Arthropod Phylogeny Revisited, with a Focus on Crustacean Relationships

Total Page:16

File Type:pdf, Size:1020Kb

Arthropod Phylogeny Revisited, with a Focus on Crustacean Relationships Arthropod Structure & Development 39 (2010) 88–110 Contents lists available at ScienceDirect Arthropod Structure & Development journal homepage: www.elsevier.com/locate/asd Arthropod phylogeny revisited, with a focus on crustacean relationships Stefan Koenemann a,*, Ronald A. Jenner b,**, Mario Hoenemann a, Torben Stemme a, Bjo¨rn M. von Reumont c,*** a Institute for Animal Ecology and Cell Biology, University of Veterinary Medicine Hannover, Bu¨nteweg 17d, D-30559 Hannover, Germany b Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK c Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany article info abstract Article history: Higher-level arthropod phylogenetics is an intensely active field of research, not least as a result of the Received 10 June 2009 hegemony of molecular data. However, not all areas of arthropod phylogenetics have so far received Accepted 14 October 2009 equal attention. The application of molecular data to infer a comprehensive phylogeny of Crustacea is still in its infancy, and several emerging results are conspicuously at odds with morphology-based studies. Keywords: In this study, we present a series of molecular phylogenetic analyses of 88 arthropods, including 18S rDNA 57 crustaceans, representing all the major lineages, with Onychophora and Tardigrada as outgroups. Our 16S rDNA analyses are based on published and new sequences for two mitochondrial markers, 16S rDNA and Cytochrome c oxidase subunit I Structural alignment cytochrome c oxidase subunit I (COI), and the nuclear ribosomal gene 18S rDNA. We designed our Multiple alignment optimization phylogenetic analyses to assess the effects of different strategies of sequence alignment, alignment Sensitivity analysis masking, nucleotide coding, and model settings. Our comparisons show that alignment optimization of ribosomal markers based on secondary structure information can have a radical impact on phylogenetic reconstruction. Trees based on optimized alignments recover monophyletic Arthropoda (excluding Onychophora), Pancrustacea, Malacostraca, Insecta, Myriapoda and Chelicerata, while Maxillopoda and Hexapoda emerge as paraphyletic groups. Our results are unable to resolve the highest-level relation- ships within Arthropoda, and none of our trees supports the monophyly of Myriochelata or Mandibulata. We discuss our results in the context of both the methodological variations between different analyses, and of recently proposed phylogenetic hypotheses. This article offers a preliminary attempt to incor- porate the large diversity of crustaceans into a single molecular phylogenetic analysis, assessing the robustness of phylogenetic relationships under varying analysis parameters. It throws into sharp relief the relative strengths and shortcomings of the combined molecular data for assessing this challenging phylogenetic problem, and thereby provides useful pointers for future studies. Ó 2009 Elsevier Ltd. All rights reserved. 1. Introduction groups, Hexapoda, Myriapoda, Crustacea, Chelicerata, and the extinct Trilobitomorpha, has remained a matter of debate since the 19th One of the persistent challenges in systematic biology concerns century (e.g., Latreille, 1817; Pocock, 1893a,b; Lankester, 1904). the phylogenetic relationships of Arthropoda (here defined as Although debates about arthropod phylogeny have long been framed all extant arthropods and their stem groups, but excluding in terms of morphological and developmental evidence, current onychophorans and tardigrades; Panarthropoda refers to the activities show an additional strong focus on molecular data, derived grouping of Arthropoda, Tardigrada and Onychophora). The system- from both mitochondrial and nuclear sources. In this article, we atic literature on higher-level relationships within arthropods dwarfs present a series of molecular phylogenetic analyses of arthropod that of any metazoan taxon, with the possible exception of verte- phylogeny based on both published and new sequence data from brates. The phylogenetic relationships of the five major traditional three loci: 18S rDNA, 16S rDNA, and cytochrome c oxidase I (COI). We discuss our results with respect to recent phylogenetic analyses based on molecular and morphological evidence. The specific focus of * Corresponding author. Tel.: þ49 511 953 8881. our analyses is the relationships between the major lineages of ** Corresponding author. Tel.: þ44 207 942 6885. crustaceans, which representoverhalf of the species in ourdata set. To *** Corresponding author. Tel.: þ49 228 912 2351. E-mail addresses: [email protected] (S. Koenemann), our knowledge our data set includes the largest sample of crustacean [email protected] (R.A. Jenner), [email protected] (B.M. von Reumont). diversity yet analyzed in a single molecular phylogenetic analysis. 1467-8039/$ – see front matter Ó 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.asd.2009.10.003 S. Koenemann et al. / Arthropod Structure & Development 39 (2010) 88–110 89 1.1. The modern fate of early phylogenetic concepts or combined molecular and morphological evidence. Our current understanding of the phylogenetic positions and evolution of Several of the familiar higher-level groupings, such as Atelo- extinct panarthropod lineages is of course wholly dependent on the cerata, Tracheata, Uniramia, and Mandibulata, have their origins as deployment of morphological data (Vaccari et al., 2004; Cobbett far back as the 19th century. For example, Haeckel (1866) erected et al., 2007). Not least, excellent morphological work on fossils has Tracheata, to which he assigned all arthropods with tracheal allowed unique insights into the composition of stem-lineages that breathing, the arachnids, myriapods and insects. Tracheata was underpin the extant crown groups of panarthropods (e.g., Walossek redefined by Pocock (1893a,b), who excluded the arachnids. Pocock and Mu¨ ller, 1990; Walossek and Mu¨ ller, 1998; Walossek, 1993; furthermore considered Myriapoda ‘‘an unnatural assemblage of Budd, 1996; Edgecombe, 2004). beings’’, composed of diplopods/pauropods and chilopods/hexa- pods as the two most closely related groups, and symphylans in an 1.2. Modern debates and molecular evidence unassigned position (‘‘a question for future discussion’’). Based on a detailed comparison of metameric structures, Heymons (1901) The application of diverse and increasingly abundant molecular continued to support myriapods and hexapods as sister groups, and evidence to the problem of higher-level arthropod phylogeny is proposed to unite them under the new name Atelocerata. Today, currently gathering steam on several fronts. First, commonly used both concepts, Tracheata and Atelocerata, are usually used as nuclear and mitochondrial loci, including 18S rDNA, 28S rDNA, 16S synonyms. Interestingly, in the phylogenetic analysis of combined rDNA, COI, elongation factor 1-a, and RNA polymerase II are molecular and morphological evidence of Wheeler et al. (2004), sequenced for increasing numbers of species across all major extant a monophyletic Atelocerata is supported depending on whether panarthropod taxa. Second, studies that go beyond these ‘‘usual selected fossils are included in the analysis. Molecular analyses do suspects’’ have started to add valuable independent light on not find support for Atelocerata, instead uniting Crustacea and arthropod relationships (Regier et al., 2005, 2008). Third, the Hexapoda as Pancrustacea (e.g., Regier and Shultz, 1997) or Tetra- development of increasingly sophisticated and powerful conata (Dohle, 2001). sequencing and computational techniques, and the rapidly falling Some early hypotheses about the evolutionary relationships of prices of large-scale sequencing will soon take arthropod phylo- arthropods included other segmented animals, such as onycho- genetics to the same level as higher-level metazoan phylogenetics. phorans, as basal arthropods, from which modern, extant forms Our study contributes to the first category by analyzing potential were believed to have been derived (e.g., Snodgrass, 1935, 1938). phylogenetic signal in a combined data set of three oft-used loci Manton (1973) went a step further and proposed the taxon Uni- (18S rDNA, 16S rDNA, COI), and goes beyond previous efforts by ramia to embrace hexapods, myriapods, and onychophorans, three (1) an increased sampling of taxa within Crustacea, (2) the use of groups characterized by segmented trunks, single-branch limbs, newly developed software to improve the quality of multiple one pair of (first) antennae, and reduced post-oral mouthparts. She sequence alignments, and (3) the performance of sensitivity ana- considered Crustacea, Chelicerata, and Trilobita to be separate lyses to explore the effect of differences in sequence alignment on groups from each other and from Uniramia. However, despite the phylogenetic results. apparent support from neuroanatomical data for including A large number of molecular phylogenetic analyses of major Onychophora within Arthropoda (Strausfeld et al., 2006), the arthropod relationships (some also including morphological data) Uniramia hypothesis is now generally considered obsolete (see has been published, but despite some emerging consensus many Wa¨gele, 1993). Nevertheless, a recent molecular phylogenetic unresolved issues remain (e.g., Giribet, et al., 1996; Fortey and analysis (Colgan et al., 2008) places Onychophora within Arthro- Thomas, 1997; Wheeler, 1997; Zrzavy et al., 1997; Giribet et al., poda,
Recommended publications
  • First Molecular Data and Morphological Re-Description of Two
    Journal of King Saud University – Science 33 (2021) 101290 Contents lists available at ScienceDirect Journal of King Saud University – Science journal homepage: www.sciencedirect.com Original article First molecular data and morphological re-description of two copepod species, Hatschekia sargi and Hatschekia leptoscari, as parasites on Parupeneus rubescens in the Arabian Gulf ⇑ Saleh Al-Quraishy a, , Mohamed A. Dkhil a,b, Nawal Al-Hoshani a, Wejdan Alhafidh a, Rewaida Abdel-Gaber a,c a Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia b Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt c Zoology Department, Faculty of Science, Cairo University, Cairo, Egypt article info abstract Article history: Little information is available about the biodiversity of parasitic copepods in the Arabian Gulf. The pre- Received 6 September 2020 sent study aimed to provide new information about different parasitic copepods gathered from Revised 30 November 2020 Parupeneus rubescens caught in the Arabian Gulf (Saudi Arabia). Copepods collected from the infected fish Accepted 9 December 2020 were studied using light microscopy and scanning electron microscopy and then examined using stan- dard staining and measuring techniques. Phylogenetic analyses were conducted based on the partial 28S rRNA gene sequences from other copepod species retrieved from GenBank. Two copepod species, Keywords: Hatschekia sargi Brian, 1902 and Hatschekia leptoscari Yamaguti, 1939, were identified as naturally 28S rRNA gene infected the gills of fish. Here we present a phylogenetic analysis of the recovered copepod species to con- Arabian Gulf Hatschekiidae firm their taxonomic position in the Hatschekiidae family within Siphonostomatoida and suggest the Marine fish monophyletic origin this family.
    [Show full text]
  • The Effects of Density Gradients on the Distribution and Behavior of Copepods" (2018)
    University of San Diego Digital USD Theses Theses and Dissertations Summer 8-31-2018 The ffecE ts of Density Gradients on the Distribution and Behavior of Copepods Connor Cayson University of San Diego Follow this and additional works at: https://digital.sandiego.edu/theses Part of the Marine Biology Commons, and the Oceanography Commons Digital USD Citation Cayson, Connor, "The Effects of Density Gradients on the Distribution and Behavior of Copepods" (2018). Theses. 33. https://digital.sandiego.edu/theses/33 This Thesis is brought to you for free and open access by the Theses and Dissertations at Digital USD. It has been accepted for inclusion in Theses by an authorized administrator of Digital USD. For more information, please contact [email protected]. UNIVERSITY OF SAN DIEGO San Diego The Effects of Density Gradients on the Distribution and Behavior of Copepods A thesis submitted in partial satisfaction of the requirements for the degree of Master of Science in Marine Science By Connor Payne Cayson Thesis Committee Jennifer Prairie, Ph.D., Chair Nathalie Reyns, Ph.D. Moira Décima, Ph.D. 2018 i The thesis of Connor Payne Cayson is approved by: _______________________________________________ Jennifer C. Prairie, Ph.D., Thesis Committee Chair University of San Diego _______________________________________________ Nathalie Reyns, Ph.D., Thesis Committee Member University of San Diego _______________________________________________ Moira Décima, Ph.D., Thesis Committee Member National Institute of Water and Atmospheric Research, Wellington, New Zealand University of San Diego San Diego 2018 ii Copyright © 2018 Connor Payne Cayson All Rights Reserved iii ACKNOWLEDGEMENTS First, I must thank my advisor, teacher, and committee chair, Dr.
    [Show full text]
  • Biochemical Divergence Between Cavernicolous and Marine
    The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame­ work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol­ ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com­ bined data set to 20 different parameter sets for variable gap and transversion costs, crusta­ ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta­ cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).
    [Show full text]
  • Syncarid Crustaceans from the Montceau Lagersta¨Tte
    [Palaeontology, Vol. 49, Part 3, 2006, pp. 647–672] SYNCARID CRUSTACEANS FROM THE MONTCEAU LAGERSTA¨ TTE (UPPER CARBONIFEROUS; FRANCE) by VINCENT PERRIER*, JEAN VANNIER*, PATRICK R. RACHEBOEUF , SYLVAIN CHARBONNIER*, DOMINIQUE CHABARDà and DANIEL SOTTYà *Universite´ Claude Bernard Lyon 1, UMR 5125 PEPS ‘Pale´oenvironnements et Pale´obiosphe`re’, Campus scientifique de la Doua, Baˆtiment Ge´ode, 2 rue Raphae¨l Dubois, 69622 Villeurbanne, France; e-mails: [email protected]; [email protected] Universite´ de Bretagne Occidentale, UMR 6538 ‘Domaines Oce´aniques’ – Pale´ontologie, UFR Sciences et Techniques, 6 avenue Le Gorgeu, CS 93837, F-29238 Brest cedex 3, France; e-mail: [email protected] àMuse´e d’Histoire Naturelle d’Autun, 14 rue St-Antoine, 71400 Autun, France Typescript received 28 September 2004; accepted in revised form 17 May 2005 Abstract: Key aspects of the morphology, autecology, sys- suggest a relatively low level of locomotory activity. The tematics and taphonomy of the crustacean syncarids from field of vision may have been large and panoramic (stalked the Montceau Lagersta¨tte (Upper Carboniferous, Stephanian eyes). Rows of pores on 12 trunk segments are interpreted B; France) are presented. Palaeocaris secretanae is the most as possible sensory organs used for current detection. abundant faunal element of the Montceau biota and shows Females were brooding eggs (clusters of eggs preserved striking morphological similarities with Palaeocaris typus along anteroventral trunk). Microprobe analysis indicates from the Mazon Creek Lagersta¨tte (Westphalian D; Illinois, that siderite is the major component of the nodules. Four USA). Palaeocaris secretanae was a shrimp-like animal with events played a key-role in the three-dimensional preserva- a short head (no head shield), large mandibles, 14 trunk tion of syncarids: (1) rapid burial, (2) minimal decomposi- segments (the first one being reduced) and a fan-like caudal tion, (3) phosphatic mineralization shortly after the termination.
    [Show full text]
  • Arthropod Parasites in Domestic Animals
    ARTHROPOD PARASITES IN DOMESTIC ANIMALS Abbreviations KINGDOM PHYLUM CLASS ORDER CODE Metazoa Arthropoda Insecta Siphonaptera INS:Sip Mallophaga INS:Mal Anoplura INS:Ano Diptera INS:Dip Arachnida Ixodida ARA:Ixo Mesostigmata ARA:Mes Prostigmata ARA:Pro Astigmata ARA:Ast Crustacea Pentastomata CRU:Pen References Ashford, R.W. & Crewe, W. 2003. The parasites of Homo sapiens: an annotated checklist of the protozoa, helminths and arthropods for which we are home. Taylor & Francis. Taylor, M.A., Coop, R.L. & Wall, R.L. 2007. Veterinary Parasitology. 3rd edition, Blackwell Pub. HOST-PARASITE CHECKLIST Class: MAMMALIA [mammals] Subclass: EUTHERIA [placental mammals] Order: PRIMATES [prosimians and simians] Suborder: SIMIAE [monkeys, apes, man] Family: HOMINIDAE [man] Homo sapiens Linnaeus, 1758 [man] ARA:Ast Sarcoptes bovis, ectoparasite (‘milker’s itch’)(mange mite) ARA:Ast Sarcoptes equi, ectoparasite (‘cavalryman’s itch’)(mange mite) ARA:Ast Sarcoptes scabiei, skin (mange mite) ARA:Ixo Ixodes cornuatus, ectoparasite (scrub tick) ARA:Ixo Ixodes holocyclus, ectoparasite (scrub tick, paralysis tick) ARA:Ixo Ornithodoros gurneyi, ectoparasite (kangaroo tick) ARA:Pro Cheyletiella blakei, ectoparasite (mite) ARA:Pro Cheyletiella parasitivorax, ectoparasite (rabbit fur mite) ARA:Pro Demodex brevis, sebacceous glands (mange mite) ARA:Pro Demodex folliculorum, hair follicles (mange mite) ARA:Pro Trombicula sarcina, ectoparasite (black soil itch mite) INS:Ano Pediculus capitis, ectoparasite (head louse) INS:Ano Pediculus humanus, ectoparasite (body
    [Show full text]
  • Check List 4(2): 92–97, 2008
    Check List 4(2): 92–97, 2008. ISSN: 1809-127X NOTES ON GEOGRAPHIC DISTRIBUTION Insecta, Ephemeroptera, Baetidae: Range extensions and new state records from Kansas, U.S.A. W. Patrick McCafferty 1 Luke M. Jacobus 2 1 Department of Entomology, Purdue University. West Lafayette, Indiana 47907 USA. E-mail: [email protected] 2 Department of Biology, Indiana University. Bloomington, Indiana 47405 USA. The mayfly (Ephemeroptera) fauna of the U.S.A. other central lowland prairie states as well state of Kansas is relatively poorly documented (McCafferty et al. 2001; 2003; Guenther and (McCafferty 2001). With respect to small minnow McCafferty 2005). Some additionally common mayflies (family Baetidae), only 16 species have species will be evident from the new data we been documented with published records from present herein. Kansas. Those involve Acentrella turbida (McDunnough, 1924); Acerpenna pygmaea Our examination of additional unidentified (Hagen, 1861); Apobaetis Etowah (Traver, 1935); material of Kansas Baetidae housed in the Snow A. lakota McCafferty, 2000; Baetis flavistriga Museum, University of Kansas, Lawrence, McDunnough, 1921; B. intercalaris McDunnough, Kansas, and collected mainly by the State 1921; Callibaetis fluctuans (Walsh, 1862); C. Biological Survey of Kansas, has led to the pictus Eaton, 1871; Centroptilum album discovery of 19 additional species of Baetidae in McDunnough, 1926; C. bifurcatum McDunnough, Kansas, resulting in a new total of 35 species of 1924; Fallceon quilleri (Dodds, 1923); Baetidae now known from the state. The records Paracloeodes minutus (Daggy, 1945); P. given alphabetically below also represent the first dardanum (McDunnough, 1923); P. ephippiatum Kansas records of the genera Camelobaetidius, (Traver, 1935); P.
    [Show full text]
  • Catching the Complexity of Salmon-Louse Interactions
    Fish and Shellfish Immunology 90 (2019) 199–209 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article Catching the complexity of salmon-louse interactions T ∗ Cristian Gallardo-Escáratea, , Valentina Valenzuela-Muñoza, Gustavo Núñez-Acuñaa, Crisleri Carreraa, Ana Teresa Gonçalvesa, Diego Valenzuela-Mirandaa, Bárbara P. Benaventea, Steven Robertsb a Interdisciplinary Center for Aquaculture Research, Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile b School of Aquatic and Fishery Sciences (SAFS), University of Washington, Seattle, USA ABSTRACT The study of host-parasite relationships is an integral part of the immunology of aquatic species, where the complexity of both organisms has to be overlayed with the lifecycle stages of the parasite and immunological status of the host. A deep understanding of how the parasite survives in its host and how they display molecular mechanisms to face the immune system can be applied for novel parasite control strategies. This review highlights current knowledge about salmon and sea louse, two key aquatic animals for aquaculture research worldwide. With the aim to catch the complexity of the salmon-louse interactions, molecular information gleaned through genomic studies are presented. The host recognition system and the chemosensory receptors found in sea lice reveal complex molecular components, that in turn, can be disrupted through specific molecules such as non-coding RNAs. 1. Introduction worldwide the most studied sea lice species are Lepeophtheirus salmonis and Caligus rogercresseyi [8–10]. Annually the salmon industry presents Host-parasite interactions are a complex relationship where one estimated losses of US $ 480 million, representing between 4 and 10% organism benefits the other and often where there is a negative impact of production costs [10].
    [Show full text]
  • Formation of the Entognathy of Dicellurata, Occasjapyx Japonicus (Enderlein, 1907) (Hexapoda: Diplura, Dicellurata)
    S O I L O R G A N I S M S Volume 83 (3) 2011 pp. 399–404 ISSN: 1864-6417 Formation of the entognathy of Dicellurata, Occasjapyx japonicus (Enderlein, 1907) (Hexapoda: Diplura, Dicellurata) Kaoru Sekiya1, 2 and Ryuichiro Machida1 1 Sugadaira Montane Research Center, University of Tsukuba, Sugadaira Kogen, Ueda, Nagano 386-2204, Japan 2 Corresponding author: Kaoru Sekiya (e-mail: [email protected]) Abstract The development of the entognathy in Dicellurata was examined using Occasjapyx japonicus (Enderlein, 1907). The formation of entognathy involves rotation of the labial appendages, resulting in a tandem arrangement of the glossa, paraglossa and labial palp. The mandibular, maxillary and labial terga extend ventrally to form the mouth fold. The intercalary tergum also participates in the formation of the mouth fold. The labial coxae extending anteriorly unite with the labial terga, constituting the posterior region of the mouth fold, the medial half of which is later partitioned into the admentum. The labial appendages of both sides migrate medially, and the labial subcoxae fuse to form the postmentum, which posteriorly confines the entognathy. The entognathy formation in Dicellurata is common to that in another dipluran suborder, Rhabdura. The entognathy of Diplura greatly differs from that of Protura and Collembola in the developmental plan, preventing homologization of the entognathies of Diplura and other two entognathan orders. Keywords: Entognatha, comparative embryology, mouth fold, admentum, postmentum 1. Introduction The Diplura, a basal clade of the Hexapoda, have traditionally been placed within Entognatha [= Diplura + Collembola + Protura], a group characterized by entognathy (Hennig 1969). However, Hennig’s ‘Entognatha-Ectognatha System’, especially the validity of Entognatha, has been challenged by various disciplines.
    [Show full text]
  • Annotated Checklist of the Diplura (Hexapoda: Entognatha) of California
    Zootaxa 3780 (2): 297–322 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3780.2.5 http://zoobank.org/urn:lsid:zoobank.org:pub:DEF59FEA-C1C1-4AC6-9BB0-66E2DE694DFA Annotated Checklist of the Diplura (Hexapoda: Entognatha) of California G.O. GRAENING1, YANA SHCHERBANYUK2 & MARYAM ARGHANDIWAL3 Department of Biological Sciences, California State University, Sacramento 6000 J Street, Sacramento, CA 95819-6077. E-mail: [email protected]; [email protected]; [email protected] Abstract The first checklist of California dipluran taxa is presented with annotations. New state and county records are reported, as well as new taxa in the process of being described. California has a remarkable dipluran fauna with about 8% of global richness. California hosts 63 species in 5 families, with 51 of those species endemic to the State, and half of these endemics limited to single locales. The genera Nanojapyx, Hecajapyx, and Holjapyx are all primarily restricted to California. Two species are understood to be exotic, and six dubious taxa are removed from the State checklist. Counties in the central Coastal Ranges have the highest diversity of diplurans; this may indicate sampling bias. Caves and mines harbor unique and endemic dipluran species, and subterranean habitats should be better inventoried. Only four California taxa exhibit obvious troglomorphy and may be true cave obligates. In general, the North American dipluran fauna is still under-inven- toried. Since many taxa are morphologically uniform but genetically diverse, genetic analyses should be incorporated into future taxonomic descriptions.
    [Show full text]
  • Download The
    A STUDY OF THE ECOLOGICAL RELATIONSHIPS AND TAXONOMIC STATUS OF TWO SPECIES OF THE GENUS CALANUS (CRUSTACEA: COPEPODA) by CHARLES D. WOODHOUSE, JR. B.A., University of California in Santa Barbara, 1962 M.A., University of Oregon, 1964 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in the Department of ZOOLOGY accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA April, 1971 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department The University of British Columbia Vancouver 8, Canada Date /^"^tP/y/. This thesis presents the results of an investigation on the relationships between populations of closely related animals un• der apparent sympatric conditions. The mechanisms found have particular application toward understanding the species problem among members of the free-swimming marine copepod genus Calanus that possess a toothed inner surface on the coxopodites of the fifth pair of swirnming legs. The investigation describes the morphology, distribution, and general ecology of two forms of toothed Calanus from the far eastern North Pacific Ocean. Morphological differences were es• tablished and used to distinguish both forms on the oasis of length, shape of the anterior surface of the cephalothorax, proportionate differences in segments of the urosome and fifth swimming legs, and by the degree of asymmetry in the fifth pair of swimming legs of males.
    [Show full text]
  • Summary Report of Freshwater Nonindigenous Aquatic Species in U.S
    Summary Report of Freshwater Nonindigenous Aquatic Species in U.S. Fish and Wildlife Service Region 4—An Update April 2013 Prepared by: Pam L. Fuller, Amy J. Benson, and Matthew J. Cannister U.S. Geological Survey Southeast Ecological Science Center Gainesville, Florida Prepared for: U.S. Fish and Wildlife Service Southeast Region Atlanta, Georgia Cover Photos: Silver Carp, Hypophthalmichthys molitrix – Auburn University Giant Applesnail, Pomacea maculata – David Knott Straightedge Crayfish, Procambarus hayi – U.S. Forest Service i Table of Contents Table of Contents ...................................................................................................................................... ii List of Figures ............................................................................................................................................ v List of Tables ............................................................................................................................................ vi INTRODUCTION ............................................................................................................................................. 1 Overview of Region 4 Introductions Since 2000 ....................................................................................... 1 Format of Species Accounts ...................................................................................................................... 2 Explanation of Maps ................................................................................................................................
    [Show full text]
  • A Review of Natural Values Within the 2013 Extension to the Tasmanian Wilderness World Heritage Area
    A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area Nature Conservation Report 2017/6 Department of Primary Industries, Parks, Water and Environment Hobart A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area Jayne Balmer, Jason Bradbury, Karen Richards, Tim Rudman, Micah Visoiu, Shannon Troy and Naomi Lawrence. Department of Primary Industries, Parks, Water and Environment Nature Conservation Report 2017/6, September 2017 This report was prepared under the direction of the Department of Primary Industries, Parks, Water and Environment (World Heritage Program). Australian Government funds were contributed to the project through the World Heritage Area program. The views and opinions expressed in this report are those of the authors and do not necessarily reflect those of the Tasmanian or Australian Governments. ISSN 1441-0680 Copyright 2017 Crown in right of State of Tasmania Apart from fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright act, no part may be reproduced by any means without permission from the Department of Primary Industries, Parks, Water and Environment. Published by Natural Values Conservation Branch Department of Primary Industries, Parks, Water and Environment GPO Box 44 Hobart, Tasmania, 7001 Front Cover Photograph of Eucalyptus regnans tall forest in the Styx Valley: Rob Blakers Cite as: Balmer, J., Bradbury, J., Richards, K., Rudman, T., Visoiu, M., Troy, S. and Lawrence, N. 2017. A review of natural values within the 2013 extension to the Tasmanian Wilderness World Heritage Area. Nature Conservation Report 2017/6, Department of Primary Industries, Parks, Water and Environment, Hobart.
    [Show full text]