A Simplified Protocol for Bumble Bee Species Identification by Cephalic Secretion Analysis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Honeybee (Apis Mellifera) and Bumblebee (Bombus Terrestris) Venom: Analysis and Immunological Importance of the Proteome
Department of Physiology (WE15) Laboratory of Zoophysiology Honeybee (Apis mellifera) and bumblebee (Bombus terrestris) venom: analysis and immunological importance of the proteome Het gif van de honingbij (Apis mellifera) en de aardhommel (Bombus terrestris): analyse en immunologisch belang van het proteoom Matthias Van Vaerenbergh Ghent University, 2013 Thesis submitted to obtain the academic degree of Doctor in Science: Biochemistry and Biotechnology Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen, Biochemie en Biotechnologie Supervisors: Promotor: Prof. Dr. Dirk C. de Graaf Laboratory of Zoophysiology Department of Physiology Faculty of Sciences Ghent University Co-promotor: Prof. Dr. Bart Devreese Laboratory for Protein Biochemistry and Biomolecular Engineering Department of Biochemistry and Microbiology Faculty of Sciences Ghent University Reading Committee: Prof. Dr. Geert Baggerman (University of Antwerp) Dr. Simon Blank (University of Hamburg) Prof. Dr. Bart Braeckman (Ghent University) Prof. Dr. Didier Ebo (University of Antwerp) Examination Committee: Prof. Dr. Johan Grooten (Ghent University, chairman) Prof. Dr. Dirk C. de Graaf (Ghent University, promotor) Prof. Dr. Bart Devreese (Ghent University, co-promotor) Prof. Dr. Geert Baggerman (University of Antwerp) Dr. Simon Blank (University of Hamburg) Prof. Dr. Bart Braeckman (Ghent University) Prof. Dr. Didier Ebo (University of Antwerp) Dr. Maarten Aerts (Ghent University) Prof. Dr. Guy Smagghe (Ghent University) Dean: Prof. Dr. Herwig Dejonghe Rector: Prof. Dr. Anne De Paepe The author and the promotor give the permission to use this thesis for consultation and to copy parts of it for personal use. Every other use is subject to the copyright laws, more specifically the source must be extensively specified when using results from this thesis. -
Scientific Note on Interrupted Sexual Behavior to Virgin Queens And
Scientific note on interrupted sexual behavior to virgin queens and expression of male courtship-related gene fruitless in a gynandromorph of bumblebee, Bombus ignitus Koshiro Matsuo, Ryohei Kubo, Tetsuhiko Sasaki, Masato Ono, Atsushi Ugajin To cite this version: Koshiro Matsuo, Ryohei Kubo, Tetsuhiko Sasaki, Masato Ono, Atsushi Ugajin. Scientific note on interrupted sexual behavior to virgin queens and expression of male courtship-related gene fruitless in a gynandromorph of bumblebee, Bombus ignitus. Apidologie, 2018, 49 (3), pp.411-414. 10.1007/s13592- 018-0568-0. hal-02973388 HAL Id: hal-02973388 https://hal.archives-ouvertes.fr/hal-02973388 Submitted on 21 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie (2018) 49:411–414 Scientific note * INRA, DIB and Springer-Verlag France SAS, part of Springer Nature, 2018 DOI: 10.1007/s13592-018-0568-0 Scientific note on interrupted sexual behavior to virgin queens and expression of male courtship-related gene fruitless in a gynandromorph of bumblebee, Bombus ignitus 1 2 2 1,2 1,3 Koshiro -
Hymenoptera: Apidae) in Hungary, Central Europe
Biodiversity and Conservation (2005) 14:2437–2446 Ó Springer 2005 DOI 10.1007/s10531-004-0152-y Assessing the threatened status of bumble bee species (Hymenoptera: Apidae) in Hungary, Central Europe MIKLO´SSA´ROSPATAKI*, JUDIT NOVA´K and VIKTO´RIA MOLNA´R Department of Zoology and Ecology, Szent Istva´n University, H-2103 Go¨do¨ll, Pa´ter K. u. 1., Hungary; *Author for correspondence: (e-mail: [email protected]; phone: +36-28-522-085, fax: +36-28-410-804 Received 11 November 2003; accepted in revised form 5 April 2004 Key words: Bombus, Endangered and vulnerable species, IUCN Red List categories, Species con- servation Abstract. Decline in the populations of bumble bees and other pollinators stress the need for more knowledge about their conservation status. Only one of the 25 bumble bee species present in Hungary is included in the Hungarian Red List. We estimated the endangerment of the Hungarian bumble bee (Bombus Latr.) species using the available occurrence data from the last 50 years of the 20th century. Four of the 25 species were data deficient or extinct from Hungary. About 60% of species were considered rare or moderately rare. Changes in distribution and occurrence frequency indicated that 10 of the 21 native species showed a declining trend, while only three species in- creased in frequency of occurrence. According to the IUCN Red List categories, seven species (33% of the native fauna) should be labelled as critically endangered (CR) and 3 (14%) as endangered (EN). Our results stress an urgent need of protection plans for bumble bees in Hungary, and further underlines the validity of concern over bumble bees all over Europe. -
Intra and Interspecific Variability of the Cephalic Labial Glands' Secretions in Male Bumblebees: the Case of Bombus (Thoracobombus) Ruderarius and B
Apidologie 36 (2005) 85–96 © INRA/DIB-AGIB/ EDP Sciences, 2005 85 DOI: 10.1051/apido:2004072 Original article Intra and interspecific variability of the cephalic labial glands' secretions in male bumblebees: the case of Bombus (Thoracobombus) ruderarius and B. (Thoracobombus) sylvarum [Hymenoptera, Apidae]1 Michaël TERZOa*, Klara URBANOVAb, Irena VALTEROVAb*, Pierre RASMONTa a Laboratory of Zoology, University of Mons-Hainaut (UMH), 6 avenue du Champ de Mars, 7000 Mons, Belgium b Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 10 Praha 6, The Czech Republic Received 8 January 2004 – Revised 28 May 2004 – Accepted 25 June 2004 Published online 16 March 2005 Abstract – According to the species recognition concept of Paterson, the analyses of the secretions of the cephalic parts of the male labial glands confirm the conspecificity of Bombus (Thoracobombus) ruderarius ruderarius and B. (T.) r. montanus populations from the Pyrenees. These secretions were compared in B. ruderarius and B. sylvarum. We identified the same 7 major compounds as previously known for these species. We also identified 69 minor compounds. These minor compounds emphasise the close relationship between both species. Principal Component Analyses (PCA) were carried out on standardised peak areas of GC-MS chromatograms. The first PCA component is discriminant and shows no overlap between both species. Their secretions differ mostly by the relative concentration of their compounds rather than by their qualitative composition. On the contrary, PCA is unable to separate montanus from ruderarius. The larger variance in the secretions of B. ruderarius results from the very low concentration of the main compound (9-hexadecenol) in some specimens. -
A TEST of Bombus Terrestris COCOON and OTHER COMMON METHODS for NEST INITIATION in B
DOI: 10.2478/v10289-012-0022-x Vol. 56 No. 2 2012 Journal of Apicultural Science 37 A TEST OF Bombus terrestris COCOON AND OTHER COMMON METHODS FOR NEST INITIATION IN B. lapidarius AND B. hortorum Alena Buč ánková1,2, Vladimír Ptáč ek1 1Agricultural Research, Ltd. Troubsko, Czech Republic 2Research Institute for Fodder Crops, Ltd. Troubsko, Czech Republic e-mail: [email protected] Received 11 April 2012; accepted 21 November 2012 Summary Several methods for stimulating nest initiation (particularly the use of the Bombus terrestris cocoon) in queen bumblebees of the species B. lapidarius and B. hortorum were compared. For B. lapidarius, it was determined that the percentage success rate for establishing the fi rst egg cell on a cocoon of B. terrestris is similar to that on a conspecifi c cocoon. Nest establishment, however, was signifi cantly slower on the cocoon of B. terrestris. Moreover, it was determined that queens of B. lapidarius are able to initiate a nest without hibernation. Queens hibernated in the laboratory displayed a similar percentage success rate in establishing an egg cell during stimulation with the cocoon of B. terrestris as did the outdoor queens, but the lab queens established it signifi cantly more slowly. Queens of B. hortorum did not incubate the cocoon of B. terrestris, nor did they establish an egg cell on it. Keywords: bumblebee, cocoon, colony initiation, Bombus terrestris, Bombus lapidarius, Bombus hortorum. INTRODUCTION (1985) and Ptáček (2000); the method Bumblebees are important pollinators of an added worker, later mentioned by of many agricultural crops. During the Alford (1975); and the use of interspecies past century, great advances have been cooperation to initiate nesting of the queen made in research concerning bumblebee and rearing of a brood (Ono et al., 1994). -
Insect Venom Phospholipases A1 and A2 Roles in the Envenoming Process and Allergy
Insect Biochemistry and Molecular Biology 105 (2019) 10–24 Contents lists available at ScienceDirect Insect Biochemistry and Molecular Biology journal homepage: www.elsevier.com/locate/ibmb Insect venom phospholipases A1 and A2: Roles in the envenoming process and allergy T Amilcar Perez-Riverola, Alexis Musacchio Lasab, José Roberto Aparecido dos Santos-Pintoa, ∗ Mario Sergio Palmaa, a Center of the Study of Social Insects, Department of Biology, Institute of Biosciences of Rio Claro, São Paulo State University (UNESP), Rio Claro, SP, 13500, Brazil b Center for Genetic Engineering and Biotechnology, Biomedical Research Division, Department of System Biology, Ave. 31, e/158 and 190, P.O. Box 6162, Cubanacan, Playa, Havana, 10600, Cuba ARTICLE INFO ABSTRACT Keywords: Insect venom phospholipases have been identified in nearly all clinically relevant social Hymenoptera, including Hymenoptera bees, wasps and ants. Among other biological roles, during the envenoming process these enzymes cause the Venom phospholipases A1 and A2 disruption of cellular membranes and induce hypersensitive reactions, including life threatening anaphylaxis. ff Toxic e ects While phospholipase A2 (PLA2) is a predominant component of bee venoms, phospholipase A1 (PLA1) is highly Hypersensitive reactions abundant in wasps and ants. The pronounced prevalence of IgE-mediated reactivity to these allergens in sen- Allergy diagnosis sitized patients emphasizes their important role as major elicitors of Hymenoptera venom allergy (HVA). PLA1 and -A2 represent valuable marker allergens for differentiation of genuine sensitizations to bee and/or wasp venoms from cross-reactivity. Moreover, in massive attacks, insect venom phospholipases often cause several pathologies that can lead to fatalities. This review summarizes the available data related to structure, model of enzymatic activity and pathophysiological roles during envenoming process of insect venom phospholipases A1 and -A2. -
Bee Species Diversity Enhances Productivity and Stability in a Perennial Crop
Bee Species Diversity Enhances Productivity and Stability in a Perennial Crop Shelley R. Rogers*, David R. Tarpy, Hannah J. Burrack Department of Entomology, North Carolina State University, Raleigh, North Carolina, United States of America Abstract Wild bees provide important pollination services to agroecoystems, but the mechanisms which underlie their contribution to ecosystem functioning—and, therefore, their importance in maintaining and enhancing these services—remain unclear. We evaluated several mechanisms through which wild bees contribute to crop productivity, the stability of pollinator visitation, and the efficiency of individual pollinators in a highly bee-pollination dependent plant, highbush blueberry. We surveyed the bee community (through transect sampling and pan trapping) and measured pollination of both open- and singly-visited flowers. We found that the abundance of managed honey bees, Apis mellifera, and wild-bee richness were equally important in describing resulting open pollination. Wild-bee richness was a better predictor of pollination than wild- bee abundance. We also found evidence suggesting pollinator visitation (and subsequent pollination) are stabilized through the differential response of bee taxa to weather (i.e., response diversity). Variation in the individual visit efficiency of A. mellifera and the southeastern blueberry bee, Habropoda laboriosa, a wild specialist, was not associated with changes in the pollinator community. Our findings add to a growing literature that diverse pollinator communities provide more stable and productive ecosystem services. Citation: Rogers SR, Tarpy DR, Burrack HJ (2014) Bee Species Diversity Enhances Productivity and Stability in a Perennial Crop. PLoS ONE 9(5): e97307. doi:10. 1371/journal.pone.0097307 Editor: Wolfgang Blenau, Goethe University Frankfurt, Germany Received November 5, 2013; Accepted April 18, 2014; Published May 9, 2014 Copyright: ß 2014 Rogers et al. -
An Annotated Checklist of Bumble Bees with an Analysis of Patterns of Description (Hymenoptera: Apidae, Bombini)
Bull. nat. Hist. Mus. Lond. (Ent.) 67(1):79-152 Issued 25 June 1998 An annotated checklist of bumble bees with an analysis of patterns of description (Hymenoptera: Apidae, Bombini) PAUL H. WILLIAMS Department o f Entomology, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD CONTENTS Introduction......., ....................................... 80 Past lists of species........................................................................................................................ 80 History of discovery of species .................................................................................................... 80 History of publication of nam es...................................................................................................81 Summary of historical and regional trends in describing bumble b ees...................................86 Development of a revised checklist............................................................................................. 87 Acknowledgements............................. 88 Taxonomy............................................................................................................................................88 Phylogeny, supra-specific taxa and ordering of species............................................................89 Criteria to discriminate species............................................................................ 90 Sub-specific ta x a .......................................................................................................................... -
Bombus Terrestris) Fat Body and Haemolymph -An Immune Perspective
A proteomic and cytological characterisation of the buff-tailed bumblebee (Bombus terrestris) fat body and haemolymph -An immune perspective A thesis submitted to the Maynooth University, for the degree of Doctor of Philosophy by Dearbhlaith Ellen Larkin B. Sc. October 2018 Supervisor Head of Department Dr Jim Carolan, Prof Paul Moynagh, Applied Proteomics Lab, Dept. of Biology, Dept. of Biology, Maynooth University, Maynooth University, Co. Kildare. Co. Kildare Table of contents ii List of figures ix List of tables xiii Dissemination of research xvi Acknowledgments xviii Declaration xix Abbreviations xx Abstract xxiii Table of contents Chapter 1 General introduction 1.1 Bumblebees ............................................................................................................................. 2 1.1.1 Bumblebee anatomy ............................................................................................................. 4 1.2 Bombus terrestris .................................................................................................................... 5 1.3 Global distribution and habitat ................................................................................................ 8 1.4 Pollination ............................................................................................................................... 8 1.5 Bumblebee declines, cause and effect ................................................................................... 10 1.5.1 Environmental stressors and reduced genetic diversity -
Status and Trends of European Pollinators
STEPStatus and Trends of European Pollinators M.7.6. Stand alone power point presentation of STEP Prepared by READING and PENSOFT This project is supported by the European Commission under the 7th Framework Programme for Research and Technological Development. Grant agreement number: 244090 – STEP – CP – FP. Partners No. Partner 1 University of Reading 13 University of Tartu 2 Helmholtz Centre for Environmental Research 14 PENSOFT Publishers 3 Swedish University of Agricultural Sciences 15 University of Bern 4 Stichting Dienst Landbouwkundig Onderzoek 16 University of Novi Sad Faculty of Sciences 5 Aarhus University 17 University of Mons 6 University of Leeds 18 Jagiellonian University 7 University of Bayreuth 19 University of Pisa 8 National Institute of Agronomic Research 20 University of the Aegean 9 Federal Department of Economic Affairs 21 Julius Maximilians University Würzburg 10 Finnish Environment Institute 22 Stichting Naturalis Biodiversity Center (Naturalis), Netherlands 11 Lunds University 12 Spanish Council for Scientific Research 23 University of Freiburg, Germany Collaborative organisations: International Union for Conservation of Nature (IUCN) The Food and Agriculture Organization of the United Nations (FAO) Partners The STEP project ran from 2010-2015, combining the expertise of 22 research institutions from 17 European countries with more than 120 researchers. Management European Commission Resources Reporting STEP – GA Approva STEP STEP General Assembly of l Project Office all Parties Co-ordinator (Reading) / Reporting -
Étude Fonctionnelle De La Fonction De Pollinisation Entomophile En Prairie Permanente Sous L’Effet D’Un Gradient D’Intensification Agricole Jérémie Goulnik
Étude fonctionnelle de la fonction de pollinisation entomophile en prairie permanente sous l’effet d’un gradient d’intensification agricole Jérémie Goulnik To cite this version: Jérémie Goulnik. Étude fonctionnelle de la fonction de pollinisation entomophile en prairie permanente sous l’effet d’un gradient d’intensification agricole. Agronomie. Université de Lorraine, 2019. Français. NNT : 2019LORR0297. tel-02559535 HAL Id: tel-02559535 https://hal.univ-lorraine.fr/tel-02559535 Submitted on 30 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. -
Proteomic Characterization of the Venom of Five Bombus
bioRxiv preprint doi: https://doi.org/10.1101/193524; this version posted September 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. FULL TITLE: PROTEOMIC CHARACTERIZATION OF THE VENOM OF FIVE BOMBUS (THORACOBOMBUS) SPECIES Nezahat Pınar Barkana1, Mustafa Bilal Bayazitb, Duygu Demiralp Özelc2 aHacettepe University, Faculty of Science, Department of Biology, Ankara, Turkey bUniversity of Lausanne, Department of Fundamental Neurosciences, Lausanne, Switzerland cAnkara University, Faculty of Engineering, Biomedical Engineering, Ankara, Turkey 1Current Address: University of Gothenburg, Department of Oncology, Sahlgrenska Academy, Gothenburg, Sweden 2Corresponding author: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/193524; this version posted September 25, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Venomous animals use venom; a complex biofluid composed of unique mixtures of proteins and peptides, to act on vital systems of the prey or predator. In bees, venom is solely used for defense against predators. However, the venom composition of bumble bees (Bombus sp.) is largely unknown. Thoracobombus subgenus of Bombus sp. is a diverse subgenus represented by 14 members across Turkey. In this study, we sought out to proteomically characterize the venom of five Thoracobombus species by using bottom-up proteomic techniques. We have obtained two-dimensional polyacrylamide gel (2D-PAGE) images of each venom sample. We have subsequently identified the protein spots by using matrix assisted laser desorption ionization / time of flight mass spectrometry (MALDI-TOF MS).