17. Vascular Pathology III. Heart Failure 1

Total Page:16

File Type:pdf, Size:1020Kb

17. Vascular Pathology III. Heart Failure 1 17. Vascular pathology III. Heart failure DISEASES OF THE HEART Content Cardiac hypertrophy and congestive heart failure Cor pulmonale Hypertensive heart disease Ischemic heart disease Valvular diseases Myocardial diseases Congenital heart diseases Diseases of the pericardium Cardiac neoplasms HYPERTROPHY OF THE HEART AND HEART FAILURE Normal values assessed by echocardiography Free wall thickness: RV: 3-4 mm, LV:10-11 mm End-diastolic volume (EDV) 120 ml, end-systolic volume (ESV) 50 ml, stroke volume (SV) 70 ml Weight: women: 300 gs, men: 350 gs Hypertrophy of the heart The cardiac myocytes are permanent cells (not able to enter the cell cycle) and, therefore, are not able to proliferate Increase in work load increase in size and pumping capacity of ventricular myocytes Weight > 400 g Types: concentric or dilative Concentric hypertrophy Pathogenesis An obstruction of outflow in systole (i.e., hypertension, aortic valve stenosis) the LV increases the end-systolic pressure pressure overload concentric remodeling and hypertrophy Morphology Concentric hypertrophy of the LV: small lumen; markedly increased wall thickness (> 20 mm); increased mass (> 500 g) Clinical features of pressure-overloaded LV Symptomless for a long period Pump failure occurs lately Risk of sudden cardiac death Dilative hypertrophy Pathogenesis Aortic/mitral valve incompetence leads to diastolic backflow the regurgitated extra volume of blood is accepted with the dilation of the LV an increased EDV is ejected into the circulation during the next systole (volume overload) excentric remodeling and hypertrophy Morphology Dilative hypertrophy of LV: enlarged lumen, enlarged size, slightly increased wall thickness, increased mass Clinical features of volume-overloaded LV Pump failure occurs relatively early Good response to drugs increasing contractility The overall prognosis is better than that of pressure-overloaded heart Cardiac hypertrophy (HT) culminates in congestive heart failure Hypertension or aortic stenosis-induced pressure overload concentric HT Noncontracting areas in myocardial infarction induce volume overload dilative HT Aortic or mitral incompetence-induced volume overload dilative HT These conditions lead to increased cardiac work increased wall stress increased cell strech progressive dilative hypertrophy decreased contractility (systolic dysfunction) Neurohumoral activation occurs: increased secretion of atrial natriuretic peptide and norepinephrin, activation of the renin-angiotensin-aldosteron system Pump failure, arrhythmias death ARRHYTHMIAS Two types: tachyarrhythmia (>100 beats/minute) and bradyarrhythmia (<60 beats/minute) Dg.: upon ECG features Atrial fibrillation and ventricular tachyarrhythmias have particular importance Atrial fibrillation Pathogenesis Most common arrythmia, due to atrial fibrosis resulting from atrial strech, atrial ischemia, neurohumoral activation, etc.. The electrical signals don't begin in the SA node. Instead, they begin in another part of the atria (300-600/minute) and spread a rapid, disorganized way; only a proportion of the impulses are conducted to the ventricles. The atria and ventricles do not beat in a coordinated way; the ventricles usually beat 100 to 180 times a minute tachyarrhythmia Some risk factors of atrial fibrosis Coronary heart disease, hypertensive heart disease, valvular heart disease 1 17. Vascular pathology III. Heart failure Congestive heart failure per se Hyperthyroidism, alcohol toxicity, etc., Clinical features Can be symptomatic (palpitation [feeling that your heart is beating too hard or too fast, skipping a beat, or fluttering], tachyarrhythmia, dizziness, etc.,) or asymptomatic The pulse at wrist feels irregular and beats may be variable in strength Complications: atrial thrombi, embolism induced-cerebral infarction, heart failure, and syncope [fainting; short loss of consciousness and muscle strength] Treatment Sinus rhythmus can be achieved with antiarrhythmic drugs or electrical cardioversion or catheter-based ablation technologies Anticoagulant therapy to prevent thrombus formation Life-threatening ventricular tachyarrhythmias Sustained ventricular tachycardia (>30 sec) Results in dizziness, syncope, hypotension and cardiac arrest Pulse rate between 120 and 220 beats/minute Emergency electrical cardioversion is often necessary Ventricular fibrillation Very rapid and irregular ventricular activation with no mechanical effect The patient is pulseless and becomes rapidly unconscious, and respiration ceases (cardiac arrest) Treatment: electrical defibrillation CONGESTIVE HEART FAILURE (HF) The myocardium is no longer able to pump sufficient blood to meet the need of the body, even at rest Reduced systolic output (forward failure) is accompanied by inadequate emptying of the heart chambers (backward failure) congestion in the venous circulation Classification The pump failure may involve the left or right ventricle or both; and may be acute or chronic Outcome: most frequent cause of death ACUTE LEFT-SIDED HF Causes • Hypertensive crisis • Acute myocardial infarction • Others Morphology Features of hypertensive heart disease or acute myocardial infarction + pulmonary edema: lungs >1200 gs, congested and wet, airways contain bubbly fluid Clinical features Forward failure (echocardiography: ejection fraction ≤40%): hypoperfusion and dysfunction of major organs Brain - somnolence loss of concioussness Kidney - oliguria Liver - jaundice Gut - trophic erosions/ulcers bleeding Backward failure Pulmonary edema, cardiac dyspnea (shortness of breath) and tachypnea + right HF Outcome Varies, frequently results in death CHRONIC LEFT-SIDED HF Causes • Hypertensive heart disease • Ischemic heart disease • Valvular heart disease: aortic stenosis, aortic incompetence, and mitral incompetence Morphology LV hypertrophy and dilation (wall thickness > 15 mm) Lateral dysplacement of the papillary muscles causing mitral regurgitation Subsequent chronic dilation of the LA + thrombus in the left auricle Brown induration of lungs Clinical features Forward failure physical activity, weakness Backward failure Dyspnea during exercise than at rest, fluid retention, pulmonary edema, later systemic venous edema Mitral regurgitation: systolic murmur!; LA dilation atrial strech chronic atrial fibrillation thrombus in the left auricle danger of systemic thromboembolism Prevention of thrombus formation: anticoagulation Outcome The pump failure in the terminal phase is lethal (New York Heart Association grading for cardiac status; NYHA Grade IV) Frequently, intercurrent upper airway or pulmonary infections (influenza, bronchopneumonia) are the direct cause of death 2 17. Vascular pathology III. Heart failure ACUTE RIGHT-SIDED HF Cause Massive pulmonary thromboembolism: obstruction of >50% of the pulmonary vascular bed Morphology Dilation of the RV plus Acute systemic congestion: passive hyperemia of liver, spleen, kidneys, GI mucosa Outcome Fatal in significant number of cases Prolonged right HF and the liver Hepatic congestion is complicated with necrosis in the centrilobular regions; the necrotic foci undergo sec. hemorrhage due to sinusoidal ruptures: central hemorrhagic necrosis Necroenzymes AST (aspartate aminotransferase) and ALT (alanine aminotransferase) become elevated in the blood CHRONIC RIGHT-SIDED HF Dilation and hypertrophy of the RV in response to chronic pulmonary hypertension Causes 1. Chronic left-sided HF; mitral stenosis 2. Chronic diseases of the lung (chronic cor pulmonale) Obstructive diseases: chronic bronchitis, emphysema, bronchiectasis, + bronchial asthma Restrictive (interstitial) diseases, such as idiopathic pulmonary fibrosis, pneumoconiosis, Boeck sarcoidosis 3. Diseases of the pulmonary artery Recurrent pulmonary thromboembolism Primary pulmonary hypertension 4. Deformities affecting chest movement Pectus carinatum (pigeon’s chest) Pectus excavatum (funnel chest) Kyphoscoliosis (abnormal curvature of the spine in both a coronal and sagittal plane) 5. Neuromuscular diseases affecting respiratory muscles Morphology RV hypertrophy (thickness › 6 mm) + dilation, and manifestations of chronic systemic congestion • Anasarca (pedal and pretibial edema; in bedridden patients: primarily presacral) • Bilateral hydrothorax (500 - 1000 ml) • Hydropericardium (300 - 500 ml) • Ascites • Cyanotic induration of liver, spleen (congestive hepato- and splenomegaly) • Chronic congestion of the gut mucosa Chronic congestion of liver: cyanotic induration fibrotic replacement of the hepatocytes cardiac fibrosis fibrotic septa form pseudolobules cardiac cirrhosis (rare) HYPERTENSIVE HEART DISEASE LV hypertrophy as a response to long-standing systemic arteriolar vasospasm Early phase: concentric hypertrophy of LV: wall thickness > 20 mm; weight > 500 g Late phase: LV hypertrophy + dilation: wall thickness < 20 mm; weight > 550 g Clinical features • Asymptomatic for a long time • Atrial fibrillation is common (results from LA enlargement and strech) • Cause of death in 1/3 of hypertensive patients (congestive HF, sudden death) • Since hypertension aggravates atherosclerosis, patients with hypertensive heart disease also suffer from coexisting ischemic heart disease ISCHEMIC HEART DISEASE (IHD) The most common cause of death in industrialized countries Pathogenesis Reduced coronary blood flow commonly due to coronary atherosclerosis Atherosclerosis causes chronic progressive narrowing of
Recommended publications
  • General Pathologic Anatomy
    МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ'Я УКРАЇНИ Харківський національний медичний університет GENERAL PATHOLOGIC ANATOMY Manual for practical classes in pathomorphology for English-speaking teachers ЗАГАЛЬНА ПАТОЛОГІЧНА АНАТОМІЯ Методичні розробки до занять з патоморфології для англомовних викладачів медичних закладів Затверджено вченою радою ХНМУ. Протокол № 15 від 15.06.2017. Харків ХНМУ 2017 1 General pathologic anatomy : мanual for practical classes in patho- morphology for English-speaking teachers / comp. I. V. Sorokina, V. D. Markovskiy, I. V. Korneyko et al. – Kharkov : KNMU, 2017. – 64 p. Compilers I. V. Sorokina V. D. Markovskiy I. V. Korneyko G. I. Gubina-Vakulik V. V. Gargin O. N. Pliten M. S. Myroshnychenko S. N. Potapov T. V. Bocharova D. I. Galata O.V. Kaluzhina Загальна патологічна анатомія : метод. розроб. до занять з пато- морфології для англомовних викладачів мед. закладів / упоряд. І. В. Сорокіна, В. Д. Марковський, І. В. Корнейко та ін. – Харків : ХНМУ, 2017. – 64 с. Упорядники I. В. Сорокіна В. Д. Марковський І. В. Корнейко Г. І. Губіна-Вакулик В. В. Гаргін О. М. Плітень М. С. Мирошниченко С. М. Потапов Т. В. Бочарова Д. І. Галата О. В. Калужина 2 Foreword Pathomorphology, one of the most important medical subjects is aimed at teaching students understanding material basis and mechanisms of the development of main pathological processes and diseases. This manual published as separate booklets is devoted to general pathological processes as well as separate nosological forms. It is intended to the English-medium students of the medical and dentistry faculties. It can be used as additional material used for individual work in class. It can also be used to master the relevant terminology and its unified teaching.
    [Show full text]
  • Cardiac Myofibroblasts Enhance Hypertrophy and Systolic Dysfunction, but Not Fibrosis in Experimental Autoimmune Myocarditis
    Cardiac myofibroblasts enhance hypertrophy and systolic dysfunction, but not fibrosis in experimental autoimmune myocarditis P­08.3­45 K. TkaczI, A. Jaźwa­KusiorII, F. RolskiI, E. DziałoI, K. WęglarczykI, M. CzepielI, M. SiedlarI, G. KaniaIII, P. BłyszczukI IJagiellonian University Medical College, Department of Clinical Immunology, Cracow, Poland, IIJagiellonian University, Faculty of Biochemistry, Biophysics and Biotechnology, Department of Medical Biotechnology, Cracow, Poland, IIIUniversity Hospital Zurich, Division of Rheumatology, Zurich, Switzerland Myocarditis is a common cause of dilated cardiomyopathy which is characterized by ventricular stiffening, cardiac fibrosis and heart failure. In experimental autoimmune myocarditis (EAM) susceptible mice are immunized with alpha myosin heavy chain (αMyHC) and complete Freund's adjuvant (CFA). CD4+ T cell­mediated acute cardiac inflammation is followed by fibrosis and systolic dysfunction. The aim was to investigate the role of fibroblasts and myofibroblasts in myocarditis and postinflammatory cardiomyopathy in EAM model. EAM was induced in BALB/c mice by immunization with αMyHC/CFA. We used reporter strains expressing EGFP under the type I collagen promoter and RFP under α­smooth muscle actin (αSMA) promoter and transgenic αSMA­TK mice with ganciclovir­inducible myofibroblasts ablation. Comparing unaffected heart, the number of cardiac fibroblasts (EGFP+) and the subset of myofibroblasts (EGFP+αSMA+) was unchanged at inflammatory (day 21) and fibrotic stages (day 40). EGFP+ fibroblasts were sorted from control and myocarditis­positive hearts (d21) and analyzed for the whole genome transcriptomics by RNA sequencing. Analysis of differentially expressed genes (min. 2x fold change, p value < 0.05) suggested activation of immune processes (mainly chemokine production), response to stress, cytoskeletal and extracellular matrix re­organization in cardiac fibroblasts in response to myocarditis.
    [Show full text]
  • Prognostic Significance of Myocardial Fibrosis Quantification By
    Journal of the American College of Cardiology Vol. 56, No. 4, 2010 © 2010 by the American College of Cardiology Foundation ISSN 0735-1097/$36.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2009.12.074 Cardiac Imaging Prognostic Significance of Myocardial Fibrosis Quantification by Histopathology and Magnetic Resonance Imaging in Patients With Severe Aortic Valve Disease Clerio F. Azevedo, MD, Marcelo Nigri, MD, Maria L. Higuchi, MD, Pablo M. Pomerantzeff, MD, Guilherme S. Spina, MD, Roney O. Sampaio, MD, Fla´vio Tarasoutchi, MD, Max Grinberg, MD, Carlos Eduardo Rochitte, MD São Paulo, Brazil Objectives We sought to determine whether the quantitative assessment of myocardial fibrosis (MF), either by histopathol- ogy or by contrast-enhanced magnetic resonance imaging (ce-MRI), could help predict long-term survival after aortic valve replacement. Background Severe aortic valve disease is characterized by progressive accumulation of interstitial MF. Methods Fifty-four patients scheduled to undergo aortic valve replacement were examined by ce-MRI. Delayed-enhanced images were used for the quantitative assessment of MF. In addition, interstitial MF was quantified by histologi- cal analysis of myocardial samples obtained during open-heart surgery and stained with picrosirius red. The ce- MRI study was repeated 27 Ϯ 22 months after surgery to assess left ventricular functional improvement, and all patients were followed for 52 Ϯ 17 months to evaluate long-term survival. Results There was a good correlation between the amount of MF measured by histopathology and by ce-MRI (r ϭ 0.69, p Ͻ 0.001). In addition, the amount of MF demonstrated a significant inverse correlation with the degree of left ventricular functional improvement after surgery (r ϭϪ0.42, p ϭ 0.04 for histopathology; r ϭϪ0.47, p ϭ 0.02 for ce-MRI).
    [Show full text]
  • Reversal of Maladaptive Fibrosis and Compromised Ventricular Function In
    Laboratory Investigation (2017) 97, 370–382 © 2017 USCAP, Inc All rights reserved 0023-6837/17 Reversal of maladaptive fibrosis and compromised ventricular function in the pressure overloaded heart by a caveolin-1 surrogate peptide Dorea Pleasant-Jenkins1,3, Charles Reese2,3, Panneerselvem Chinnakkannu1, Harinath Kasiganesan1, Elena Tourkina2, Stanley Hoffman2 and Dhandapani Kuppuswamy1 Chronic ventricular pressure overload (PO) results in congestive heart failure (CHF) in which myocardial fibrosis develops in concert with ventricular dysfunction. Caveolin-1 is important in fibrosis in various tissues due to its decreased expression in fibroblasts and monocytes. The profibrotic effects of low caveolin-1 can be blocked with the caveolin-1 scaffolding domain peptide (CSD, a caveolin-1 surrogate) using both mouse models and human cells. We have studied the beneficial effects of CSD on mice in which PO was induced by trans-aortic constriction (TAC). Beneficial effects observed in TAC mice receiving CSD injections daily included: improved ventricular function (increased ejection fraction, stroke volume, and cardiac output; reduced wall thickness); decreased collagen I, collagen chaperone HSP47, fibronectin, and CTGF levels; decreased activation of non-receptor tyrosine kinases Pyk2 and Src; and decreased activation of eNOS. To determine the source of cells that contribute to fibrosis in CHF, flow cytometric studies were performed that suggested that myofibroblasts in the heart are in large part bone marrow-derived. Two CD45+ cell populations were observed. One (Zone 1) contained CD45+/HSP47 − /macrophage marker+ cells (macrophages). The second (Zone 2) contained CD45moderate/HSP47+/macrophage marker − cells often defined as fibrocytes. TAC increased the number of cells in Zones 1 and 2 and the level of HSP47 in Zone 2.
    [Show full text]
  • Cardiac Fibrosis in Patients with Atrial Fibrillation: Mechanisms and Clinical Implications У
    Author's Accepted Manuscript У Cardiac fibrosis in patients with atrial М fibrillation: Mechanisms and clinical Г implications р Г Mikhail S. Dzeshka, MD, Gregory Y.H. Lip, MD, Viktor Snezhitskiy, PhD, Eduard Shantsila, PhD Journal of the American College of Cardiology й Volume 66, Issue 8, August 2015, P. 943-959 DOI: 10.1016/j.jacc.2015.06.1313 и р о т и з о п е Р STATE OF THE ART REVIEW Cardiac fibrosis in patients with atrial fibrillation: Mechanisms and clinical implications У Mikhail S. Dzeshka MD1,2 М Gregory Y.H. Lip MD1,3 Viktor Snezhitskiy PhD2 Г Eduard Shantsila PhD1 р Г 1University of Birmingham Centre for Cardiovascular Sciences, City Hospital, Birmingham B18 7QH, United Kingdom; 2Grodno State Medical University,й Grodno, Belarus; and 3Thrombosis Research Unit, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark. и р Total word count (including references,о figures legends, excluding tables and title page): 9,293 т Brief title: Cardiac fibrosis in иpatients with atrial fibrillation з Corresponding author:о Dr Eduard Shantsilaп , Tel: +44 121 507 5080, Fax: +44 121 554 4083, Email: [email protected] е Р 1 Competing interests G.Y.H.L. has served as a consultant for Bayer, Astellas, Merck, Sanofi, BMS/Pfizer, Biotronik, Medtronic, Portola, Boehringer Ingelheim, Microlife and Daiichi-Sankyo and has been on the speakers bureau for Bayer, BMS/Pfizer, Medtronic, Boehringer Ingelheim, У Microlife and Daiichi-Sankyo. M.S.D., V.S. and E.S. – none declared.М Г р Г й и р о т и з о п е Р 2 Abstract Atrial fibrillation (AF) is associated with structural, electrical and contractile remodeling of the atria.
    [Show full text]
  • Coronary Microvascular Dysfunction
    Journal of Clinical Medicine Review Coronary Microvascular Dysfunction Federico Vancheri 1,*, Giovanni Longo 2, Sergio Vancheri 3 and Michael Henein 4,5,6 1 Department of Internal Medicine, S.Elia Hospital, 93100 Caltanissetta, Italy 2 Cardiovascular and Interventional Department, S.Elia Hospital, 93100 Caltanissetta, Italy; [email protected] 3 Radiology Department, I.R.C.C.S. Policlinico San Matteo, 27100 Pavia, Italy; [email protected] 4 Institute of Public Health and Clinical Medicine, Umea University, SE-90187 Umea, Sweden; [email protected] 5 Department of Fluid Mechanics, Brunel University, Middlesex, London UB8 3PH, UK 6 Molecular and Nuclear Research Institute, St George’s University, London SW17 0RE, UK * Correspondence: [email protected] Received: 10 August 2020; Accepted: 2 September 2020; Published: 6 September 2020 Abstract: Many patients with chest pain undergoing coronary angiography do not show significant obstructive coronary lesions. A substantial proportion of these patients have abnormalities in the function and structure of coronary microcirculation due to endothelial and smooth muscle cell dysfunction. The coronary microcirculation has a fundamental role in the regulation of coronary blood flow in response to cardiac oxygen requirements. Impairment of this mechanism, defined as coronary microvascular dysfunction (CMD), carries an increased risk of adverse cardiovascular clinical outcomes. Coronary endothelial dysfunction accounts for approximately two-thirds of clinical conditions presenting with symptoms and signs of myocardial ischemia without obstructive coronary disease, termed “ischemia with non-obstructive coronary artery disease” (INOCA) and for a small proportion of “myocardial infarction with non-obstructive coronary artery disease” (MINOCA). More frequently, the clinical presentation of INOCA is microvascular angina due to CMD, while some patients present vasospastic angina due to epicardial spasm, and mixed epicardial and microvascular forms.
    [Show full text]
  • 1 the Role of Myocardial Fibrosis in Determining the Success Rate Of
    The role of myocardial fibrosis in determining the success rate of ablation for the treatment of atrial fibrillation Subothini Selvendran BSc (Hons) 1*, Nikhil Aggarwal BSc (Hons)1*, Justin Li 2, Gary Tse MBBS, MPH, PhD, FESC, FACC 3, Vassilios S Vassiliou MA, MBBS, MRCP, PhD, FHEA, FESC 1,4 Author Affiliations: 1 Royal Brompton Hospital and Imperial College London, UK 2 Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, P.R. China 3 Department of Medicine and Therapeutics, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China; Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China; School of Health Sciences, University of Manchester, United Kingdom ([email protected]) 4 Norwich Medical School, University of East Anglia, Bob Champion Research & Education Building, James Watson Road, Norwich, UK; Royal Brompton Hospital and Imperial College London, UK *SS and NA contributed equally Corresponding Author Dr Vassilios S Vassiliou Norwich Medical School, University of East Anglia, Second Floor, Bob Champion Research & Education Building, James Watson Road, Norwich, UK Email: [email protected] 1 Introduction Atrial fibrillation (AF) is the commonest cardiac arrhythmia observed in clinical practice currently affecting 1-2% of the general population 1. With an increasing lifespan its prevalence will also increase. Whilst technological advances have resulted in earlier and easier diagnosis of AF even outside of the hospital setting, the appropriate selection of patients for specific pharmacotherapy or electrophysiological ablation procedures has not seen similar improvement.
    [Show full text]
  • Diagnosis and Treatment of Myocardial Fibrosis in Hypertensive Heart Disease
    Advance Publication by J-STAGE Diagnosis and Treatment of Myocardial Fibrosis in Hypertensive Heart Disease Javier D´ıez, MD, PhD*,** Although hypertensive heart disease (HHD) is clinically characterized by development of left ventricular hyper- trophy in the absence of a cause other than arterial hypertension, changes in the composition of myocardial tissue also develop in arterial hypertension, leading to structural remodeling of the myocardium (eg, fibrosis). Myo- cardial fibrosis is the major determinant of diastolic dysfunction/failure in patients with HHD. Recent available data on the determination of serum concentrations of collagen-derived serum peptides, as well as quantitative analysis of echoreflectivity to address the presence of fibrosis in the myocardium of hypertensive patients, are promising. In addition, preliminary data suggest that the goal of reducing myocardial fibrosis is achievable using specific pharmacological agents in patients with HHD. Key Words: Collagen; Fibrosis; Hypertension; Hypertrophy ypertensive heart disease (HHD) can be defined as cules, as a consequence of a number of pathologic processes the response of the heart to the stress imposed on mediated by mechanical, neurohormonal and cytokine H the left ventricle by progressively increasing arte- routes.11,12 Although an association has been found between rial pressure. HHD is characterized by complex changes in severe myocardial fibrosis and left ventricular (LV) systolic myocardial composition that are responsible for the struc- dysfunction in patients with
    [Show full text]
  • Imaging and Impact of Myocardial Fibrosis in Aortic Stenosis
    JACC: CARDIOVASCULAR IMAGING VOL. 12, NO. 2, 2019 ª 2019 THE AUTHORS. PUBLISHED BY ELSEVIER ON BEHALF OF THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION. THIS IS AN OPEN ACCESS ARTICLE UNDER THE CC BY LICENSE (http://creativecommons.org/licenses/by/4.0/). FOCUS ISSUE: IMAGING IN AORTIC STENOSIS: PART II STATE-OF-THE-ART PAPER Imaging and Impact of Myocardial Fibrosis in Aortic Stenosis a b a c Rong Bing, MBBS, BMEDSCI, João L. Cavalcante, MD, Russell J. Everett, MD, BSC, Marie-Annick Clavel, DVM, PHD, a a David E. Newby, DM, PHD, DSC, Marc R. Dweck, MD, PHD ABSTRACT Aortic stenosis is characterized both by progressive valve narrowing and the left ventricular remodeling response that ensues. The only effective treatment is aortic valve replacement, which is usually recommended in patients with severe stenosis and evidence of left ventricular decompensation. At present, left ventricular decompensation is most frequently identified by the development of typical symptoms or a marked reduction in left ventricular ejection fraction <50%. However, there is growing interest in using the assessment of myocardial fibrosis as an earlier and more objective marker of left ventricular decompensation, particularly in asymptomatic patients, where guidelines currently rely on non- randomized data and expert consensus. Myocardial fibrosis has major functional consequences, is the key pathological process driving left ventricular decompensation, and can be divided into 2 categories. Replacement fibrosis is irreversible and identified using late gadolinium enhancement on cardiac magnetic resonance, while diffuse fibrosis occurs earlier, is potentially reversible, and can be quantified with cardiac magnetic resonance T1 mapping techniques. There is a substantial body of observational data in this field, but there is now a need for randomized clinical trials of myocardial imaging in aortic stenosis to optimize patient management.
    [Show full text]
  • Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling
    cells Review Cardiac Fibrosis: Key Role of Integrins in Cardiac Homeostasis and Remodeling Patrick B. Meagher 1,2, Xavier Alexander Lee 1,2 , Joseph Lee 1,2 , Aylin Visram 1,2, Mark K. Friedberg 2,3,4 and Kim A. Connelly 1,2,3,* 1 Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; [email protected] (P.B.M.); [email protected] (X.A.L.); [email protected] (J.L.); [email protected] (A.V.) 2 Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada; [email protected] 3 Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada 4 Labatt Family Heart Center and Department of Paediatrics, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada * Correspondence: [email protected]; Tel.: +141-686-45201 Abstract: Cardiac fibrosis is a common finding that is associated with the progression of heart failure (HF) and impacts all chambers of the heart. Despite intense research, the treatment of HF has primarily focused upon strategies to prevent cardiomyocyte remodeling, and there are no targeted antifibrotic strategies available to reverse cardiac fibrosis. Cardiac fibrosis is defined as an accumulation of extracellular matrix (ECM) proteins which stiffen the myocardium resulting in the deterioration cardiac function. This occurs in response to a wide range of mechanical and biochemical signals. Integrins are transmembrane cell adhesion receptors, that integrate signaling Citation: Meagher, P.B.; Lee, X.A.; between cardiac fibroblasts and cardiomyocytes with the ECM by the communication of mechanical Lee, J.; Visram, A.; Friedberg, M.K.; stress signals.
    [Show full text]
  • Heart Failure • Cor Pulmonale • Hypertensive Heart Disease
    DISEASES OF THE HEART - content • Cardiac hypertrophy and congestive heart failure • Cor pulmonale • Hypertensive heart disease • Ischemic heart disease • Valvular diseases • Myocardial diseases • Congenital heart diseases • Diseases of the pericardium • Cardiac neoplasms Normal values assessed by echocardiography • Free wall thickness: RV: 3-4 mm, LV: 10-11 mm • End-diastolic volume (EDV) 120 ml • End-systolic volume (ESV) 50 ml • Stroke volume (SV) 70 ml Weight: women: 300 gs, men: 350 gs HYPERTROPHY OF THE HEART • The cardiac myocytes are permanent cells (not able to enter the cell cycle) and, therefore, are not able to proliferate • Increase in work load increase in size and pumping capacity of ventricular myocytes • Weight > 400 g • Types: concentric dilative Concentric hypertrophy Pathogenesis An obstruction of outflow in systole (i.e., hypertension, aortic valve stenosis) the LV increases the end-systolic pressure pressure overload concentric remodeling and hypertrophy Morphologic features of concentric hypertrophy of LV: small lumen; markedly increased wall thickness (> 20 mm); increased mass (> 500 g) Clinical features of pressure-overloaded LV - symptomless for a long period - pump failure occurs lately - risk of sudden cardiac death Dilative hypertrophy Pathogenesis Aortic/mitral valve incompetence leads to diastolic backflow the regurgitated extra volume of blood is accepted with the dilation of the LV an increased EDV is ejected into the circulation during the next systole (volume overload) excentric remodeling and
    [Show full text]
  • Pathology.Pre-Test.Pdf
    Pathology PreTestTMSelf-Assessment and Review Notice Medicine is an ever-changing science. As new research and clinical experience broaden our knowledge, changes in treatment and drug therapy are required. The authors and the publisher of this work have checked with sources believed to be reliable in their efforts to provide information that is complete and generally in accord with the standards accepted at the time of publication. However, in view of the possibility of human error or changes in medical sciences, neither the authors nor the publisher nor any other party who has been involved in the preparation or publication of this work warrants that the information contained herein is in every respect accurate or complete, and they disclaim all responsibility for any errors or omissions or for the results obtained from use of the information contained in this work. Readers are encouraged to confirm the information contained herein with other sources. For example, and in particular, readers are advised to check the product information sheet included in the package of each drug they plan to administer to be certain that the information contained in this work is accurate and that changes have not been made in the recommended dose or in the contraindications for administration. This recommendation is of particular importance in connection with new or infrequently used drugs. Pathology PreTestTMSelf-Assessment and Review Twelfth Edition Earl J. Brown, MD Associate Professor Department of Pathology Quillen College of Medicine Johnson City, Tennessee New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2007 by The McGraw-Hill Companies, Inc.
    [Show full text]