Plagioclase-Bearing Monomict Ureilite Or Ungrouped Achondrite?

Total Page:16

File Type:pdf, Size:1020Kb

Plagioclase-Bearing Monomict Ureilite Or Ungrouped Achondrite? Meteoritics & Planetary Science 41, Nr 6, 925–952 (2006) Abstract available online at http://meteoritics.org Northwest Africa 1500: Plagioclase-bearing monomict ureilite or ungrouped achondrite? Cyrena Anne GOODRICH1*, Frank WLOTZKA2, D. Kent ROSS3, and Rainer BARTOSCHEWITZ4 1Department of Physical Sciences, Kingsborough Community College, 2001 Oriental Boulevard, Brooklyn, New York 11235, USA 2Max Planck Institute for Chemistry, PO 3060, D-55020 Mainz, Germany 3School of Ocean and Earth Sciences and Technology, University of Hawai’i at Manoa, Honolulu, Hawai’i 96822, USA 4Meteorite Laboratory Lehmweg 53 D-38518 Gifhorn, Germany *Corresponding author. E-mail: [email protected] (Received 03 October 2005; revision accepted 03 March 2006) Abstract–Northwest Africa (NWA) 1500 is an ultramafic meteorite dominated by coarse (∼100– 500 μm) olivine (95–96%), augite (2–3%), and chromite (0.6–1.6%) in an equilibrated texture. Plagioclase (0.7–1.8%) occurs as poikilitic grains (up to ∼3 mm) in vein-like areas that have concentrations of augite and minor orthopyroxene. Other phases are Cl-apatite, metal, sulfide, and graphite. Olivine ranges from Fo 65–73, with a strong peak at Fo 68–69. Most grains are reverse- zoned, and also have ∼10–30 μm reduction rims. In terms of its dominant mineralogy and texture, NWA 1500 resembles the majority of monomict ureilites. However, it is more ferroan than known ureilites (Fo ≥75) and other mineral compositional parameters are out of the ureilite range as well. Furthermore, neither apatite nor plagioclase have ever been observed, and chromite is rare in monomict ureilites. Nevertheless, this meteorite may be petrologically related to the rare augite-bearing ureilites and represent a previously unsampled part of the ureilite parent body (UPB). The Mn/Mg ratio of its olivine and textural features of its pyroxenes are consistent with this interpretation. However, its petrogenesis differs from that of known augite- bearing ureilites in that: 1) it formed under more oxidized conditions; 2) plagioclase appeared before orthopyroxene in its crystallization sequence; and 3) it equilibrated to significantly lower temperatures (800–1000 °C, from two-pyroxene and olivine-chromite thermometry). Formation under more oxidized conditions and the appearance of plagioclase before orthopyroxene could be explained if it formed at a greater depth on the UPB than previously sampled. However, its significantly different thermal history (compared to ureilites) may more plausibly be explained if it formed on a different parent body. This conclusion is consistent with its oxygen isotopic composition, which suggests that it is an ungrouped achondrite. Nevertheless, the parent body of NWA 1500 may have been compositionally and petrologically similar to the UPB, and may have had a similar differentiation history. INTRODUCTION the presence of reduction rims (highly magnesian compositions riddled with tiny grains of low-Ni metal) on The Northwest Africa (NWA) 1500 meteorite, a single silicates (Goodrich 1992; Mittlefehldt et al. 1998). However, stone weighing ∼3.3 kg, was bought by meteorite hunters in other characteristics described by Bartoschewitz et al. (2003) Zagora in 2000 and was traded to R. Bartoschewitz in 2002. It are either rare or previously unknown in ureilites. These was classified by F. Wlotzka and R. Bartoschewitz as an include the presence of augite and absence of pigeonite, anomalous ureilite (Russell et al. 2003). Two initial studies of which would place NWA 1500 among the small group NWA 1500 have been reported in abstracts (Bartoschewitz (<10%) of augite-bearing ureilites (Goodrich et al. 2004), and et al. 2003; Mittlefehldt and Hudon 2004). As described by the presence of primary chromite, which has previously been Bartoschewitz et al. (2003), the dominant characteristics of observed in only two monomict ureilites (Prinz et al. 1994; NWA 1500 are those typical of ureilites: a preponderance of Warren and Kallemeyn 1994; Goodrich 1999b; Sikirdji and olivine in a highly equilibrated texture, the presence of dark Warren 2001). In addition, the olivine composition (Fo ∼72) matrix and vein material containing graphite and metal, and reported by Bartoschewitz et al. (2003) is more ferroan than 925 © The Meteoritical Society, 2006. Printed in USA. 926 C. A. Goodrich et al. that of any previously known monomict ureilite (the most Instrumental neutron activation analysis (INAA) of one ferroan of which is Fo ∼75). However, the most notable sample (0.15 g) was performed by B. Spettel of Max-Planck- characteristic of NWA 1500 is that it contains plagioclase, a Insitute f¸r Chemie in Mainz. The sample was irradiated for phase that has not been observed in any monomict ureilite. 6 h in a TRIGA reactor at the Institut f¸r Kernchemie of the Bartoschewitz et al. (2003) suggested that NWA 1500 was the University of Mainz with a flux of 7 × 1011 n/cm2 s−1. After first member of the “missing” basaltic ureilites, although they irradiation the sample was counted several times on small and also note that the oxygen isotopic composition of this large Ge detectors, using procedures described in Wänke et al. meteorite does not fall within the range of oxygen isotopic (1977). A second sample was analyzed by M.I. Prudêncio at compositions of known ureilites. Instituto Tecnológico e Nuclear, Portugal. The sample, along In contrast, Mittlefehldt and Hudon (2004) suggested that with reference materials (USGS standards PCC-1 and DTS-1 the differences between NWA 1500 and known ureilites are for Cr and Ni and IGGE standards GSS-1 and GSD-9 for so great that it is unlikely to belong to this group. They other elements: Govindaraju 1994), was ground in an agate observed that olivine compositions range to even more mortar, dried at 110 °C for 24 h, and stored in a silica gel ferroan values (Fo 67) than those reported by Bartoschewitz desiccator prior to weighing. Powder portions of 0.2–0.3 g et al. (2003), and furthermore fall significantly off the well- were weighed into polyethylene vials. The vials, together established ureilite Fe/Mn-Fe/Mg trend (e.g., Goodrich and with Fe flux monitors (long irradiation) or 0.1% Au-Al alloy Righter 2000). In addition, they found the carbon content of flux monitors (short irradiation), were placed into appropriate their sample to be very low (below their detection limits), plastic containers for irradiation. Short irradiation (1 min) was whereas most ureilites contain significant amounts (up to carried out in a pneumatic system of the Portuguese Research ∼7 wt%) of carbon. Based on these differences, and the Reactor (ITN) at a thermal flux of 2.8 × 1012 n cm−2 s−1. A anomalous (relative to ureilites) oxygen isotopic composition long irradiation (6 h) was carried out in the core grid of of NWA 1500, they concluded that this meteorite is a unique the Portuguese Research Reactor at a thermal flux of 3.34 × 12 −2 −1 φ φ φ φ γ achondrite. 10 n/m s ; epi/ th = 1.4%; th / fast = 12.1. A -ray Here we report a detailed petrologic study of NWA 1500, spectrometer consisting of a 150 cm3 coaxial Ge detector and with particular emphasis on comparing this meteorite to the a low energy photon detector (LEPD), connected through augite-bearing ureilites, examining its petrogenesis in the Canberra 2020 amplifiers to Accuspec B (Canberra) context of a model for the differentiation history of the ureilite multichannel analyzer were used. This system had a FWHM parent body (UPB), and determining whether it could have of 1.9 keV at 1.33 MeV (coaxial Ge detector), of 300 eV at formed on this body. 5.9 keV and of 550 eV at 122 keV (LEPD). The spectra were processed by using the appropriate software. Data for ANALYTICAL PROCEDURES multiple aliquots were averaged. Carbon and nitrogen were analyzed by N. Lahajnar at the We studied three thin sections of NWA 1500. Section #1 Universit‰t Hamburg Institut f¸r Biogeochemie und (the rectangular section shown in Fig. 1b) is the section that Meereschemie using high temperature oxidation in a NA- was described by Russell et al. (2003) and Bartoschewitz 1500 Carlo Erba elemental analyzer (Nieuwenhuize et al. et al. (2003). In addition, we prepared two new 1” round thin 1994; Verardo et al. 1990). One bulk sample weighing 0.3 g sections (designated #r1 and #r2), representing serial sections was crushed in an porcelain mortar and homogenized. Two parallel to the cut face of a single sample. The face of this subsamples of 27.145 mg and 44.089 mg were completely sample was not parallel to that of section #1. oxidized by controlled instantaneous flash-combustion at Electron microprobe (EMP) analyses, X-ray mapping, 1020 °C with pure oxygen (Air Liquide O2 5.6) in helium (Air and backscattered electron imaging were carried out using the Liquide He 5.0) as the carrier gas. The resulting gas mixture Cameca SX-50 microprobe and the JEOL JSM-LV5900 was eluted in a gaschromatographic column, from which scanning electron microscope at the University of Hawaii. nitrogen (as N2) and carbon (as CO2) emerge purified. The Conditions for standard EMP analyses were 15 KeV, with 10– separated nitrogen and carbon were then passed over a 30 nA beam current (10 nA for analysis of plagioclase and thermo-conductivity detector for quantification. For each 20–30 nA for all other phases) and 20–40 s counting times. analytical run, acetanilide standards and blank tin capsules High-precision analyses of olivine in NWA 1500 and various were used for calibration. ureilites were carried out at 15 keV and 60 nA beam current, with 400 s counting times for Mn, Cr, and Ca. Several PETROGRAPHY ureilites that were analyzed under similar conditions by Goodrich et al. (1987, 2001) and Goodrich and Righter (2000) General were included to ensure consistency with existing data.
Recommended publications
  • Physical Properties of Martian Meteorites: Porosity and Density Measurements
    Meteoritics & Planetary Science 42, Nr 12, 2043–2054 (2007) Abstract available online at http://meteoritics.org Physical properties of Martian meteorites: Porosity and density measurements Ian M. COULSON1, 2*, Martin BEECH3, and Wenshuang NIE3 1Solid Earth Studies Laboratory (SESL), Department of Geology, University of Regina, Regina, Saskatchewan S4S 0A2, Canada 2Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 3Campion College, University of Regina, Regina, Saskatchewan S4S 0A2, Canada *Corresponding author. E-mail: [email protected] (Received 11 September 2006; revision accepted 06 June 2007) Abstract–Martian meteorites are fragments of the Martian crust. These samples represent igneous rocks, much like basalt. As such, many laboratory techniques designed for the study of Earth materials have been applied to these meteorites. Despite numerous studies of Martian meteorites, little data exists on their basic structural characteristics, such as porosity or density, information that is important in interpreting their origin, shock modification, and cosmic ray exposure history. Analysis of these meteorites provides both insight into the various lithologies present as well as the impact history of the planet’s surface. We present new data relating to the physical characteristics of twelve Martian meteorites. Porosity was determined via a combination of scanning electron microscope (SEM) imagery/image analysis and helium pycnometry, coupled with a modified Archimedean method for bulk density measurements. Our results show a range in porosity and density values and that porosity tends to increase toward the edge of the sample. Preliminary interpretation of the data demonstrates good agreement between porosity measured at 100× and 300× magnification for the shergottite group, while others exhibit more variability.
    [Show full text]
  • Evidence from Polymict Ureilite Meteorites for a Disrupted and Re-Accreted Single Ureilite Parent Asteroid Gardened by Several Distinct Impactors
    Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 72 (2008) 4825–4844 www.elsevier.com/locate/gca Evidence from polymict ureilite meteorites for a disrupted and re-accreted single ureilite parent asteroid gardened by several distinct impactors Hilary Downes a,b,*, David W. Mittlefehldt c, Noriko T. Kita d, John W. Valley d a School of Earth Sciences, Birkbeck University of London, Malet Street, London WC1E 7HX, UK b Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058, USA c Mail Code KR, NASA/Johnson Space Center, Houston, TX 77058, USA d Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 W. Dayton St., Madison, WI 53706, USA Received 25 July 2007; accepted in revised form 24 June 2008; available online 17 July 2008 Abstract Ureilites are ultramafic achondrites that exhibit heterogeneity in mg# and oxygen isotope ratios between different meteor- ites. Polymict ureilites represent near-surface material of the ureilite parent asteroid(s). Electron microprobe analyses of >500 olivine and pyroxene clasts in several polymict ureilites reveal a statistically identical range of compositions to that shown by unbrecciated ureilites, suggesting derivation from a single parent asteroid. Many ureilitic clasts have identical compositions to the anomalously high Mn/Mg olivines and pyroxenes from the Hughes 009 unbrecciated ureilite (here termed the ‘‘Hughes cluster”). Some polymict samples also contain lithic clasts derived from oxidized impactors. The presence of several common distinctive lithologies within polymict ureilites is additional evidence that ureilites were derived from a single parent asteroid. In situ oxygen three isotope analyses were made on individual ureilite minerals and lithic clasts, using a secondary ion mass spectrometer (SIMS) with precision typically better than 0.2–0.4& (2SD) for d18O and d17O.
    [Show full text]
  • JEM-EUSO: Meteor and Nuclearite Observations
    Exp Astron DOI 10.1007/s10686-014-9375-4 ORIGINAL ARTICLE JEM-EUSO: Meteor and nuclearite observations M. Bertaina A. Cellino F. Ronga The JEM-EUSO· Collaboration· · Received: 22 August 2013 / Accepted: 24 February 2014 ©SpringerScience+BusinessMediaDordrecht2014 Abstract Meteor and fireball observations are key to the derivation of both the inven- tory and physical characterization of small solar system bodies orbiting in the vicinity of the Earth. For several decades, observation of these phenomena has only been possible via ground-based instruments. The proposed JEM-EUSO mission has the potential to become the first operational space-based platform to share this capabil- ity. In comparison to the observation of extremely energetic cosmic ray events, which is the primary objective of JEM-EUSO, meteor phenomena are very slow, since their typical speeds are of the order of a few tens of km/sec (whereas cosmic rays travel at light speed). The observing strategy developed to detect meteors may also be applied to the detection of nuclearites, which have higher velocities, a wider range of possible trajectories, but move well below the speed of light and can therefore be considered as slow events for JEM-EUSO. The possible detection of nuclearites greatly enhances the scientific rationale behind the JEM-EUSO mission. Keywords Meteors Nuclearites JEM-EUSO Space detectors · · · M. Bertaina (!) Dipartimento di Fisica, Universit`adiTorino,INFNTorino,viaP.Giuria1,10125Torino,Italy e-mail: [email protected] A. Cellino (!) INAF-Osservatorio Astrofisico di Torino, Strada Osservatorio 20, 10025 Pino Torinese (TO), Italy e-mail: [email protected] F. Ronga (!) Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Frascati, Via E.
    [Show full text]
  • Graphite-Based Geothermometry on Almahata Sitta Ureilitic Meteorites
    minerals Article Graphite-Based Geothermometry on Almahata Sitta Ureilitic Meteorites Anna Barbaro 1,*, M. Chiara Domeneghetti 1, Cyrena A. Goodrich 2, Moreno Meneghetti 3 , Lucio Litti 3, Anna Maria Fioretti 4, Peter Jenniskens 5 , Muawia H. Shaddad 6 and Fabrizio Nestola 7,8 1 Department of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy; [email protected] 2 Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA; [email protected] 3 Department of Chemical Sciences, University of Padova, 35131 Padova, Italy; [email protected] (M.M.); [email protected] (L.L.) 4 Institute of Geosciences and Earth Resources, National Research Council, 35131 Padova, Italy; anna.fi[email protected] 5 SETI Institute, Mountain View, CA 94043, USA; [email protected] 6 Department of Physics and Astronomy, University of Khartoum, Khartoum 11111, Sudan; [email protected] 7 Department of Geosciences, University of Padova, 35131 Padova, Italy; [email protected] 8 Geoscience Institute, Goethe-University Frankfurt, 60323 Frankfurt, Germany * Correspondence: [email protected]; Tel.: +39-3491548631 Received: 13 October 2020; Accepted: 10 November 2020; Published: 12 November 2020 Abstract: The thermal history of carbon phases, including graphite and diamond, in the ureilite meteorites has implications for the formation, igneous evolution, and impact disruption of their parent body early in the history of the Solar System. Geothermometry data were obtained by micro-Raman spectroscopy on graphite in Almahata Sitta (AhS) ureilites AhS 72, AhS 209b and AhS A135A from the University of Khartoum collection. In these samples, graphite shows G-band peak centers between 1 1578 and 1585 cm− and the full width at half maximum values correspond to a crystallization temperature of 1266 ◦C for graphite for AhS 209b, 1242 ◦C for AhS 72, and 1332 ◦C for AhS A135A.
    [Show full text]
  • Impact Shock Origin of Diamonds in Ureilite Meteorites
    Impact shock origin of diamonds in ureilite meteorites Fabrizio Nestolaa,b,1, Cyrena A. Goodrichc,1, Marta Moranad, Anna Barbarod, Ryan S. Jakubeke, Oliver Christa, Frank E. Brenkerb, M. Chiara Domeneghettid, M. Chiara Dalconia, Matteo Alvarod, Anna M. Fiorettif, Konstantin D. Litasovg, Marc D. Friesh, Matteo Leonii,j, Nicola P. M. Casatik, Peter Jenniskensl, and Muawia H. Shaddadm aDepartment of Geosciences, University of Padova, I-35131 Padova, Italy; bGeoscience Institute, Goethe University Frankfurt, 60323 Frankfurt, Germany; cLunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058; dDepartment of Earth and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy; eAstromaterials Research and Exploration Science Division, Jacobs Johnson Space Center Engineering, Technology and Science, NASA, Houston, TX 77058; fInstitute of Geosciences and Earth Resources, National Research Council, I-35131 Padova, Italy; gVereshchagin Institute for High Pressure Physics RAS, Troitsk, 108840 Moscow, Russia; hNASA Astromaterials Acquisition and Curation Office, Johnson Space Center, NASA, Houston, TX 77058; iDepartment of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy; jSaudi Aramco R&D Center, 31311 Dhahran, Saudi Arabia; kSwiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland; lCarl Sagan Center, SETI Institute, Mountain View, CA 94043; and mDepartment of Physics and Astronomy, University of Khartoum, 11111 Khartoum, Sudan Edited by Mark Thiemens, University of California San Diego, La Jolla, CA, and approved August 12, 2020 (received for review October 31, 2019) The origin of diamonds in ureilite meteorites is a timely topic in to various degrees and in these samples the graphite areas, though planetary geology as recent studies have proposed their formation still having external blade-shaped morphologies, are internally at static pressures >20 GPa in a large planetary body, like diamonds polycrystalline (18).
    [Show full text]
  • Ureilite Vein Metal – Indigeneous Or Impact Material? A
    40th Lunar and Planetary Science Conference (2009) 2462.pdf UREILITE VEIN METAL – INDIGENEOUS OR IMPACT MATERIAL? A. D. Gabriel1 and A. Pack1, 1Geowissenschaftliches Zentrum, Goldschmidtstrasse 1, Universität Göttingen, 37077 Göttingen; [email protected]. Introduction: Ureilites are ultramafic, igneous the UPB, the more FeO is incorporated into the ureilite achondrites, which contain olivine (ol), pyroxene, silicate and the smaller is the amount of Fe in the metal metal and carbon. About ~10 vol% dark interstitial, phase. For the UPB, the oxidation grade can be de- fine-grained matter is usually referred as vein material ducted from the amount of fayalite in ol. LA-ICP-MS [1]. Ureilites have lost ~25% basalt [2] and most of measurements show only trace amounts of Ni and Co their metallic iron. Presently, many authors assume in ureilite silicate (19-105 µg/g Ni and 5-54 µg/g Co that the majority of ureilites formed as asteroidal melt- positively correlated with fa (also see: [8]). For mass ing residues [3, 4]. Although heterogeneous in oxygen balance calculations Ni, Co and S have been complete- isotopes [5], ureilites are suggested to originate from a ly incorporated in the metal phase. single parent body that has been disrupted by impact. Mass balance calculations (mantle/core distribu- Variations in fayalite content are related to simultane- tion) for a UPB with CV3-chondritic composition give ous smelting and melting at various depths [6]. Ni concentrations ranging from 5 wt% in a very re- The origin of the vein metal is not yet clear. While duced parent body (e.g.
    [Show full text]
  • The Nakhlite Meteorites: Augite-Rich Igneous Rocks from Mars ARTICLE
    ARTICLE IN PRESS Chemie der Erde 65 (2005) 203–270 www.elsevier.de/chemer INVITED REVIEW The nakhlite meteorites: Augite-rich igneous rocks from Mars Allan H. Treiman Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058-1113, USA Received 22 October 2004; accepted 18 January 2005 Abstract The seven nakhlite meteorites are augite-rich igneous rocks that formed in flows or shallow intrusions of basaltic magma on Mars. They consist of euhedral to subhedral crystals of augite and olivine (to 1 cm long) in fine-grained mesostases. The augite crystals have homogeneous cores of Mg0 ¼ 63% and rims that are normally zoned to iron enrichment. The core–rim zoning is cut by iron-enriched zones along fractures and is replaced locally by ferroan low-Ca pyroxene. The core compositions of the olivines vary inversely with the steepness of their rim zoning – sharp rim zoning goes with the most magnesian cores (Mg0 ¼ 42%), homogeneous olivines are the most ferroan. The olivine and augite crystals contain multiphase inclusions representing trapped magma. Among the olivine and augite crystals is mesostasis, composed principally of plagioclase and/or glass, with euhedra of titanomagnetite and many minor minerals. Olivine and mesostasis glass are partially replaced by veinlets and patches of iddingsite, a mixture of smectite clays, iron oxy-hydroxides and carbonate minerals. In the mesostasis are rare patches of a salt alteration assemblage: halite, siderite, and anhydrite/ gypsum. The nakhlites are little shocked, but have been affected chemically and biologically by their residence on Earth. Differences among the chemical compositions of the nakhlites can be ascribed mostly to different proportions of augite, olivine, and mesostasis.
    [Show full text]
  • Impact Shock Origin of Diamonds in Ureilite Meteorites
    Impact shock origin of diamonds in ureilite meteorites Fabrizio Nestolaa,b,1, Cyrena A. Goodrichc,1, Marta Moranad, Anna Barbarod, Ryan S. Jakubeke, Oliver Christa, Frank E. Brenkerb, M. Chiara Domeneghettid, M. Chiara Dalconia, Matteo Alvarod, Anna M. Fiorettif, Konstantin D. Litasovg, Marc D. Friesh, Matteo Leonii,j, Nicola P. M. Casatik, Peter Jenniskensl, and Muawia H. Shaddadm aDepartment of Geosciences, University of Padova, I-35131 Padova, Italy; bGeoscience Institute, Goethe University Frankfurt, 60323 Frankfurt, Germany; cLunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058; dDepartment of Earth and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy; eAstromaterials Research and Exploration Science Division, Jacobs Johnson Space Center Engineering, Technology and Science, NASA, Houston, TX 77058; fInstitute of Geosciences and Earth Resources, National Research Council, I-35131 Padova, Italy; gVereshchagin Institute for High Pressure Physics RAS, Troitsk, 108840 Moscow, Russia; hNASA Astromaterials Acquisition and Curation Office, Johnson Space Center, NASA, Houston, TX 77058; iDepartment of Civil, Environmental and Mechanical Engineering, University of Trento, I-38123 Trento, Italy; jSaudi Aramco R&D Center, 31311 Dhahran, Saudi Arabia; kSwiss Light Source, Paul Scherrer Institut, 5232 Villigen, Switzerland; lCarl Sagan Center, SETI Institute, Mountain View, CA 94043; and mDepartment of Physics and Astronomy, University of Khartoum, 11111 Khartoum, Sudan Edited by Mark Thiemens, University of California San Diego, La Jolla, CA, and approved August 12, 2020 (received for review October 31, 2019) The origin of diamonds in ureilite meteorites is a timely topic in to various degrees and in these samples the graphite areas, though planetary geology as recent studies have proposed their formation still having external blade-shaped morphologies, are internally at static pressures >20 GPa in a large planetary body, like diamonds polycrystalline (18).
    [Show full text]
  • UNIVERSITY of CALIFORNIA, SAN DIEGO Primitive and Differentiated
    UNIVERSITY OF CALIFORNIA, SAN DIEGO Primitive and differentiated achondrite meteorites and partial melting in the early Solar System A Thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Earth Sciences By Christopher Andrew Corder Committee in charge: Professor James M. D. Day, Chair Professor Geoffrey W. Cook Professor David R. Stegman 2015 © Christopher Andrew Corder, 2015 All rights reserved. The Thesis of Christopher Corder is approved and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2015 iii Dedication This manuscript would be far from complete without thanking those who helped set the stage for the many hours of work it documents, and those thank-yous would be far from complete without recognizing my parents and their unwavering support throughout years of study. I know I was the one in the lab, but I never would have made it there, or to my defense, or through any of the long days and nights if it weren’t for you both. Thank you, so much. I’d love to thank my entire family, especially Stephen. You’re a brother Stephen, and you encourage me more than you know. Whenever it seemed like research was going nowhere, you were there to remind me why science is always a worthwhile endeavor. Even more importantly you remind me, by example, that there are exceptional people in this world. Many thanks are due to the lab group I worked with and other smart folks at SIO. First of all, thank you James for trusting this intriguing suite of meteorites to my care.
    [Show full text]
  • A Large Planetary Body Inferred from Diamond Inclusions in a Ureilite Meteorite
    ARTICLE DOI: 10.1038/s41467-018-03808-6 OPEN A large planetary body inferred from diamond inclusions in a ureilite meteorite Farhang Nabiei1,2, James Badro1,3, Teresa Dennenwaldt2,4, Emad Oveisi 2, Marco Cantoni2, Cécile Hébert2,4, Ahmed El Goresy5, Jean-Alix Barrat6 & Philippe Gillet1 Planetary formation models show that terrestrial planets are formed by the accretion of tens of Moon- to Mars-sized planetary embryos through energetic giant impacts. However, relics 1234567890():,; of these large proto-planets are yet to be found. Ureilites are one of the main families of achondritic meteorites and their parent body is believed to have been catastrophically dis- rupted by an impact during the first 10 million years of the solar system. Here we studied a section of the Almahata Sitta ureilite using transmission electron microscopy, where large diamonds were formed at high pressure inside the parent body. We discovered chromite, phosphate, and (Fe,Ni)-sulfide inclusions embedded in diamond. The composition and morphology of the inclusions can only be explained if the formation pressure was higher than 20 GPa. Such pressures suggest that the ureilite parent body was a Mercury- to Mars-sized planetary embryo. 1 Earth and Planetary Science Laboratory (EPSL), Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 2 Interdisciplinary Center for Electron Microscopy (CIME), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 3 Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Paris, France. 4 Electron Spectrometry and Microscopy Laboratory (LSME), Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland. 5 Bayerisches Geoinstitut, Universität Bayreuth, Bayreuth, Germany.
    [Show full text]
  • Revision 1 Characterization of Carbon Phases in Yamato 74123 Ureilite To
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7856. http://www.minsocam.org/ 1 Revision 1 2 3 Characterization of carbon phases in Yamato 74123 ureilite to constrain 4 the meteorite shock history 5 word count: 6142 6 7 ANNA BARBARO1, FABRIZIO NESTOLA2,3, LIDIA PITTARELLO4, 8 LUDOVIC FERRIÈRE4, MARA MURRI5, KONSTANTIN D. LITASOV6, OLIVER CHRIST2, 9 MATTEO ALVARO1, AND M. CHIARA DOMENEGHETTI1 10 1 Department of Earth and Environmental Sciences, University of Pavia, Via A. Ferrata 1, I-27100, Pavia, Italy 11 2 Department of Geosciences, University of Padova, Via Gradenigo 6, 35131, Padova, Italy 12 3 Geoscience Institute, Goethe-University Frankfurt, Altenhöferallee 1, 60323, Frankfurt, Germany 13 4 Natural History Museum, Department of Mineralogy and Petrography, Burgring 7, 1010, Vienna, Austria 14 5 Department of Earth and Environmental Sciences, University of Milano-Bicocca, I-20126, Milano, Italy 15 6 Vereshchagin Institute for High Pressure Physics RAS, Troitsk, Moscow, 108840, Russia 16 17 ABSTRACT 18 The formation and shock history of ureilite meteorites, a relatively abundant type of 19 primitive achondrites, has been debated since decades. For this purpose, the characterization 20 of carbon phases can provide further information on diamond and graphite formation in 21 ureilites, shedding light on the origin and history of this meteorite group. In this work, we 22 present X-ray diffraction and micro-Raman spectroscopy analyses performed on diamond and 23 graphite occurring in the ureilite Yamato 74123 (Y-74123).
    [Show full text]
  • Evidence from Polymict Ureilite Meteorites for a Single “Rubble-Pile”
    1 Evidence from polymict ureilite meteorites for a single “rubble-pile” 2 ureilite parent asteroid gardened by several distinct impactors 3 4 Hilary Downes1*, David W. Mittlefehldt2, Noriko T. Kita3, John W. Valley3 5 6 1 School of Earth Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, 7 UK; Also at: Lunar and Planetary Institute, 3600 Bay Area Boulevard, Houston, TX 77058, 8 USA. 9 2 mail code KR, NASA/Johnson Space Center, Houston, TX 77058, USA. 10 3 Department of Geology and Geophysics, University of Wisconsin-Madison, 1215 W. Dayton 11 St., Madison, WI 53706, USA 12 13 Abstract 14 15 Ureilites are ultramafic achondrite meteorites that have experienced igneous processing whilst 16 retaining heterogeneity in mg# and oxygen isotope ratios. Polymict ureilites represent material 17 derived from the surface of the ureilite parent asteroid(s). Electron microprobe analysis of more 18 than 500 olivine and pyroxene clasts in six polymict ureilites reveals that they cover a 19 statistically identical range of compositions to that shown by all known monomict ureilites. This 20 is considered to be convincing evidence for derivation from a single parent asteroid. Many of the 21 polymict ureilites also contain clasts that have identical compositions to the anomalously high 22 Mn/Mg olivines and pyroxenes from the Hughes 009 monomict ureilite (here termed the 23 “Hughes cluster”). Four of the six samples also contain distinctive ferroan lithic clasts that have 24 been derived from oxidized impactors. The presence of several common distinctive lithologies 25 within the polymict ureilites is additional evidence that the ureilites were derived from a single 26 parent asteroid.
    [Show full text]