A8 Baseline Aquatic Ecosystem Survey Wet Season (WRM 2016)

Total Page:16

File Type:pdf, Size:1020Kb

A8 Baseline Aquatic Ecosystem Survey Wet Season (WRM 2016) Mesa A / Warramboo Project Baseline Aquatic Ecosystem Survey Wet Season Sampling 2016 December 2016 Mesa A / Warramboo Baseline Aquatic Ecosystem Survey – Wet Season Sampling 2016 Mesa A / Warramboo Project Baseline Aquatic Ecosystem Survey Wet Season Sampling 2016 Prepared for: Astron Environmental Services Pty Ltd 129 Royal Street, East Perth, WA 6004 T: +61 8 9421 9600 E: [email protected] by: Wetland Research & Management 16 Claude Street, Burswood, WA 6100 T: +61 8 9361 4325 E: [email protected] Final Report 13 December 2016 Frontispiece (left to right): Warramboo Creek ephemeral site WARDS6 (May 2016); ostracods (seed shrimp) which emerged from the rehydrated sediment sample taken at WARDS6 (May 2016); Warramboo Creek site WARUS2 in flood (May 2016). ii Mesa A / Warramboo Baseline Aquatic Ecosystem Survey – Wet Season Sampling 2016 Study Team WRM Project management: Jess Delaney Field work: Adam Harman, Emma Thillainath and Fintan Angel Macroinvertebrate identification: Kim Nguyen, Simon Ward and Bonita Clark Macroinvertebrate QA/QC: Alex Riemer and Chris Hofmeester Microinvertebrate rehydration and identification: Dr Russell Shiel, University of Adelaide Report: Bonita Clark Internal review: Susan Davies External Specialist Taxonomists Dr Don H. Edward, The University of Western Australia (Chironomidae) Dr Russell Shiel, Adelaide University (microinvertebrates and sediment rehydration) Recommended Reference Format WRM (2016). Mesa A and Warramboo Project Baseline Aquatic Ecosystem Surveys - Wet Season Sampling 2016. Unpublished report to Astron Environmental Services Pty Ltd by Wetland Research & Management. December 2016. Acknowledgements WRM thank Mathew Love, Megan Stalker and Melissa Ford for overall management of the project on behalf of Astron Environmental Services Pty Ltd (Astron). Dr Stuart Pearse (Astron), Fiona Bell (RTIO) and Jenny Carter (RTIO) are thanked for comments on the draft reports. Laboratory analyses of surface water quality samples collected by WRM were performed by ChemCentre, Bentley WA. Groundwater data were provided courtesy of Rio Tinto Pty Ltd. The authors acknowledge, and are very grateful to the Kuruma-Marthudunera Traditional Owners for sharing their stories, welcoming us to the land and assisting with sampling of the river pools. Disclaimer This document was based on the best information available at the time of writing. While Wetland Research & Management (WRM) has attempted to ensure that all information contained within this document is accurate, WRM does not warrant or assume any legal liability or responsibility to any third party for the accuracy, completeness, or usefulness of any information supplied. The views and opinions expressed within are those of WRM and do not necessarily reflect those of Astron Environmental Services Pty Ltd or Rio Tinto Pty Ltd. No part of this publication may be reproduced in any form, stored in any retrieval system or transmitted by any means electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of WRM and Rio Tinto Pty Ltd. Document history Date final Date Version Reviewed by comments /data submitted received Draft v0 13/08/2016 Susan Davies (WRM, internal review) 16/08/2016 Draft v1 18/08/2016 Stuart Pearse (Astron) 30/08/2016 01/09/2016 Fiona Bell (RTIO), Jenny Carter (RTIO) 15/11/2016 Draft v2 17/11/2016 John Trainer (Astron), Stuart Pearse (Astron), Fiona Bell (RTIO) 07/12/2016 Final 13/12/2016 iii Mesa A / Warramboo Baseline Aquatic Ecosystem Survey – Wet Season Sampling 2016 CONTENTS EXECUTIVE SUMMARY ............................................................................................................................. vi 1 INTRODUCTION .................................................................................................................................. 1 1.1 BACKGROUND ................................................................................................................................. 1 1.1.1 Rationale for sampling components of aquatic fauna ...................................................... 3 1.1.2 Legislative framework....................................................................................................... 4 1.1.3 Other relevant policy - ANZECC/ARMCANZ (2000) Guidelines ...................................... 5 1.2 SCOPE OF WORKS FOR CURRENT STUDY ........................................................................................ 6 2 SURVEY AREA .................................................................................................................................... 7 2.1 CLIMATE ......................................................................................................................................... 7 2.2 HYDROGEOLOGY ............................................................................................................................ 7 3 REVIEW OF PREVIOUS AQUATIC FAUNA SURVEYS .................................................................... 9 3.1 MICROINVERTEBRATES ................................................................................................................. 12 3.2 HYPORHEIC FAUNA ....................................................................................................................... 13 3.3 MACROINVERTEBRATES ................................................................................................................ 14 3.4 DROUGHT RESISTANT FAUNA AND PREVIOUS SEDIMENT REHYDRATION STUDIES ............................ 17 3.5 FISH ............................................................................................................................................. 18 3.6 OTHER FAUNA .............................................................................................................................. 20 3.6.1 Turtles ............................................................................................................................ 20 3.6.2 Frogs .............................................................................................................................. 20 3.7 SUMMARY OF KNOWN SPECIES OF CONSERVATION AND/OR SCIENTIFIC INTEREST ........................... 21 4 METHODS .......................................................................................................................................... 23 4.1 GENERAL ..................................................................................................................................... 23 4.2 LICENCES ..................................................................................................................................... 23 4.3 SAMPLING DESIGN AND SITES ....................................................................................................... 23 4.4 WATER QUALITY............................................................................................................................ 25 4.4.1 Comparison against ANZECC/ARMCANZ guidelines ................................................... 25 4.4.2 Comparison against groundwater quality ....................................................................... 26 4.5 HABITAT CHARACTERISTICS .......................................................................................................... 26 4.6 SEDIMENT COLLECTION AND REHYDRATION OF INVERTEBRATE RESTING STAGES ............................ 27 4.7 MICROINVERTEBRATES ................................................................................................................. 28 4.8 HYPORHEOS ................................................................................................................................. 29 4.9 MACROINVERTEBRATES ................................................................................................................ 29 4.10 FISH ............................................................................................................................................. 30 4.11 DATA ANALYSIS ............................................................................................................................ 30 4.12 SURVEY LIMITATIONS .................................................................................................................... 30 5 RESULTS AND DISCUSSION ........................................................................................................... 32 5.1 WATER QUALITY ........................................................................................................................... 32 5.1.1 General ........................................................................................................................... 32 5.1.2 Comparison against ANZECC/ARMCANZ (2000) default guidelines ............................ 32 5.1.3 Comparison against groundwater quality ....................................................................... 33 5.2 MICROINVERTEBRATE FAUNA ........................................................................................................ 37 5.2.1 Taxonomic composition.................................................................................................. 37 5.2.2 Comparison against previous studies ............................................................................ 37 5.2.3 Conservation/scientific significance of microinvertebrates............................................. 38 5.3 HYPORHEIC FAUNA ......................................................................................................................
Recommended publications
  • Assessment of Wetland Invertebrate and Fish Biodiversity for the Gnangara Sustainability Strategy (Gss)
    ASSESSMENT OF WETLAND INVERTEBRATE AND FISH BIODIVERSITY FOR THE GNANGARA SUSTAINABILITY STRATEGY (GSS) Bea Sommer, Pierre Horwitz and Pauline Hewitt Centre for Ecosystem Management Edith Cowan University, Joondalup WA 6027 Final Report to the Western Australian Department of Environment and Conservation November 2008 Assessment of wetland invertebrate and fish biodiversity for the GSS (Final Report) November 2008 This document has been commissioned/produced as part of the Gnangara Sustainability Strategy (GSS). The GSS is a State Government initiative which aims to provide a framework for a whole of government approach to address land use and water planning issues associated with the Gnangara groundwater system. For more information go to www.gnangara.water.wa.gov.au i Assessment of wetland invertebrate and fish biodiversity for the GSS (Final Report) November 2008 Executive Summary This report sought to review existing sources of information for aquatic fauna on the Gnangara Mound in order to: • provide a synthesis of the richness, endemism, rarity and habitat specificity of aquatic invertebrates in wetlands; • identify gaps in aquatic invertebrate data on the Gnangara Mound; • provide a synthesis of the status of freshwater fishes on the Gnangara Mound; • assess the management options for the conservation of wetlands and wetland invertebrates. The compilation of aquatic invertebrate taxa recorded from wetlands on both the Gnangara Mound and Jandakot Mound) between 1977 and 2003, from 18 studies of 66 wetlands, has revealed a surprisingly high richness considering the comparatively small survey area and the degree of anthropogenic alteration of the plain. The total of over 550 taxa from 176 families or higher order taxonomic levels could be at least partially attributed to sampling effort.
    [Show full text]
  • Etymology of the Dragonflies (Insecta: Odonata) Named by R.J. Tillyard, F.R.S
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by The University of Sydney: Sydney eScholarship Journals online Etymology of the Dragonfl ies (Insecta: Odonata) named by R.J. Tillyard, F.R.S. IAN D. ENDERSBY 56 Looker Road, Montmorency, Vic 3094 ([email protected]) Published on 23 April 2012 at http://escholarship.library.usyd.edu.au/journals/index.php/LIN Endersby, I.D. (2012). Etymology of the dragonfl ies (Insecta: Odonata) named by R.J. Tillyard, F.R.S. Proceedings of the Linnean Society of New South Wales 134, 1-16. R.J. Tillyard described 26 genera and 130 specifi c or subspecifi c taxa of dragonfl ies from the Australasian region. The etymology of the scientifi c name of each of these is given or deduced. Manuscript received 11 December 2011, accepted for publication 16 April 2012. KEYWORDS: Australasia, Dragonfl ies, Etymology, Odonata, Tillyard. INTRODUCTION moved to another genus while 16 (12%) have fallen into junior synonymy. Twelve (9%) of his subspecies Given a few taxonomic and distributional have been raised to full species status and two species uncertainties, the odonate fauna of Australia comprises have been relegated to subspecifi c status. Of the 325 species in 113 genera (Theischinger and Endersby eleven subspecies, or varieties or races as Tillyard 2009). The discovery and naming of these dragonfl ies sometimes called them, not accounted for above, fi ve falls roughly into three discrete time periods (Table 1). are still recognised, albeit four in different genera, During the fi rst of these, all Australian Odonata were two are no longer considered as distinct subspecies, referred to European experts, while the second era and four have disappeared from the modern literature.
    [Show full text]
  • Identification Guide to the Australian Odonata Australian the to Guide Identification
    Identification Guide to theAustralian Odonata www.environment.nsw.gov.au Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW Identification Guide to the Australian Odonata Department of Environment, Climate Change and Water NSW National Library of Australia Cataloguing-in-Publication data Theischinger, G. (Gunther), 1940– Identification Guide to the Australian Odonata 1. Odonata – Australia. 2. Odonata – Australia – Identification. I. Endersby I. (Ian), 1941- . II. Department of Environment and Climate Change NSW © 2009 Department of Environment, Climate Change and Water NSW Front cover: Petalura gigantea, male (photo R. Tuft) Prepared by: Gunther Theischinger, Waters and Catchments Science, Department of Environment, Climate Change and Water NSW and Ian Endersby, 56 Looker Road, Montmorency, Victoria 3094 Published by: Department of Environment, Climate Change and Water NSW 59–61 Goulburn Street Sydney PO Box A290 Sydney South 1232 Phone: (02) 9995 5000 (switchboard) Phone: 131555 (information & publication requests) Fax: (02) 9995 5999 Email: [email protected] Website: www.environment.nsw.gov.au The Department of Environment, Climate Change and Water NSW is pleased to allow this material to be reproduced in whole or in part, provided the meaning is unchanged and its source, publisher and authorship are acknowledged. ISBN 978 1 74232 475 3 DECCW 2009/730 December 2009 Printed using environmentally sustainable paper. Contents About this guide iv 1 Introduction 1 2 Systematics
    [Show full text]
  • Odonata. Robert Lucas
    © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/; www.zobodat.at Odonata. Bearbeitet von Dp. Robert Lucas in Rixdorf bei Berlin. A. Publikationen (Autoren, alphabetisch). Arkle, J. (1). Notes from the North-west. The Entomologist, vol. 34 p. 103—107. Bringt auch Angaben über erbeutete Odonaten. — Nach Monaten geordnet. — (2). Odonata and Lepidoptera at Llandriandod (Radnorshire). t- c. Sept. p. 257. Führt auf Calopterjx virgo. — (3). Odonata and Lepidoptera at Watford, Herts. t. c. Dec. p. 354. Aurivillius, Chr. En för Sverige ny Trollslända. Entom. Tidskr. 21. Irg. 3./4. Hft. p. 264. — Libellula caudalis. Banks, Nathan. 1896. A new Species of Gomphus. Journ. New York Entom. Soc. vol. 4. No. 4. p. 193—195. G. descriptus n. sp. Beutivoglio, T. (1). Contribuzione allo studio dei Pseudoneurotteri della Toscana. Libellulidi di Massa Carrara. Atti Soc. Natur. Mat. Modena, (4.) Ann. 33 vol. 2 p. 86—91. — (2). Ulteriori osservazioni intorno alla varietä della specie Platycnemis pennipes. Atti Soc. Natural, e Mat. Modena (4.) An. 33. vol. 2. p. 92. Brauer, F. (Titel p. 1255 des vorig. Berichts) lies p. 464—477 statt 404—477. Calvert, Philipp (1). 1897. Additions to the Odonata of New York State. Journ. New York Entom. Soc. vol. 5 No. 2 p. 91—95. — (2). On Gomphus fraternus, externus and crassus (Order Odonata). With 1 pl. (III.) Entom. News, vol. 12, March, p. 65—73. — (3). (Titel p. 1041 sub No. 4 des Berichts f. 1899). Ref. All- gem. Zeitschr. für Entom. 6. Bd. p. 62. — (4j. Biologia Centrali-Americana. Neuroptera pp. 17—72 pls. 11 —IV.
    [Show full text]
  • Critical Species of Odonata in Australia
    ---Guardians of the watershed. Global status of Odonata: critical species, threat and conservation --- Critical species of Odonata in Australia John H. Hawking 1 & Gunther Theischinger 2 1 Cooperative Research Centre for Freshwater Ecology, Murray-Darling Freshwater Research Centre, PO Box 921, Albury NSW, Australia 2640. <[email protected]> 2 Environment Protection Authority, New South Wales, 480 Weeroona Rd, Lidcombe NSW, Australia 2141. <[email protected]> Key words: Odonata, dragonfly, IUCN, critical species, conservation, Australia. ABSTRACT The Australian Odonata fauna is reviewed. The state of the current taxonomy and ecology, studies on biodiversity, studies on larvae and the all identification keys are reported. The conservation status of the Australian odonates is evaluated and the endangered species identified. In addition the endemic species, species with unusual biology and species, not threatened yet, but maybe becoming critical in the future are discussed and listed. INTRODUCTION Australia has a diverse odonate fauna with many relict (most endemic) and most of the modern families (Watson et al. 1991). The Australian fauna is now largely described, but the lack of organised surveys resulted in limited distributional and ecological information. The conservation of Australian Odonata also received scant attention, except for Watson et al. (1991) promoting the awareness of Australia's large endemic fauna, the listing of four species as endangered (Moore 1997; IUCN 2003) and the suggesting of categories for all Australian species (Hawking 1999). This conservation report summarizes the odonate studies/ literature for species found in Continental Australia (including nearby smaller and larger islands) plus Lord Howe Island and Norfolk Island. Australia encompasses tropical, temperate, arid, alpine and off shore island climatic regions, with the land mass situated between latitudes 11-44 os and 113-154 °E, and flanked on the west by the Indian Ocean and on the east by the Pacific Ocean.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]
  • Phylogeny of the Higher Libelluloidea (Anisoptera: Odonata): an Exploration of the Most Speciose Superfamily of Dragonflies
    Molecular Phylogenetics and Evolution 45 (2007) 289–310 www.elsevier.com/locate/ympev Phylogeny of the higher Libelluloidea (Anisoptera: Odonata): An exploration of the most speciose superfamily of dragonflies Jessica Ware a,*, Michael May a, Karl Kjer b a Department of Entomology, Rutgers University, 93 Lipman Drive, New Brunswick, NJ 08901, USA b Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA Received 8 December 2006; revised 8 May 2007; accepted 21 May 2007 Available online 4 July 2007 Abstract Although libelluloid dragonflies are diverse, numerous, and commonly observed and studied, their phylogenetic history is uncertain. Over 150 years of taxonomic study of Libelluloidea Rambur, 1842, beginning with Hagen (1840), [Rambur, M.P., 1842. Neuropteres. Histoire naturelle des Insectes, Paris, pp. 534; Hagen, H., 1840. Synonymia Libellularum Europaearum. Dissertation inaugularis quam consensu et auctoritate gratiosi medicorum ordinis in academia albertina ad summos in medicina et chirurgia honores.] and Selys (1850), [de Selys Longchamps, E., 1850. Revue des Odonates ou Libellules d’Europe [avec la collaboration de H.A. Hagen]. Muquardt, Brux- elles; Leipzig, 1–408.], has failed to produce a consensus about family and subfamily relationships. The present study provides a well- substantiated phylogeny of the Libelluloidea generated from gene fragments of two independent genes, the 16S and 28S ribosomal RNA (rRNA), and using models that take into account non-independence of correlated rRNA sites. Ninety-three ingroup taxa and six outgroup taxa were amplified for the 28S fragment; 78 ingroup taxa and five outgroup taxa were amplified for the 16S fragment.
    [Show full text]
  • Nannophlebia Leoboppi Sp Nov., a New Dragonfly Species from New Guinea (Odonata: Anisoptera: Libellulidae)
    Zootaxa 3964 (3): 391–395 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2015 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3964.3.9 http://zoobank.org/urn:lsid:zoobank.org:pub:67A93E94-EAE5-4DEF-809D-214D8BCBAAA2 Nannophlebia leoboppi sp nov., a new dragonfly species from New Guinea (Odonata: Anisoptera: Libellulidae) ALBERT G. ORR1 & VINCENT J. KALKMAN2 1Environmental Futures Research Institute, Griffith University, Nathan, Qld 4111, Australia. E-mail: [email protected] 2Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Abstract Nannophlebia leoboppi sp. nov. is described and figured based on a male specimen collected in the Star Mountains of Central New Guinea. This relatively large representative of its genus is compared with its probable nearest relative, N. antiacantha Lieftinck, 1963, which is also partially figured. The new species brings the total number of Nannophlebia species to 25. Key words: Odonata, Anisoptera, Libellulidae, Nannophlebia, leoboppi, antiacantha, new species, New Guinea Introduction The genus Nannophlebia Selys, 1878, presently includes 24 species ranging throughout northern and eastern Australia, mainland New Guinea, Misool, New Britain, New Ireland, Japen, and the Moluccas. The four Australian species may be identified using Theischinger and Hawking (2006) and keys to 19 of the 20 species from New Guinea and the Moluccas are provided in Michalski (2012). The species exhibit high levels of local endemism within the geographic range of the genus, none for example being shared between New Guinea and Australia (see Kalkman and Orr, 2012) or New Guinea and the Moluccas (Michalski, 2012).
    [Show full text]
  • Field Guide to the Dragonflies of New Guinea
    Jaargang 17 Supplement, december 2015 Field Guide to the Brachytron ISSN 1386-3460 Brachytron Brachytron 17 supplement Field Guide to the dragonflies of New Guinea A.G. Orr & V.J. Kalkman 3-156. Brachytron , 2015. Field Guide to the dragonflies of New Guinea. dragonflies of This book is a companion to the ‘Field Guide to the damselflies of New Guinea’ published in 2013 by the same authors and covers the ‘true’ dragonflies, or Anisoptera. With it the reader can identify the approximately 175 species presently known from New Guinea, its satellite islands and the New Guinea Bismark Archipelago. It will doubtless stimulate people to explore the streams and standing waters of New Guinea and to appreciate the wonderful diversity of dragonflies and damselflies to be found there. Over 400 copies will be donated to universities throughout New Guinea. As well as introducing students and researchers to the beauty of dragonflies on their island, the guide provides a basis to study them and use them in biodiversity studies supporting the conservation of freshwater habitats. The guide contains nearly 250 colour drawings and over 300 line drawings by Albert Orr and 36 colour photographs taken in the field mostly by Stephen Richards. Many species included have never been depicted in colour before. This book is dedicated to the memory Jaargang 15 (2), januari 2013 of Henk van Mastrigt (1946-2015) who passed away in August 2015 as he was beginning the work of translating the book. Albert Orr’s interest in the insect fauna of New Guinea dates back to undergraduate days when he made two lengthy excursions in 1971 and 1973/4, collecting butterflies and dragonflies.
    [Show full text]
  • The News Journal of the Dragonfly
    ISSN 1061-8503 ARGIATh e News Journal of the Dragonfl y Society of the Americas Volume 16 20 November 2004 Number 3 Published by the Dragonfl y Society of the Americas The Dragonfly Society Of The Americas Business address: c/o T. Donnelly, 2091 Partridge Lane, Binghamton NY 13903 Executive Council 2003 – 2005 President R. Beckemeyer Wichita, Kansas President Elect S. Krotzer Centreville, Alabama Immediate Past President D. Paulson Seattle, Washington Vice President, Canada R. Cannings Victoria, British Columbia Vice President, Latin America R. Novelo G. Jalapa, Veracruz Secretary S. Dunkle Plano, Texas Treasurer J. Daigle Tallahassee, Florida Editor T. Donnelly Binghamton, New York Regular member J. Abbott Austin, Texas Regular member S. Valley Albany, Oregon Regular member S. Hummel Lake View, Iowa Journals Published By The Society ARGIA, the quarterly news journal of the DSA, is devoted to non-technical papers and news items relating to nearly every aspect of the study of Odonata and the people who are interested in them. The editor especially welcomes reports of studies in progress, news of forthcoming meetings, commentaries on species, habitat conservation, noteworthy occurrences, personal news items, accounts of meetings and collecting trips, and reviews of technical and non-technical publications. Articles for publication in ARGIA should preferably be submitted as hard copy and (if over 500 words) also on floppy disk (3.5 or 5.25). The editor prefers Windows files, preferably written in Word, Word for Windows, WordPerfect, or WordStar. Macintosh Word disks can be handled. All files should be submitted unformatted and without paragraph indents. Each submission should be accompanied by a text (=ASCII) file.
    [Show full text]
  • The Use of Ostracoda in the Palaeoenvironmental Reconstruction of the Gulf - Facies Analysis and Morphological Variation
    THE USE OF OSTRACODA IN THE PALAEOENVIRONMENTAL RECONSTRUCTION OF THE GULF OF CARPENTARIA, AUSTRALIA, FROM THE LAST INTERGLACIAL TO PRESENT A thesis submitted in fulfilment of the requirements for the award of the degree DOCTOR OF PHILOSOPHY from the UNIVERSITY OF WOLLONGONG by JESSICA MARIE REEVES, BSc (Hons). SCHOOL OF EARTH AND ENVIRONMENTAL SCIENCES 2004 CERTIFICATION I, Jessica M. Reeves, declare that this thesis, submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Earth and Environmental Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. Jessica M. Reeves 03 May 2004 Table of Contents List of figures…………………………………………………………………………………….v List of tables…………………………………………………………………………………….vii Abstract………………………………………………………………………………………….vii Acknowledgements………………………………………………………………………………ix INTRODUCTION………………………………………………………………………………1 Thesis outline……………………………………………………………………………………. 3 1. THE GULF OF CARPENTARIA………………………………………………………… 7 1.1 Location of the study area………………………………………………………………….7 1.2 Geological history of the Gulf of Carpentaria……………………………………………...8 1.3 Physiography of the modern basin………………………………………………………...13 1.4 Modern sedimentation in the gulf………………………………………………………….20 1.5 Meteorological context…………………………………………………………………….23 1.6 The modern environment………………………………………………………………….26 1.7 Summary…………………………………………………………………………………..28 2. THE STAT OF KNOWLEDGE…………………………………………………………….29
    [Show full text]
  • Freshwater Biotas of New Guinea and Nearby Islands: Analysis of Endemism, Richness, and Threats
    FRESHWATER BIOTAS OF NEW GUINEA AND NEARBY ISLANDS: ANALYSIS OF ENDEMISM, RICHNESS, AND THREATS Dan A. Polhemus, Ronald A. Englund, Gerald R. Allen Final Report Prepared For Conservation International, Washington, D.C. November 2004 Contribution No. 2004-004 to the Pacific Biological Survey Cover pictures, from lower left corner to upper left: 1) Teinobasis rufithorax, male, from Tubetube Island 2) Woa River, Rossel Island, Louisiade Archipelago 3) New Lentipes species, male, from Goodenough Island, D’Entrecasteaux Islands This report was funded by the grant “Freshwater Biotas of the Melanesian Region” from Conservation International, Washington, DC to the Bishop Museum with matching support from the Smithsonian Institution, Washington, DC FRESHWATER BIOTAS OF NEW GUINEA AND NEARBY ISLANDS: ANALYSIS OF ENDEMISM, RICHNESS, AND THREATS Prepared by: Dan A. Polhemus Dept. of Entomology, MRC 105 Smithsonian Institution Washington, D.C. 20560, USA Ronald A. Englund Pacific Biological Survey Bishop Museum Honolulu, Hawai‘i 96817, USA Gerald R. Allen 1 Dreyer Road, Roleystone W. Australia 6111, Australia Final Report Prepared for: Conservation International Washington, D.C. Bishop Museum Technical Report 31 November 2004 Contribution No. 2004–004 to the Pacific Biological Survey Published by BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright © 2004 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Freshwater Biotas of New Guinea and
    [Show full text]