1 2 Structural, mechanical and Raman spectroscopic characterization of 3 layered uranyl silicate mineral uranophane-α by DFT Methods 4 5 Francisco Colmenero1*, Vicente Timón1, Laura J. Bonales2, Joaquín Cobos2 6 7 1 Instituto de Estructura de la Materia, CSIC. C/ Serrano, 113. 28006 Madrid, Spain 8 2 Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, CIEMAT. Avda/ 9 Complutense, 40. 28040 Madrid, Spain 10 11 [Received: xx xxxx 2015; revised: xx xxxx 2016; Associate Editor: D. Bish] 12 13 Running head: Structural, mechanical and Raman spectroscopic properties of uranophane-α 14 15 DOI: 16 17 Orcid Francisco Colmenero: https://orcid.org/0000-0003-3418-0735 18 Orcid Vicente Timón: https://orcid.org/0000-0002-7460-7572 19 Orcid Laura J. Bonales: https://orcid.org/0000-0002-1857-3312 20 Orcid Joaquín Cobos: https://orcid.org/0000-0003-0285-7617 21 22 *E-mail:
[email protected] 23 1 24 25 ABSTRACT: Layered uranyl silicate clay-like mineral uranophane-α, 26 Ca(UO2)2(SiO3OH)2·5H2O, was studied by first principle calculations based on density 27 functional theory method. Its structure, present in nature in a wide variety of compounds 28 having the uranophane sheet anion-topology, is confirmed here for the first time by means of 29 rigorous theoretical solid-state calculations. The computed lattice parameters, bond lengths 30 and bond angles were in very good agreement with their experimental counterparts, and the 31 calculated X-ray powder pattern reproduced accurately the experimental one. The mechanical 32 properties of this mineral, for which there are no experimental data to compare with, were 33 determined and the satisfaction of the mechanical stability Born conditions of the structure 34 was demonstrated by means of calculations of the elasticity tensor.