area.
    [Show full text]
  • Casino Riverboat Crew Goes Seafarers Poge 3
    vVv,;' • -• 'v m V>r-y•^'r ". '' ^ '••-f..• ! Protest to User 'Taxes' Spreads ATUNTIC GULF> LAKiS ANG MM SEAEUSERS :• ' '4 ' •'•yy. Volume 53, Number 10 October 1991 Casino RIverboat Crew Goes Seafarers Poge 3 '•:y :fc' mployees on the Alton Belle Casino, a riverboat gambling ship, a gift shop and a ticket sales office. Some employees work as telephone have designated the Seafarers International Union as their collective reservationists out of an office. The venture, based in Alton, III., is the first Ebargaining representative. The employees work aboard the vessel and of its kind to begin operation since the state's legislature enacted a bill on the company's floating barge which houses two restaurants, a lounge. allowing gambling on vessels plying its waterways. Page 3. ir . iif- . :l r'S < ' J I. J. ' • •• i . ( • SlU in Sea Rescue It Ain't Over, 'Tii it's Over Seafarers plucked four people from a life raft 300 miles off the coast of North Carolina last Uncertainty still surrounds the Persian Gulf area with month. The rescued individuals were adrift for four days after their 100-year-old schooner Iraq playing tough in allowing inspection of its weapons :f:l sank as a result of taking on water when a wooden plank ruptured. SS Lake Chief Cook Judith and nuclear arsenals. Meanwhile 1,250 Iraqi mines have Chester (right) provides two of the schooner's crewmembers with a warm drink and blankets been detonated or defused in Persian Gulf waters. not long after they were rescued. Page 5. Pages 3 and 28.
    [Show full text]
  • Collisions Involving Tugs and Tows Joseph Sweeney Fordham University School of Law
    Fordham Law School FLASH: The Fordham Law Archive of Scholarship and History Faculty Scholarship 1995 Collisions Involving Tugs and Tows Joseph Sweeney Fordham University School of Law Follow this and additional works at: https://ir.lawnet.fordham.edu/faculty_scholarship Part of the Law Commons Recommended Citation Joseph Sweeney, Collisions Involving Tugs and Tows, 70 Tul. L. Rev. 581 (1995) Available at: https://ir.lawnet.fordham.edu/faculty_scholarship/813 This Article is brought to you for free and open access by FLASH: The orF dham Law Archive of Scholarship and History. It has been accepted for inclusion in Faculty Scholarship by an authorized administrator of FLASH: The orF dham Law Archive of Scholarship and History. For more information, please contact [email protected]. Collisions Involving Tugs and Tows Joseph C. Sweeney* This Article examines the negligenceprinciples that govern an action arising out of a collision involving a tug and its tow. First,it canvasses the navigationalduties imposed on the tug. Specifically, tug unseaworthiness,towlines of improper length, and tugmaster ignorance may give rise to liability. The Article also briefly presents the duties imposed on towed vessels. Next, the Article explores negligence clauses in tug-tow contracts and concludes that contractualprovisions that absolve tugboat owners of negligence liability are againstpublic policy and therefore invalid. The Article explores the liability of the tug and tow when a third party is involved in the collision and concludes by examining practical steps to deal with human errordisasters as a means ofcollision prevention. I. INTRODUCTION ............................................................................ 581 I1. NEGLIGENCEPRIcCImLES ............................................................ 582 III. NAVIGATIONAL DUTIs OF THE TUG IN COLLISION ...................
    [Show full text]
  • Small Scale Dredging
    SMALL SCALE DREDGING AN INTRODUCTION IT’S IN OUR NATURE Small-scale dredging TABLE OF CONTENTS 1. INTRODUCTION: SMALL-SCALE DREDGING………………………………………………………………….. 2 2. CRITERIA FOR SELECTING DREDGING TECHNIQUE……………………………………………………….. 3 3. DREDGING TECHNIQUES……………………………………………………………………………………………… 5 4. TRANSPORT OF DREDGED MATERIALS……………………………………………………………………….. 17 5. STORAGE OF DREDGED MATERIALS……………………………………………………………………………. 21 “Small-scale dredging” Conver 2014 1 / 22 Small-scale dredging 1. INTRODUCTION: SMALL-SCALE DREDGING The word dredging probably originates from the old English word “dragan”, or to draw. Dredged materials normally involve a layer of soft matter, which is formed when plants, waste, soil material and leaves cling to the bottom of waterways. In time, this can have an impact on shipping traffic or the capacity of the waterway in question. Dredging is carried out for a variety of reasons. However, in most cases, dredging is done for maintenance purposes and to ensure sufficient water flow. Small-scale dredging projects generally involve drainage channels and modified rivers in areas with artificial (pumped) drainage and smaller urban and suburban waterways, which are not used for shipping activities. Photos: Reduced water flow 2 / 22 Small-scale dredging 2. CRITERIA FOR SELECTING DREDGING TECHNIQUE A variety of dredging techniques have been developed over the years. When preparing for dredging activities, a decision must be made of which dredging technique is best suited to the activities in question. When doing so, the following factors must be taken into consideration: - composition of dredged materials - type and level of pollution - specific circumstances - size of project - acceptable opacification and spillage - required accuracy - side-effects - ecological considerations Composition of dredged materials The choice of dredging technique is also determined by the physical composition of the materials that must be dredged.
    [Show full text]
  • Tug and Workboat Design Guide
    TUG AND WORKBOAT DESIGN GUIDE Tug and workboat design guide his design guide is meant to provide a basic primer for the of which changes their angle of attack as the disc rotates, thereby general reader to help understand the many types of tugs, generating thrust in the desired direction. T workboats and other small commercial craft which ply our Z-Drive — a drive system using a screw propeller driven through waters and some of their features and capabilities. Working closely two right angle gears and which can be rotated through 360 degrees. with Robert Allan Ltd., we have developed the following compila- tion. Robert Allan Ltd. has, over its 82 years of business, designed Tug types (or functions) many hundreds of working vessels of all types customized to fit Broadly speaking, tugs are designed to perform one or more very the specific needs of their clients worldwide. The descriptions and specific functions and are thus categorized accordingly. Of course samples below are just that — a sample of the myriad vessel types many tugs also tend to get used to perform more than one of these in this category. duties and thus become more “multi-purpose”. As with all things, the more diverse the duties the more compromised the design be- Tugboats: comes in terms of its ability to do any one function very well! Tugs and barges are the primary means of cargo transportation Robert Allan Ltd. is the world’s leading designer of tugboats to- used on the B.C. Coast, but this is an application rather unique day, accounting for something in the order of 35 to 40 per cent to this area.
    [Show full text]