1 This Is the Author-Version of an Article Published As
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uraninite Alteration in an Oxidizing Environment and Its Relevance to the Disposal of Spent Nuclear Fuel
TECHNICAL REPORT 91-15 Uraninite alteration in an oxidizing environment and its relevance to the disposal of spent nuclear fuel Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 SVENSK KÄRNBRÄNSLEHANTERING AB SWEDISH NUCLEAR FUEL AND WASTE MANAGEMENT CO BOX 5864 S-102 48 STOCKHOLM TEL 08-665 28 00 TELEX 13108 SKB S TELEFAX 08-661 57 19 original contains color illustrations URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch, Rodney Ewing Department of Geology, University of New Mexico December 1990 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author (s) and do not necessarily coincide with those of the client. Information on SKB technical reports from 1977-1978 (TR 121), 1979 (TR 79-28), 1980 (TR 80-26), 1981 (TR 81-17), 1982 (TR 82-28), 1983 (TR 83-77), 1984 (TR 85-01), 1985 (TR 85-20), 1986 (TR 86-31), 1987 (TR 87-33), 1988 (TR 88-32) and 1989 (TR 89-40) is available through SKB. URANINITE ALTERATION IN AN OXIDIZING ENVIRONMENT AND ITS RELEVANCE TO THE DISPOSAL OF SPENT NUCLEAR FUEL Robert Finch Rodney Ewing Department of Geology University of New Mexico Submitted to Svensk Kämbränslehantering AB (SKB) December 21,1990 ABSTRACT Uraninite is a natural analogue for spent nuclear fuel because of similarities in structure (both are fluorite structure types) and chemistry (both are nominally UOJ. Effective assessment of the long-term behavior of spent fuel in a geologic repository requires a knowledge of the corrosion products produced in that environment. -
The Reduced Uraniferous Mineralizations Associated with the Volcanic Rocks of the Sierra Pena Blanca (Chihuahua, Mexico)
American Mineralogist, Volume 70, pages 1290-1297, 1985 The reduced uraniferous mineralizations associated with the volcanic rocks of the Sierra Pena Blanca (Chihuahua, Mexico) BRtcIrrn ANru, Centre de Recherchessur la Giologie de I'Urqnium BP 23, 54 5 0 1, V andoeuure-les-Nancy C6dex, F rance ,lwo hcquns LERoY Centre de Recherchessur la Giologie de l'Uranium BP 23,54501, Vaniloeuure-les-Nancy Cidex, France and Ecole Nationale Supirieure ile Gdologie Appliquie et de Prospection Miniire ile Nancy, BP 452,54001, Nancy Cidex, France Abstrect The uraniferousmineralizations of the Nopal I deposit (Sierra Pena Blanca, Chihuahua, Mexico) are related to a breccia pipe in a tertiary vitroclastic tuff (Nopal Formation). De- tailed mineralogicaland fluid inclusion studies led to the discovery of a primary mineral- ization stageof tetravalenturanium as part of an ilmenite-hematitephase. This stageoccurs soon after the depositionof the tuff and is relatedto H2O-CO, N, fluids, similar to those of the vapor phase,under temperaturesranging from 300 to 350'C. The well developedkaolini- zation of the Nopal tuff is associatedwith a secondtetravalent uranium stage(pitchblende- pyrite association).Fluids are aqueousand their temperatureranges from 250 to 200'C. The precipitation of pitchblende with pyrite within the pipe is due to a HrS activity increase strictlylimited to this structure.The remainderof mineralizingevents, either hydrothermal or supergene,led to the hexavalenturanium minerals that prevailtoday. Introduction of Chihuahua city. This Sierra -
Iidentilica2tion and Occurrence of Uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
IIdentilica2tion and occurrence of uranium and Vanadium Identification and Occurrence of Uranium and Vanadium Minerals From the Colorado Plateaus c By A. D. WEEKS and M. E. THOMPSON A CONTRIBUTION TO THE GEOLOGY OF URANIUM GEOLOGICAL S U R V E Y BULL E TIN 1009-B For jeld geologists and others having few laboratory facilities.- This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission. UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE- INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan. Director Reprint, 1957 For sale by the Superintendent of Documents, U. S. Government Printing Ofice Washington 25, D. C. - Price 25 cents (paper cover) CONTENTS Page 13 13 13 14 14 14 15 15 15 15 16 16 17 17 17 18 18 19 20 21 21 22 23 24 25 25 26 27 28 29 29 30 30 31 32 33 33 34 35 36 37 38 39 , 40 41 42 42 1v CONTENTS Page 46 47 48 49 50 50 51 52 53 54 54 55 56 56 57 58 58 59 62 TABLES TABLE1. Optical properties of uranium minerals ______________________ 44 2. List of mine and mining district names showing county and State________________________________________---------- 60 IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM THE COLORADO PLATEAUS By A. D. WEEKSand M. E. THOMPSON ABSTRACT This report, designed to make available to field geologists and others informa- tion obtained in recent investigations by the Geological Survey on identification and occurrence of uranium minerals of the Colorado Plateaus, contains descrip- tions of the physical properties, X-ray data, and in some instances results of chem- ical and spectrographic analysis of 48 uranium arid vanadium minerals. -
Thn Auertcan M Rlueralocrsr
THn AUERTcANM rluERALocrsr JOURNAL OF TIIE MINDRALOGICAL SOCIETY OF ANIERICA vbl.41 JULY-AUGUST, 1956 Nos. 7 and 8 MTNERAL COMPOSTTTON OF G'UMMTTE*f Crrllonl FnoNonr, H artard Llniaersity,Cambrid,ge, M ass., and. U. S. GeologicalSurwy, Washington, D.C. ABSTRACT The name gummite has been wideiy used for more than 100 years as a generic term to designate fine-grained yellow to orange-red alteration products of uraninite whose true identity is unknown. A study of about 100 specimens of gummite from world-wide localities has been made by r-ray, optical, and chemical methods. rt proved possible to identify almost all of the specimens with already known uranium minerals. Gummite typicalty occurs as an alteration product of uraninite crystals in pegmatite. Such specimensshow a characteristic sequenceof alteration products: (1) A central core of black or brownish-black uraninite. (2) A surrounding zone, yellow to orange-red, composed chiefly of hydrated lead uranyl oxides. This zone constitutes the traditional gummite. It is principally composed of fourmarierite, vandendriesscheite and two unidentified phases (Mineral -4 and Mineral c). Less common constituents are clarkeite, becquerelite, curite, and schoepite. (3) An outer silicate zone. This usually is dense with a greenish-yellow color and is composed of uranophane or beta-uranophane; it is sometimes soft and earthy with a straw-yellow to pale-brown color and is then usually composed of kasolite or an unidenti- fied phase (Minerat B). Soddyite and sklodowskite occur rarely. There are minor variations in the above general sequence. rt some specimens the core may be orange-red gummite without residual uraninite or the original uraninite crystal may be wholly converted to silicates. -
Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus
SpColl £2' 1 Energy I TEl 334 Identification and Occurrence of Uranium and Vanadium Minerals from the Colorado Plateaus ~ By A. D. Weeks and M. E. Thompson ~ I"\ ~ ~ Trace Elements Investigations Report 334 UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY IN REPLY REFER TO: UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY WASHINGTON 25, D. C. AUG 12 1953 Dr. PhilUp L. Merritt, Assistant Director Division of Ra1'r Materials U. S. AtoTILic Energy Commission. P. 0. Box 30, Ansonia Station New· York 23, Nei< York Dear Phil~ Transmitted herewith are six copies oi' TEI-334, "Identification and occurrence oi' uranium and vanadium minerals i'rom the Colorado Plateaus," by A , D. Weeks and M. E. Thompson, April 1953 • We are asking !41'. Hosted to approve our plan to publish this re:por t as a C.i.rcular .. Sincerely yours, Ak~f777.~ W. H. ~radley Chief' Geologist UNCLASSIFIED Geology and Mineralogy This document consists or 69 pages. Series A. UNITED STATES DEPARTMENT OF TEE INTERIOR GEOLOGICAL SURVEY IDENTIFICATION AND OCCURRENCE OF URANIUM AND VANADIUM MINERALS FROM TEE COLORADO PLATEAUS* By A• D. Weeks and M. E. Thompson April 1953 Trace Elements Investigations Report 334 This preliminary report is distributed without editorial and technical review for conformity with ofricial standards and nomenclature. It is not for public inspection or guotation. *This report concerns work done on behalf of the Division of Raw Materials of the u. s. Atomic Energy Commission 2 USGS GEOLOGY AllU MINEFALOGY Distribution (Series A) No. of copies American Cyanamid Company, Winchester 1 Argulllle National La:boratory ., ., ....... -
SIMPLE URANIUM OXIDES, HYDROXIDES U4+ + U6+, SIMPLE and COMPLEX URANYL HYDROXIDES in ORES Andrey A
New Data on Minerals. 2011. Vol. 46 71 SIMPLE URANIUM OXIDES, HYDROXIDES U4+ + U6+, SIMPLE AND COMPLEX URANYL HYDROXIDES IN ORES Andrey A. Chernikov Fersman Mineralogical Museum, Russian Academy of Sciences, Moscow, [email protected], [email protected] The review of published and new own data of simple uranium oxides revealed that the formation of five simple oxides is probable: nasturan, sooty pitchblende, uraninite, uranothorianite, and cerianite. Among simple oxides, nasturan, sooty pitchblende, and uraninite are the most abundant in ores varied in genesis and mineralogy. Uranothorianite or thorium uraninite (aldanite) is occasional in the ores, while cerianite is believed in U-P deposits of Northern Kazakhstan. Hydrated nasturan is the most abundant among three uranium (IV+VI) hydroxides in uranium ores. Insignificant ianthinite was found in few deposits, whereas cleusonite was indentified only in one deposit. Simple uranyl hydroxides, schoepite, metaschoepite, and paraschoepite, are widespread in the oxidized ores of the near-surface part of the Schinkolobwe deposit. They are less frequent at the deeper levels and other deposits. Studtite and metastudtite are of insignificant industrial importance, but are of great inter- est to establish genesis of mineral assemblages in which they are observed, because they are typical of strongly oxidized conditions of formation of mineral assemblages and ores. The X-ray amorphous urhite associated with hydrated nasturan and the X-ray amorphous hydrated matter containing ferric iron and U6+ described for the first time at the Lastochka deposit, Khabarovsk krai, Russia are sufficiently abundant uranyl hydroxides in the oxidized uranium ores. Significant complex uranyl hydroxides with interlayer K, Na, Ca, Ba, Cu, Pb, and Bi were found basically at a few deposits: Schinkolobwe, Margnac, Wölsendorf, Sernyi, and Tulukuevo, and are less frequent at the other deposits, where quite large monomineralic segregations of nasturan and crystals of uraninite were identified. -
New Mineral Names*
American Mineralogist, Volume 68, pages 1248-1252,1983 NEW MINERAL NAMES* Perr J. DUNN, MrcHeE'r-FLerscHen, Gr,oncB Y. CHno, Lours J. Cesnr, AND JosEpHA. MexoanrNo Biivoetite* Lcpersonnite* bright yellow and is transparent and translucent. No fluores- Unnamed CeNi-Mg uranyl silicate cence was observed under short- or long-wave UV. The mea- sureddensity is 3.97g/cmr. It is opticallybiaxial negative,2V = M. Deliensand P. Piret (1982)Bijvoetite et lepersonnite,carbon- 73" calc.,a = 1.638, : 1.666,y : 1.682;pleochroic with X pale ates hydratds d'uranyle et des terres rares de Shinkolobwe, B yellow, bright yellow and Z bnght yellow; orientation, only Zaire. Can. Mineral.. 20.231J38. I=cisgiven. = Bijvoetite The mineral is orthorhombic, Pnnm or Pnn2 with a 16.23(3), b = 38.7aQ),c : rr.73Q)4, Z : 2, (V : 7375(50)43,J.A.M.). Blivoetite and lepersonniteoccur with hydrated uranium ox- The density calculated from the unit cell parameters and the ides near primary uraninite in the lower part of the oxidation empirical formula is 4.01 g/cm3. Strongest lines in the X-ray zone at Shinkolobwe, Zaire. Bijvoetite is rare and is known only powder diffraction pattern (for CuKa) are: 8.15(100X200), from a single specimen. Associated minerals are: lepersonnite, 4.06(I 5X400),3.65(70X1 33), 3.2I (50X0.I 2.0) and 2.86(40)(283). sklodowskite, curite, uranophane, becquerelite, rutherfordine, An electronmicroprobe analysis gave: SiO22.79, UOj76.14, studtite and a CeMg-Ni uranyl silicate structurally related to Gd2O32.W,Dy2O3 1.07, Y2O3 0.41, Tb2O3 0.(D, CaO 0.45,CO2 uranophane. -
Geology of Uranium and Associated Ore Deposits Central Part of the Front Range Mineral Belt Colorado by P
Geology of Uranium and Associated Ore Deposits Central Part of the Front Range Mineral Belt Colorado By P. K. SIMS and others GEOLOGICAL SURVEY PROFESSIONAL PAPER 371 Prepared on behalf of the U.S. Atomic Energy Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1963 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY Thoma~B.Nobn,D~ec~r The U.S. Geological Survey Library catalog card for this publication appears after page 119 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C., 20402 PREFACE This report is bused on fieldwork in the central part of the Front Range mineral belt between 1951 and 1956 by geologists of the U.S. Geological Survey on behalf of the U.S. Atomic Energy Co1nmission. The work was cn.rriecl on by nine authors working in different parts of the region. Therefore, although the senior author is responsible for the sections of the report thn,t are not ascribed to inclividualrnembers, the entire report embodies the efrorts of the group, which consisted of F. C. Armstrong, A. A. Drake, Jr., J. E. Harrison, C. C. Hawley, R. H. l\1oench, F. B. l\1oore, P. K. Sims, E. W. Tooker, and J. D. Wells. III CONTENTS Page Page Abstract------------------------------------------- 1 Uranium deposits-Continued Introduction ______________________________ - _______ _ 2 ~ineralogy-Continued Purpose and scope of report _____________________ _ 2 Zippeite and betazippeite ___________________ _ 39 Geography ____________________________________ _ 2 Schroeckingerite -
Glossary of Obsolete Mineral Names
Uaranpecherz = uraninite, László 282 (1995). überbasisches Cuprinitrat = gerhardtite, Hintze I.3, 2741 (1916). überbrannter Amethyst = heated 560ºC red-brown Fe-rich quartz, László 11 (1995). Überschwefelblei = galena + anglesite + sulphur-α, Chudoba RI, 67 (1939); [I.3,3980]. uchucchacuaïte = uchucchacuaite, MR 39, 134 (2008). uddervallite = pseudorutile, Hey 88 (1963). uddevallite = pseudorutile, Dana 6th, 218 (1892). uddewallite = pseudorutile, Des Cloizeaux II, 224 (1893). udokanite = antlerite, AM 56, 2156 (1971); MM 43, 1055 (1980). uduminelite (questionable) = Ca-Al-P-O-H, AM 58, 806 (1973). Ueberschwefelblei = galena + anglesite + sulphur-α, Egleston 132 (1892). Uekfildit = wakefieldite-(Y), Chudoba EIV, 100 (1974). ufalit = upalite, László 280 (1995). uferite = davidite-(La), AM 42, 307 (1957). ufertite = davidite-(La), AM 49, 447 (1964); 50, 1142 (1965). U-free thorite = huttonite, Clark 303 (1993). U-galena = U-rich galena, AM 20, 443 (1935). ugandite = bismutotantalite, MM 22, 187 (1929). ughvarite = nontronite ± opal-C, MAC catalog 10 (1998). ugol = coal, Thrush 1179 (1968). ugrandite subgroup = uvarovite + grossular + andradite ± goldmanite ± katoite ± kimzeyite ± schorlomite, MM 21, 579 (1928). uhel = coal, Thrush 1179 (1968). Uhligit (Cornu) = colloidal variscite or wavellite, MM 18, 388 (1919). Uhligit (Hauser) = perovskite or zirkelite, CM 44, 1560 (2006). U-hyalite = U-rich opal, MA 15, 460 (1962). Uickenbergit = wickenburgite, Chudoba EIV, 100 (1974). uigite = thomsonite-Ca + gyrolite, MM 32, 340 (1959); AM 49, 223 (1964). Uillemseit = willemseite, Chudoba EIV, 100 (1974). uingvárite = green Ni-rich opal-CT, Bukanov 151 (2006). uintahite = hard bitumen, Dana 6th, 1020 (1892). uintaite = hard bitumen, Dana 6th, 1132 (1892). újjade = antigorite, László 117 (1995). újkrizotil = chrysotile-2Mcl + lizardite, Papp 37 (2004). új-zéalandijade = actinolite, László 117 (1995). -
New Mineral Names*
American Mineralogist, Volume 62, pages 1259-1262, 1977 NewMineral Names* MtcHe.rr-Flrlscsnn, Lours J. CesRrAND ADoLF Pe.ssr Franzinite* Six microprobe analyses gave (range and av.): AsrOu 44.96-45.68,45.36; CuO 16.84-20.22,18.81; ZnO 16.78-18.57, Stefano Merlino and Paolo Orlandi (1977)Franzinite, a new min- 17.90;CdO l3 58-14.93,14.08; CaO 0.41-l.ll' 0.80; PbO 0.14- eral phase from Pitigliano,ltaly. Neues Jahrb. Mineral. Mon- 1.42,0.63: MnO 0.'79-1.27,1.07; sum 97 8l-99 54' 98.65 percent, atsh., 163-167. corresponding to (Cu,Zn,Cd).(AsOa), with Cu:Zn:Cd : 1.19: Microchemical analysis gave SiO, 32.44, Al2Os 25.21, Fe"O" Lll:0.55. The mineral is readily dissolvedby concentratedacids 0.04,MgO 0.14,CaO 12.08,Na,O 11.50,K,O 4.24,SOa 10.65, CO, X-ray study showsthe mineral to be monoclinic,space group 12' 154, Cl 036,H,O 1.88,sum 100.08- (O:Cl,) 0.08 : 100.00 Im. or 12/m, a ll.65, b 12.68,c 6.87(all + 0.01A)' B 98 95 + 0.05'' percent. "SiO, and AlrO, were determined by X-ray fluorescence, Z = 6, G calc 4.95 The strongest X-ray lines (46 given) are 6.41 (vvs) account being taken of the proper correction factor for S and Cl (MS) (020, l0T), 3.29 (vSXll2), 2.876 (vSX400), 2.79s and assuming that the weight percentages sum up to 100 0." (222, 321, 240), 1.644(MS). -
Becquerelite Mineral Phase: Crystal Structure and Thermodynamic and Mechanical Stability by Using Periodic
RSC Advances View Article Online PAPER View Journal | View Issue Becquerelite mineral phase: crystal structure and thermodynamic and mechanical stability by using Cite this: RSC Adv.,2018,8, 24599 periodic DFT† a b a Francisco Colmenero, * Ana Mar´ıa Fernandez,´ Vicente Timon´ and Joaquin Cobos b The structure, thermodynamic and mechanical properties of becquerelite mineral, Ca(UO2)6O4(OH)6$8H2O, were studied by means of theoretical solid-state calculations based on density functional theory using plane waves and pseudopotentials. The positions of the hydrogen atoms in the unit cell of becquerelite mineral were optimized theoretically since it was not possible to determine them from X-ray diffraction data by structure refinement. The structural results, including the lattice parameters, bond lengths and X-ray powder pattern, were found to be in excellent agreement with their experimental counterparts. The fundamental thermodynamic properties of becquerelite mineral, Creative Commons Attribution-NonCommercial 3.0 Unported Licence. including specific heat, entropy, enthalpy and Gibbs free energy, were then computed by performing phonon calculations at the computed optimized structure. Since the experimental values of these properties are unknown, their values were predicted. The values obtained for the isobaric specific heat and entropy of becquerelite at the temperature of 298.15 K were 148.4 and 172.3 J KÀ1 molÀ1, respectively. The computed thermodynamic properties were combined with those of the corresponding elements in order to obtain the enthalpy and Gibbs free energy of formation as a function of temperature. The availability of these thermodynamic properties of formation allowed to determine the enthalpies and free energies and associated reaction constants of a series of reactions involving becquerelite and other uranyl containing materials. -
Crystal Chemistry and Structural Complexity of Natural and Synthetic Uranyl Selenites
crystals Review Crystal Chemistry and Structural Complexity of Natural and Synthetic Uranyl Selenites Vladislav V. Gurzhiy 1,* , Ivan V. Kuporev 1, Vadim M. Kovrugin 1, Mikhail N. Murashko 1, Anatoly V. Kasatkin 2 and Jakub Plášil 3 1 Institute of Earth Sciences, St. Petersburg State University, University Emb. 7/9, St. Petersburg 199034, Russian; [email protected] (I.V.K.); [email protected] (V.M.K.); [email protected] (M.N.M.) 2 Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninskiy pr. 18, 2, Moscow 119071, Russian; [email protected] 3 Institute of Physics, The Academy of Sciences of the Czech Republic, v.v.i., Na Slovance 2, 18221 Praha 8, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected] Received: 10 November 2019; Accepted: 28 November 2019; Published: 30 November 2019 Abstract: Comparison of the natural and synthetic phases allows an overview to be made and even an understanding of the crystal growth processes and mechanisms of the particular crystal structure formation. Thus, in this work, we review the crystal chemistry of the family of uranyl selenite compounds, paying special attention to the pathways of synthesis and topological analysis of the known crystal structures. Comparison of the isotypic natural and synthetic uranyl-bearing compounds suggests that uranyl selenite mineral formation requires heating, which most likely can be attributed to the radioactive decay. Structural complexity studies revealed that the majority of synthetic compounds have the topological symmetry of uranyl selenite building blocks equal to the structural symmetry, which means that the highest symmetry of uranyl complexes is preserved regardless of the interstitial filling of the structures.