Systems Integration for Digital Textile Printing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Indigenising the Interior of Some Selected Hotels in Enugu Metropolis Through the Production of Textile, Using Igbo Motifs
International Journal of Art and Art History December 2020, Vol. 8, No. 2, pp. 24-39 ISSN: 2374-2321 (Print), 2374-233X (Online) Copyright © The Author(s).All Rights Reserved. Published by American Research Institute for Policy Development DOI: 10.15640/ijaah.v8n2p3 URL: https://doi.org/10.15640/ijaah.v8n2p3 Indigenising the Interior of Some Selected Hotels in Enugu Metropolis through the Production of Textile, using Igbo Motifs Adaeze Q. Silas-Ufelle1 and Pius A. Ntagu2 Abstract It was observed that interior of hotels in Enugu metropolis are predominantly adorned with foreign fabrics that do not reflect the culture of the host communities. The essence of actualizing and stabilizing the economy, especially the hospitality industry in Enugu metropolis implies employing all workable parameters that can restructure the cultural and economic growth of the people positively. Therefore, there is need to indigenize the interiors of hospitality industry in Enugu using Igbo traditional motifs. Selected hotels were used to mirror this attenuation by employing the Igbo unique traditional symbols and mural designs to acculturate their interior environments. Qualitative research was adopted and snowball sampling was used for the selection of hotels. As a studio area, the work employed the transfer of developed designs on fabrics with the aids of batik, tie-dye and screen printing method of fabric production. The final fabric works were produced to satisfy the various end uses relevant to hotel interiors and to provide materials for documentations as a means of projecting the esteemed culture of Enugu metropolis in particular and Ndigbo in general. The studio experimentation employed mixed media and construction techniques. -
Natural Materials for the Textile Industry Alain Stout
English by Alain Stout For the Textile Industry Natural Materials for the Textile Industry Alain Stout Compiled and created by: Alain Stout in 2015 Official E-Book: 10-3-3016 Website: www.TakodaBrand.com Social Media: @TakodaBrand Location: Rotterdam, Holland Sources: www.wikipedia.com www.sensiseeds.nl Translated by: Microsoft Translator via http://www.bing.com/translator Natural Materials for the Textile Industry Alain Stout Table of Contents For Word .............................................................................................................................. 5 Textile in General ................................................................................................................. 7 Manufacture ....................................................................................................................... 8 History ................................................................................................................................ 9 Raw materials .................................................................................................................... 9 Techniques ......................................................................................................................... 9 Applications ...................................................................................................................... 10 Textile trade in Netherlands and Belgium .................................................................... 11 Textile industry ................................................................................................................... -
Choosing the Proper Short Cut Fiber for Your Nonwoven Web
Choosing The Proper Short Cut Fiber for Your Nonwoven Web ABSTRACT You have decided that your web needs a synthetic fiber. There are three important factors that have to be considered: generic type, diameter, and length. In order to make the right choice, it is important to know the chemical and physical characteristics of the numerous man-made fibers, and to understand what is meant by terms such as denier and denier per filament (dpf). PROPERTIES Denier Denier is a property that varies depending on the fiber type. It is defined as the weight in grams of 9,000 meters of fiber. The current standard of denier is 0.05 grams per 450 meters. Yarn is usually made up of numerous filaments. The denier of the yarn divided by its number of filaments is the denier per filament (dpf). Thus, denier per filament is a method of expressing the diameter of a fiber. Obviously, the smaller the denier per filament, the more filaments there are in the yarn. If a fairly closed, tight web is desired, then lower dpf fibers (1.5 or 3.0) are preferred. On the other hand, if high porosity is desired in the web, a larger dpf fiber - perhaps 6.0 or 12.0 - should be chosen. Here are the formulas for converting denier into microns, mils, or decitex: Diameter in microns = 11.89 x (denier / density in grams per milliliter)½ Diameter in mils = diameter in microns x .03937 Decitex = denier x 1.1 The following chart may be helpful. Our stock fibers are listed along with their density and the diameter in denier, micron, mils, and decitex for each: Diameter Generic Type -
Yarn Numbering Systems
TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 TRI 1014 YARN NUMBERING SYSTEMS © 2003 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers. TABLE OF CONTENTS Page INTRODUCTION 1 DIRECT SYSTEMS 1 INDIRECT SYSTEMS 2 CONVERSION 4 PLIED YARNS 4 YARN DIAMETER 5 YARN NUMBERING SYSTEMS - TABLE 1 6 CONVERSION FACTORS - TABLE 2 7 YARN NUMBERING SYSTEMS INTRODUCTION Textiles are often sold on a weight basis and consequently it is natural to express the size of "thickness" of a yarn in terms of weight (or mass). There are two basic ways in which this may be done. These are: (a) by saying how much a given length of yarn weighs, or (b) by saying what length of yarn one would have in a given weight. Generally these are known as the direct and indirect systems of yarn numbering, respectively. In other words: Weight(or mass) Direct yarn number = Length Length Indirect yarn number = Weight(or mass) It will be noted that one is the inverse of the other. In the first case, the number gets larger as the yarn or strand gets coarser. In the second case, the number gets smaller as the yarn or strand gets coarser. Each system has its advantages and disadvantages and each has found areas in which, by custom, it is used. It so happens that because long, thin strands are usually involved, the length figures are usually large and the weight figures are small. Consequently, the yarn numbers would get impossibly large or impossibly small unless special units are used. -
Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing
machines Article Investigation of the Mechanical Properties of a Carbon Fibre-Reinforced Nylon Filament for 3D Printing Flaviana Calignano 1,* , Massimo Lorusso 2 , Ignanio Roppolo 3 and Paolo Minetola 1 1 Department of Management and Production Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; [email protected] 2 Istituto Italiano di Tecnologia, Center for Sustainable Future Technologies IIT@Polito, Corso Trento 21, 10129 Turin, Italy; [email protected] 3 Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; [email protected] * Correspondence: fl[email protected]; Tel.: +39-011-090-7218 Received: 19 July 2020; Accepted: 2 September 2020; Published: 4 September 2020 Abstract: Additive manufacturing (i.e., 3D printing) has rapidly developed in recent years. In the recent past, many researchers have highlighted the development of in-house filaments for fused filament fabrication (FFF), which can extend the corresponding field of application. Due to the limited mechanical properties and deficient functionality of printed polymer parts, there is a need to develop printable polymer composites that exhibit high performance. This study analyses the actual mechanical characteristics of parts fabricated with a low-cost printer from a carbon fibre-reinforced nylon filament. The results show that the obtained values differ considerably from the values presented in the datasheets of various filament suppliers. Moreover, the hardness and tensile strength are influenced by the building direction, the infill percentage, and the thermal stresses, whereas the resilience is affected only by the building direction. Furthermore, the relationship between the mechanical properties and the filling factor is not linear. -
Textile Printing
TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 ISP 1004 TEXTILE PRINTING This report is sponsored by the Importer Support Program and written to address the technical needs of product sourcers. © 2003 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers. INTRODUCTION The desire of adding color and design to textile materials is almost as old as mankind. Early civilizations used color and design to distinguish themselves and to set themselves apart from others. Textile printing is the most important and versatile of the techniques used to add design, color, and specialty to textile fabrics. It can be thought of as the coloring technique that combines art, engineering, and dyeing technology to produce textile product images that had previously only existed in the imagination of the textile designer. Textile printing can realistically be considered localized dyeing. In ancient times, man sought these designs and images mainly for clothing or apparel, but in today’s marketplace, textile printing is important for upholstery, domestics (sheets, towels, draperies), floor coverings, and numerous other uses. The exact origin of textile printing is difficult to determine. However, a number of early civilizations developed various techniques for imparting color and design to textile garments. Batik is a modern art form for developing unique dyed patterns on textile fabrics very similar to textile printing. Batik is characterized by unique patterns and color combinations as well as the appearance of fracture lines due to the cracking of the wax during the dyeing process. Batik is derived from the Japanese term, “Ambatik,” which means “dabbing,” “writing,” or “drawing.” In Egypt, records from 23-79 AD describe a hot wax technique similar to batik. -
Evaluation of Independent Mesh Modeling for Textile Composites
EVALUATION OF INDEPENDENT MESH MODELING FOR TEXTILE COMPOSITES A Thesis by JEFFREY SCOTT MCQUIEN Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, John D. Whitcomb Committee Members, Mohammad Naraghi Terry Creasy Head of Department, Rodney Bowersox May 2017 Major Subject: Aerospace Engineering Copyright 2017 Jeffrey Scott McQuien ABSTRACT The Independent Mesh Method (IMM) was used to analyze stress distributions within a unit cell model for a symmetrically stacked plain weave textile composite. Results from these analyses were compared to those of conventional finite element analyses, which are well established. Preliminary comparisons showed extreme dis- agreement between the two methodologies. Further investigation into the source of these differences led to significant corrections to the IMM implementation. After these updates, much better agreement between the two methodologies was observed; however, noticeable differences were still present. The remaining differences were characterized using a simple two-inclusion model upon which the impacts of the penalty displacement method, which the IMM relies upon heavily, were more appar- ent. It was shown that the implementation of the penalty displacement method for maintaining approximate displacement continuity between two surfaces induces sig- nificant error in stress distributions close to the interface. While these effects are less noticeable in the plain weave model, they are still present and diminish the fidelity of stress information in important tow-matrix interface regions, prohibiting the reliable prediction of damage initiation and growth. ii DEDICATION This thesis is dedicated to my father, without whom, it would have never been. -
Technical Product Guide
strength in materials Technical Product Guide www.agy.com Table of Contents Corporate Overview AGY provides the best quality, highest performance, and broadest range of glass fiber yarns, rovings and chop products to Corporate Overview .............................1 a wide variety of markets and end uses. Although founded as an independent entity Glass Fiber Manufacturing ...................2 in 1998, AGY has a 50+ year history of serving the composites industry. Nomenclature ......................................3 Globally, AGY has over 600 employees Conversion Tables ...............................6 involved in production, sales, distribution and development of our products. Our AGY Glass Yarns .................................8 world headquarters, technology center and manufacturing facility are located in Aiken, AGY Glass Rovings ...........................14 SC U.S.A. AGY Chopped Glass ..........................16 We also have commercial and administrative offices in Lyon, France, and AGY Packaging Specificaions ............18 a commercial office in Shanghai, China. AGY Sizing Systems ..........................20 Typical Fiber Properties .....................26 Glossary of Terms ..............................28 strength in materials 1 Glass Fiber Manufacturing Glass Fiber Nomenclature AGY glass fibers are made from molten glass. The viscous liquid is General drawn through tiny holes at the base of the furnace to form hair-like Glass fiber yarns are typically identified by either an inch-pound based system (U.S. customary system) or a TEX/metric system (based on the SI*/metric system). filaments. A protective sizing, applied as the filament cools and This section gives a brief description of glass fiber yarn nomenclature, including hardens, helps prevent abrasion during additional processing and comparisons of the two systems (see table on page 4). A more comprehensive makes the glass compatible with various resin systems. -
Exploring Livelihoods of the Urban Poor in Kampala, Uganda an Institutional, Community, and Household Contextual Analysis
Exploring livelihoods of the urban poor in Kampala, Uganda An institutional, community, and household contextual analysis Patrick Dimanin December 2012 Abstract he urban poor in Kampala, Uganda represent a large portion of the populationulationn ooff thtthehe caccapitalapipitatal ciccity,ityty, yyeyetet llilittleittttlele iiss Tdocumented about their livelihoods. The main objective of this study was to gain a generalgenerall understandingundndererststananddiingg of the livelihoods present amongst the population of the urban poor and the context in considered whichhicch theythheyy exist, so as to form a foundation for future programming. Three groups of urban poor in the city were identi ed through qualitative interviews: street children, squatters, and slum dwellers. Slum dwellers became the principal interest upon considering the context, aims and limits of the study. Qualitative interviews with key actors at community and household levels, questionnaires at a household level, and several other supplementary investigations formed the remainder of the study. Ultimately, six different livelihood strategies were identi ed and described: Non-poor Casual Labourers, Poor Casual Labourers, Non-quali ed Salary, Quali ed Salary, Vocation or Services, and Petty Traders and Street Vendors. Each of the livelihood strategies identi ed held vulnerabilities, though the severity of these varies between both the type of vulnerability and group. Vulnerabilities of the entire slum population of Kampala include land tenure issues, malnutrition monitoring, and enumeration information. Those at a community and area level include the risk of persistent ooding, unhygienic and unsanitary practices, and full realisation of bene ts of social networks. Finally, major household vulnerabilities included lack of urban agriculture, and lack of credit. -
Addie Pietrowski - 8Th Grade Mackinaw Student - Tells About Her New Normal
by Sandy Planisek Mackinaw News MI Safe Start - Governor to Restart Economy by Region and Workplaces The governor has a plan to slowly allow business to reopen based on the region of the state and the type of business. The governor extended her emergency declaration for 28 days. She announced that residential and commercial construction crews can return to work on May 7th. Also, real estate activities and outdoor work can resume as well as workers who fulfill orders for curb-side pick-up from non-necessary stores, to care for a family member or pet in another household, visit people in health-care facilities, attend a funeral with 10 or less people, attend addiction meetings, and view real estate by appointment. Prohibited is travel to vacation rentals. Read the details at https://content.govdelivery.com/attachments/MIEOG/2020/05/01/file_attachments/1441315/EO%202020-70.pdf May 3, 2020 page 1 Mackinaw News by Sandy Planisek No Prom - Help Celebrate With a Parade ! For Mackinaw’s Graduating Class Decorate your car and join a celebratory parade for Mackinaw’s graduating seniors on May 9th. Decorate your car, then proceed to the school parking lot at 7:45 pm for the line up. Parade begins at 8:30 pm. If you would rather stay home and are on the parade route, put out decorations or at least wave at the parade passes. Give these students the launch into their future that they deserve. Ron Dye May 3, 2020 page 2 Mackinaw News by Sandy Planisek MACKINAW CITY PUBLIC SCHOOLS PRESCHOOL OPEN HOUSE AND REGISTRATION INFO The preschool open house has been canceled due to COVID-19 restrictions. -
Indigo and the Tightening Thread 1 for the Journal of Weavers, Spinners and Dyers 231 Autumn 2009
Indigo and the Tightening Thread 1 For the Journal of Weavers, Spinners and Dyers 231 Autumn 2009 Jane Callender Natural indigo and synthetic Many varieties of indigo bearing plants flourish in indigo are both available to us. hot and temperate climates all over the world A key date in textile history is and more than one can be found in any one 1856 when 18 year old assistant region. The European indigo bearing plant is chemist William Perkins, Isastis Tinctoria, known as woad. stumbled upon, developed and Although there are an incredible number of patented the first synthetic species and subspecies, ‘indican’, the actual dyestuff from coal tar. ‘Perkins chemical source and precursor of indigo, a tiny Purple’ became known as organic molecule, is common to all. (A Large Mauvine. Later the German percentage in the woad precursor is also indican, chemist Adolf von Baeyer with Isatan B making up the rest) Consequently synthesized indigo which was ‘…..the resulting blue is indistinguishable even to sold on the open market in the specialist’ (Balfour-Paul) 1897. Astonishingly, the Harvesting the plants, extracting the indican molecular structure of natural present within the leaves and storage of the and synthetic indigo, as it was indigo pigment differs from country to country. then and as it is now, is the Though glycosides and enzymes vary, as does the same. alkalinity level and temperature of the water in which leaves are immersed, the following Dyeing can only be done graphics illustrates, in essence, the acquisition of with indigo in its soluble form natural indigo through fermentation. -
The History of Naturally Colored Cotton JULIA BARATTA
The History of Naturally Colored Cotton JULIA BARATTA otton’s colorful history began many was part of later U.S. history, centuries ago and in far-flung regions and that it has a small role in agriculture today. of the world. The original cultivars C Through the years, nat- were developed more than 5,000 years ago urally colored cotton has by the people of South and Central America, appeared primarily as a last- while other varieties were found to be indig- ditch effort to meet a need. During World War II (1939–1945), enous to Africa and Asia. There are also a for example, there was a shortage of number of references to cotton being grown dyes, so green and brown cotton was grown in India, China, Russia, Mexico, and Egypt. and used. Because the fibers had not been bred for At some point, naturally colored cotton length, after the war, naturally colored cotton fell out of favor again. made its entrance into America, probably In 1982, Sally Fox was working for a cotton during the seventeenth century. breeder when she found a bag of brown cotton Historically in America, white cotton was con- and seeds. The cotton, which had come from the sidered “king,” while naturally colored cotton was U.S. Department of Agriculture, had been part of discussed only as legend. In my research for this an effort to promote growing naturally colored article, I found few who had heard or read that fiber. Sally Fox’s more than twenty years of work slaves were sometimes allowed to grow natu- in the world of naturally colored cottons is ongo- rally colored cotton because of its “deficiencies”: ing: She began with that small bag and has built a shorter staple, or length of fiber, which made it a reputation for growing high-quality, longer-sta- more difficult to spin into usable thread, as well pled cotton of reddish-brown and shades of green.