Identification of Somatic Mutations Using Whole-Exome Sequencing In

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Somatic Mutations Using Whole-Exome Sequencing In Heo et al. BMC Medical Genetics (2017) 18:23 DOI 10.1186/s12881-017-0382-y RESEARCHARTICLE Open Access Identification of somatic mutations using whole-exome sequencing in Korean patients with acute myeloid leukemia Seong Gu Heo1,2, Youngil Koh3, Jong Kwang Kim4,5, Jongsun Jung6, Hyung-Lae Kim7, Sung-Soo Yoon3 and Ji Wan Park1* Abstract Background: Acute myeloid leukemia (AML) is a biologically and clinically heterogeneous cancer of the bone marrow that is characterized by the rapid growth of abnormal myeloid cells. Methods: We performed a mutational analysis to identify AML somatic mutations using the whole-exome sequencing data of 36 tumor-normal sample pairs from Korean patients with de novo AML. We explored the functional impact of the genes identified in the mutational analyses through an integrated Gene Ontology (GO) and pathway analysis. Results: A total of 11 genes, including NEFH (p = 6.27 × 10−13 and q = 1.18 × 10−8) and TMPRSS13 (p = 1.40 × 10−10 and q = 1.32 × 10−6), also demonstrated q values less than 0.1 in 36 Korean AML patients. Five out of the 11 novel genes have previously been reported to be associated with other cancers. Two gene mutations, CEBPA (p = 5.22 × 10−5) and ATXN3 (p = 9.75 × 10−4), showed statistical significance exclusively in the M2 and M3 subtypes of the French-American-British classifications, respectively. A total of 501 genes harbored 478 missense, 22 nonsense, 93 frameshift indels, and/or three stop codon deletions and these gene mutations significantly enriched GO terms for signal transduction (GO:0007165, p = 1.77 × 10−3), plasma membrane (GO:0005886, p = 3.07 × 10−4), and scaffold protein binding (GO:0097110, p = 8.65 × 10−4). The mitogen-activated protein kinase (hsa04010, 7.67 × 10−4) was the most enriched Kyoto Encyclopedia of Genes and Genomes pathway. Conclusions: Morphological AML subtypes may in part reflect subtype specific patterns of genomic alterations. Following validation, future studies to evaluate the usefulness of these genes in genetic testing for the early diagnosis and prognostic prediction of AML patients would be worthwhile. Keywords: Acute myeloid leukemia, Gene ontology, Pathway analysis, Somatic mutation, Subtype-specific mutation, Whole-exome sequencing Background studies provide important diagnostic and prognostic Acute myeloid leukemia (AML) is a highly malignant information for AML patients. However, approximately cancer of the bone marrow that is characterized by the 50% of AML patients have a normal karyotype (NK- rapid growth of abnormal myeloid cells. In 2012, AML). Although Schlenck et al. showed that the com- leukemia accounted for 2.5% and 3.2% of all new cancer bination of the mutations in FLT and NPM1 or CCAAT/ cases and deaths worldwide, respectively [1]. The inci- enhancer binding protein (C/EBP), alpha (CEBPA) could dence rate of leukemia increased from 4.7 to 5 cases per be used to predict NK-AML prognosis, most patients 10,000 Koreans from 1999–2010 [2]. AML cytogenetic did not have this mutation set [3]. This finding suggests that AML is a highly heterogeneous disease and that a large number of causal mutations have not yet been un- * Correspondence: [email protected] 1Department of Medical Genetics, College of Medicine, Hallym University, 1 covered [4]. Two systems, the French-American-British Hallymdaehak-gil, Chuncheon, Gangwon-do 24252, Republic of Korea (FAB) classification and the newer World Health Full list of author information is available at the end of the article © The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Heo et al. BMC Medical Genetics (2017) 18:23 Page 2 of 7 Organization (WHO) classification, have been used to who had not received a bone marrow transplant prior to classify AML into subtypes. To compare our results with sampling. All subjects provided matched tumor-normal the previous studies, we used the FAB system, the most sample pairs that passed a DNA quality control (QC) test. commonly used classification in previous sequencing The Institutional Review Board for Human Research at studies for AML, including The Cancer Genome Atlas Seoul National University approved the study protocol (TCGA) whole genome sequencing (WGS) [5, 6]. AML (IRB number 1201-099-396), and all participants signed is classified into eight subtypes (M0 through M7) accord- informed consent forms for WES. A clinician conducted a ing to the FAB classification based on its morphological retrospective medical record review to obtain clinical data features: early forms in white blood cells (M0-M5), red including disease status and blood chemistry. An approxi- blood cells (M6), and platelets (M7) [3]. mately 10-mL bone marrow sample was aspirated from Next-generation sequencing technologies have extended each participant by a clinician in an aseptic environment, AML genetic studies to a genome-wide scope at a single- and genomic DNA was isolated using the QIAamp DNA base resolution. Ley et al. (2008) performed the first AML Blood Maxi Kit following the manufacturer’s instructions WGS study on one Caucasian woman with the cytogeneti- (Qiagen, Inc., Valencia, CA, USA). A 2-ml whole-saliva cally normal AML subtype M1 and reported non- sample was obtained from the same individuals for the synonymous single nucleotide variants (nsSNVs) in eight matched normal samples, and the genomic DNA was genes (i.e., CDH24, PCLKC, GPR123, EBI2, PTPRT, extracted using the Oragen DNA Self-Collection kit KNDC1, SLC15A1,andGRINL1B) and insertions in the (DNA Genotek, Inc., Ontario, Canada). coding regions of the FLT3 and NPM1 genes [7]. Mardis and his colleagues reported that 16% of 80 NK-AML Whole-exome sequencing patients had a somatic point mutation in the IDH1 gene We captured the target DNA sample using the Agilent [8]. According to a later report by Ley et al.(2010), SureSelect Human All Exon 50 Mb Kit (Agilent approximately 22% of 281 AML patients had DNMT3A Technologies Inc., Santa Clara, CA, USA). The entire mutations that were newly discovered using targeted exome regions for both the tumor and normal sam- sequencing [9]. In a Chinese study using targeted exome ples from 36 AML patients were sequenced using the sequencing, the patients with the DNMT3A Arg882 muta- HiSeq 2000 platform with a 100 bp paired-end read tion showed poor prognosis among AML-M5 individuals protocol (Illumina, Inc. San Diego, CA, USA). Each the [10]. A WGS study with eight Caucasian AML patients tumor and the normal sample were sequenced to an aver- showed clonal evolution patterns and mutations associ- age read depth of 76X. The fastq quality score and read ated with relapsed AML in the genes WAC, SMC3, DIS3, length cutoff determined by the NGS QC-toolkit were set DDX41,andDAXX [11]. Recently, TCGA analyzed 50 and to 20 and 70, respectively [12]. We aligned the filtered 150 patients with de novo AML using WGS and whole- reads to the reference assembly of human_g1k_v37 fasta exome sequencing (WES), respectively. They found 23 using BWA-0.7.5 [13] and called somatic SNVs using significantly mutated genes and 237 gene mutations that MuTect v1.1.4 according to the Catalogue of Somatic recurred in at least two patients, which were grouped into Mutations in Cancer (COSMIC) v68 database [14]. nine categories according to their biological functions [6]. We used Varscan v2.3.6 to call short indels [15]. We AML is a clinically and genetically heterogeneous obtained translational effect of variant allele, protein disease, hence discovering subtype-specific mutations change information, mutation reports in Catalog of may provide additional prognostic information for AML Somatic Mutations in Cancer, and predictions of patients. In this study, we aimed to replicate previous coding non-synonymous variants on protein function findings in the European studies and to characterize the using the Oncotator web application [16]. Preliminary re- landscape of somatic mutations present in Korean acute ports using six of 36 samples have been previously myeloid leukemia. We also performed a stratified analysis published elsewhere (Additional file 1: Table S1) [17–19]. for FAB M2- and M3-subtypes to investigate if certain mutations have subtype-specific effects. We subsequently Statistical analysis evaluated the functional properties of the significantly We performed a mutation significance test using mutated genes using an integrated systems analysis of MutSigCV v1.4 with a significance threshold of a p Gene Ontology (GO) and biological pathways. value less than 0.05. The p value was calculated with the chi-square test to determine whether the observed Methods mutations in a gene significantly exceeded the expected Patients and samples frequency of random background mutations. We add- We included 36 Korean patients with de novo AML who itionally considered a q value less than 0.1, which was an visited the Division of Hematology and Medical Oncology, analogue of the p value calculated based on the Seoul National University Hospital, from 1995 to 2013 Benjamini-Hochberg false discovery rate (FDR) [20]. To Heo et al. BMC Medical Genetics (2017) 18:23 Page 3 of 7 identify subtype-specific mutant genes, we performed the Table 1 Characteristics of the 36 acute myeloid leukemia patients test individually in each of the subgroups as follows: M2- Variables AML (n = 36) AML, acute myeloblastic leukemia with maturation, and Age, mean (SE) 46.43 (3.09) M3-AML, acute promyelocytic leukemia.
Recommended publications
  • Learning from Cadherin Structures and Sequences: Affinity Determinants and Protein Architecture
    Learning from cadherin structures and sequences: affinity determinants and protein architecture Klára Fels ıvályi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Klara Felsovalyi All rights reserved ABSTRACT Learning from cadherin structures and sequences: affinity determinants and protein architecture Klara Felsovalyi Cadherins are a family of cell-surface proteins mediating adhesion that are important in development and maintenance of tissues. The family is defined by the repeating cadherin domain (EC) in their extracellular region, but they are diverse in terms of protein size, architecture and cellular function. The best-understood subfamily is the type I classical cadherins, which are found in vertebrates and have five EC domains. Among the five different type I classical cadherins, the binding interactions are highly specific in their homo- and heterophilic binding affinities, though their sequences are very similar. As previously shown, E- and N-cadherins, two prototypic members of the subfamily, differ in their homophilic K D by about an order of magnitude, while their heterophilic affinity is intermediate. To examine the source of the binding affinity differences among type I cadherins, we used crystal structures, analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and electron paramagnetic resonance (EPR) studies. Phylogenetic analysis and binding affinity behavior show that the type I cadherins can be further divided into two subgroups, with E- and N-cadherin representing each. In addition to the affinity differences in their wild-type binding through the strand-swapped interface, a second interface also shows an affinity difference between E- and N-cadherin.
    [Show full text]
  • HHS Public Access Author Manuscript
    HHS Public Access Author manuscript Author Manuscript Author ManuscriptNat Genet Author Manuscript. Author manuscript; Author Manuscript available in PMC 2012 September 01. Published in final edited form as: Nat Genet. ; 44(3): 260–268. doi:10.1038/ng.1051. Meta-analyses identify 13 novel loci associated with age at menopause and highlights DNA repair and immune pathways A full list of authors and affiliations appears at the end of the article. Abstract To identify novel loci for age at natural menopause, we performed a meta-analysis of 22 genome- wide association studies in 38,968 women of European descent, with replication in up to 14,435 women. In addition to four known loci, we identified 13 new age at natural menopause loci (P < 5 × 10−8). The new loci included genes implicated in DNA repair (EXO1, HELQ, UIMC1, FAM175A, FANCI, TLK1, POLG, PRIM1) and immune function (IL11, NLRP11, BAT2). Gene-set Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms Corresponding authors: Anna Murray, Peninsula Medical School, St Lukes, Magdalen Road, Exeter, EX1 2LU, UK, [email protected]. Kathryn L Lunetta, Department of Biostatistics, Boston University School of Public Health, 801 Mass Avenue, Crosstown Center, CT313, Boston, MA 02118, [email protected]. *These authors contributed jointly to this work #These senior authors jointly oversaw this work URLS: GWAS catalog: www.genome.gov/gwastudies/, SCAN: scan.bsd.uchicago.edu.
    [Show full text]
  • NIH Public Access Author Manuscript Nat Genet
    NIH Public Access Author Manuscript Nat Genet. Author manuscript; available in PMC 2012 September 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nat Genet. ; 44(3): 260–268. doi:10.1038/ng.1051. Meta-analyses identify 13 novel loci associated with age at menopause and highlights DNA repair and immune pathways Lisette Stolk1,2,*, John RB Perry3,4,*, Daniel I Chasman5,6, Chunyan He7,8, Massimo Mangino9, Patrick Sulem10, Maja Barbalic11, Linda Broer12, Enda M Byrne13, Florian Ernst14, Tõnu Esko15,16,17, Nora Franceschini18, Daniel F Gudbjartsson10, Jouke-Jan Hottenga19, Peter Kraft20,21, Patick F McArdle22, Eleonora Porcu23, So-Youn Shin24, Albert V Smith25,26, Sophie van Wingerden12, Guangju Zhai9,27, Wei V Zhuang28, Eva Albrecht29, Behrooz Z Alizadeh30, Thor Aspelund25,26, Stefania Bandinelli31, Lovorka Barac Lauc32, Jacques S Beckmann33,34, Mladen Boban35, Eric Boerwinkle11, Frank J Broekmans36, Andrea Burri9, Harry Campbell37, Stephen J Chanock38, Constance Chen20,39, Marilyn C Cornelis39, Tanguy Corre40, Andrea D Coviello41,42, Pio d’Adamo43,44, Gail Davies45, Ulf de Faire46, Eco JC de Geus19,47, Ian J Deary45,48, George VZ Dedoussis49, Panagiotis Deloukas24, Shah Ebrahim50, Gudny Eiriksdottir25, Valur Emilsson25, Johan G Corresponding authors: Anna Murray, Peninsula Medical School, St Lukes, Magdalen Road, Exeter, EX1 2LU, UK, [email protected]. Kathryn L Lunetta, Department of Biostatistics, Boston University School of Public Health, 801 Mass Avenue, Crosstown Center, CT313, Boston, MA 02118, [email protected]. *These authors contributed jointly to this work #These senior authors jointly oversaw this work URLS: GWAS catalog: www.genome.gov/gwastudies/, SCAN: scan.bsd.uchicago.edu.
    [Show full text]
  • Meta-Analyses Identify 13 Loci Associated with Age at Menopause
    Edinburgh Research Explorer Meta-analyses identify 13 loci associated with age at menopause and highlight DNA repair and immune pathways Citation for published version: Stolk, L, Zillikens, MC, Uitterlinden, AG, Visser, JA, Hofman, A, Van Duijn, CM, Perry, JRB, Melzer, D, Murray, A, Chasman, DI, Paré, G, Buring, JE, Crisponi, L, Ridker, PM, He, C, Mangino, M, Zhai, G, Burri, A, Soranzo, N, Spector, TD, Sulem, P, Gudbjartsson, DF, Stacey, SN, Styrkarsdottir, U, Stefansson, K, Thorsteinsdottir, U, Barbalic, M, Boerwinkle, E, Broer, L, Van Wingerden, S, Janssens, ACJW, Byrne, EM, Martin, NG, Medland, SE, Nyholt, DR, Montgomery, GW, Ernst, F, Esko, T, Fischer, K, Haller, T, Hass, M, Salumets, A, Metspalu, A, Völzke, H, Franceschini, N, Hottenga, J-J, De Geus, EJC, Vink, JM, Willemsen, G, Boomsma, DI, Kraft, P, Chen, C, Hankinson, SE, Hu, FB, Hunter, DJ, McArdle, PF, Yerges-Armstrong, LM, Streeten, EA, Porcu, E, Ferreli, L, Lai, S, Marongiu, M, Sanna, S, Uda, M, Shin, S-Y, Deloukas, P, Palotie, A, Stirrups, K, Smith, AV, Aspelund, T, Eiriksdottir, G, Emilsson, V, Gudnason, V, Tryggvadottir, L, Zhuang, WV, Lunetta, KL, Albrecht, E, Gieger, C, Alizadeh, BZ, Snieder, H, Stolk, RP, Bandinelli, S, Lauc, LB, Beckmann, JS, Kutalik, Z, Boban, M, Kolcic, I, Polasek, O, Rudan, I, Zemunik, T, Broekmans, FJ, Fauser, BCJM, Voorhuis, M, Campbell, H, Wilson, JF, Zgaga, L, Chanock, SJ, Cornelis, MC, Van Dam, RM, Corre, T, Masciullo, C, Pistis, G, Sala, C, Toniolo, D, Coviello, AD, Glazer, N, Murabito, JM, Johnson, AD, Karasik, D, Kiel, DP, D'Adamo, P, Gasparini,
    [Show full text]
  • Smooth Muscle Contamination Analysis in Clinical Oncology Gene Expression Research Monika Markowska1,2*, Piotr Stępniak2, Konrad Wojdan2,3 and Konrad Świrski2,3
    Vol. 61, No 2/2014 333–340 on-line at: www.actabp.pl Regular paper Smooth muscle contamination analysis in clinical oncology gene expression research Monika Markowska1,2*, Piotr Stępniak2, Konrad Wojdan2,3 and Konrad Świrski2,3 1Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw, Poland; 2Transition Technologies S.A., Warsaw, Poland; 3Institute of Heat Engineering, Warsaw University of Technology, Warszawa, Poland Gene expression profiling is one of the most explored a fully developed field. One of the clear findings so far methods for studying cancers and microarray data re- is that there are different strategies in data processing positories have become a rich and important resource. which lead to discrepancies in sample handling, as well The most common human cancers develop in organs as raise incommensurability concerns between involved that are walled by smooth muscles. The only method of laboratories. Be it as it may, there has been a noticea- sample extraction free of unintentional contamination ble growth in the number of published practice guides with surrounding tissue is microdissection. Nevertheless, designed to improve unity and reliability between dif- such an approach is implemented infrequently. In the ferent platforms. Nevertheless, surgical sample contami- light of the above, there is a possibility of smooth mus- nation by different tissues/cells remains a problem in cle contamination in a large portion of publicly available a number of sample extraction processes, and is often data. In this study, 2292 publicly available microarrays ignored and rarely considered in the relevant literature. were analysed to develop a simple screening method for Most samples used in this kind of studies usually con- detecting smooth muscle contamination.
    [Show full text]
  • Análise Do Perfil De Expressão Gênica De Carcinoma Ductal in Situ E Invasivo Em Tumores De Mama Através Da Técnica De Microarray
    ANÁLISE DO PERFIL DE EXPRESSÃO GÊNICA DE CARCINOMA DUCTAL IN SITU E INVASIVO EM TUMORES DE MAMA ATRAVÉS DA TÉCNICA DE MICROARRAY NÁDIA PEREIRA DE CASTRO Tese apresentada à Fundação Antônio Prudente para obtenção do título de Doutor em Ciências Área de Concentração: Oncologia Orientadora: Dra. Dirce Maria Carraro Co-Orientadora: Dra. Anamaria Aranha Camargo São Paulo 2008 Livros Grátis http://www.livrosgratis.com.br Milhares de livros grátis para download. FICHA CATALOGRÁFICA Preparada pela Biblioteca da Fundação Antônio Prudente Castro, Nadia Pereira de Análise do perfil de expressão gênica de carcinoma ductal in situ e invasivo em tumores de mama através da técnica de microarray / Nadia Pereira de Castro -- São Paulo, 2008. 174p. Tese (doutorado)-Fundação Antônio Prudente. Curso de Pós-Graduação em Ciências-Área de concentração: Oncologia. Orientadora: Dirce Maria Carraro. Descritores: 1. MICRODISSECÇÃO A LASER. 2. CARCINOMA DUCTAL DE MAMA/genética. 3. PERFIL DA EXPRESSÃO GÊNICA. 4. ANALISES MICROARRAY. DEDICATÓRIA Dedico esta conquista… À Deus pela vida plena e por tudo que sou. Por Seu imensurável amor e cuidado. Pela paz e esperança. Meu criador, mantenedor e amigo. Aos meus pais queridos (Rubles e Neide) pela dedicação, amor, apoio incondicional e por nunca medirem esforços para a minha formação. Aos melhores irmãos do mundo (Rômulo e Rener) pela atenção, companheirismo e cuidado. Vocês são a base das minhas conquistas. Amo vocês!! AGRADECIMENTOS ESPECIAIS Agradeço especialmente... À minha avó (Maria) pelo apoio e cuidado. Aos meus queridos tios (Vanderlei e Sônia) e primos (Vanderson e Emerson) por me acolherem com tanto carinho e dedicação. Ao meu namorado (Rodrigo) pela paciência e compreensão.
    [Show full text]
  • Identification of New Genes in Human Polarized Intestinal Epithelial Cells Involved in Transport of Membrane Proteins
    1 Department of Physiological Chemistry School of Veterinary Medicine Hannover Identification of new genes in human polarized intestinal epithelial cells involved in transport of membrane proteins THESIS submitted in partial fulfilment of the requirements for the degree PHILOSOPHICAL DOCTOR - Ph.D. - in the field of molecular and cell biology at the School of Veterinary Medicine Hannover by Dr. med. vet. Hiam Kamil Hameed Al-Bayati Khanakin, Iraq Hannover, Germany, 2002 2 Supervisor: Univ.-Prof. Dr. H. Y. Naim Advisory committee: Univ.-Prof. Dr. E. Töpfer-Petersen Univ.-Prof. Dr. E. E. Sterchi Oral examination: 3 June, 2002 3 To my husband M. AtaAlla and my daughter Juan 4 5 Contents 1. Introduction........................................................................................................................1 2. Review of the literature....................................................................................................3 2.1. Some aspects of polarized intestinal epithelial cells and sorting pathways ..............................................................................................3 2.2. Sucrase-isomaltase (SI) and colon adenocarcinoma cell line (Caco-2) as models for studies on differential expression of genes......................6 2.3. DAD-1, the defender against cell death ..................................................8 2.4. The cadherin family and its diversity ...................................................10 2.5. Homo sapiens transmembrane protein BRI..........................................13
    [Show full text]
  • Molecular Signatures of the Pathogenesis ISBN-10: 90-9021312-0 ISBN-13: 978-90-9021312-5
    GENOMICS OF COELIAC DISEASE Molecular Signatures of the Pathogenesis ISBN-10: 90-9021312-0 ISBN-13: 978-90-9021312-5 Cover, layout and print: Budde Grafimedia bv, Nieuwegein The work presented in this thesis was performed at the DBG - Department of Medical Genetics of the University Medical Center Utrecht, and financially supported by the Dutch Digestive Disease Foundation (MLDS) grants WS 00-13 and WS 97-44, the Netherlands Organization for Medical and Health Research (NWO) grants 902-22-094 and 912-02-028, and by the Celiac Disease Consortium, an Innovative Cluster approved by the Netherlands Genomics Initiative and partially funded by the Dutch Government (BSIK03009). The publication of this thesis was facilitated by a financial contribution from the Department of Medical Genetics and generous donations from the Dutch Digestive Disease Foundation (MLDS); the Section of Experimental Gastroenterology (SGE) of the Netherlands Society of Gastroenterology (NVGE); the JE Juriaanse Stichting; and the Dr Ir JHJ van der Laar Stichting. GENOMICS OF COELIAC DISEASE Molecular Signatures of the Pathogenesis GENOMICS VAN COELIAKIE Moleculaire Kenmerken van de Pathogenese (met een inleiding en samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. W.H. Gispen, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 28 november 2006 des middags te 2.30 uur door Mari Cornelis Wapenaar geboren op 14 juli 1958 te
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2011/0098188 A1 Niculescu Et Al
    US 2011 0098188A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0098188 A1 Niculescu et al. (43) Pub. Date: Apr. 28, 2011 (54) BLOOD BOMARKERS FOR PSYCHOSIS Related U.S. Application Data (60) Provisional application No. 60/917,784, filed on May (75) Inventors: Alexander B. Niculescu, Indianapolis, IN (US); Daniel R. 14, 2007. Salomon, San Diego, CA (US) Publication Classification (51) Int. Cl. (73) Assignees: THE SCRIPPS RESEARCH C40B 30/04 (2006.01) INSTITUTE, La Jolla, CA (US); CI2O I/68 (2006.01) INDIANA UNIVERSITY GOIN 33/53 (2006.01) RESEARCH AND C40B 40/04 (2006.01) TECHNOLOGY C40B 40/10 (2006.01) CORPORATION, Indianapolis, IN (52) U.S. Cl. .................. 506/9: 435/6: 435/7.92; 506/15; (US) 506/18 (57) ABSTRACT (21) Appl. No.: 12/599,763 A plurality of biomarkers determine the diagnosis of psycho (22) PCT Fled: May 13, 2008 sis based on the expression levels in a sample Such as blood. Subsets of biomarkers predict the diagnosis of delusion or (86) PCT NO.: PCT/US08/63539 hallucination. The biomarkers are identified using a conver gent functional genomics approach based on animal and S371 (c)(1), human data. Methods and compositions for clinical diagnosis (2), (4) Date: Dec. 22, 2010 of psychosis are provided. Human blood Human External Lines Animal Model External of Evidence changed in low vs. high Lines of Evidence psychosis (2pt.) Human postmortem s Animal model brai brain data (1 pt.) > Cite go data (1 p. Biomarker For Bonus 1 pt. Psychosis Human genetic 2 N linkage? association A all model blood data (1 pt.) data (1 p.
    [Show full text]
  • Molecular and Genetic Profiling for Precision Medicines in Pulmonary
    cells Review Molecular and Genetic Profiling for Precision Medicines in Pulmonary Arterial Hypertension Shahood Fazal †, Malik Bisserier † and Lahouaria Hadri * Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, New York, NY 10029, USA; [email protected] (S.F.); [email protected] (M.B.) * Correspondence: [email protected] † These authors contributed equally to this work (co-first). Abstract: Pulmonary arterial hypertension (PAH) is a rare and chronic lung disease characterized by progressive occlusion of the small pulmonary arteries, which is associated with structural and func- tional alteration of the smooth muscle cells and endothelial cells within the pulmonary vasculature. Excessive vascular remodeling is, in part, responsible for high pulmonary vascular resistance and the mean pulmonary arterial pressure, increasing the transpulmonary gradient and the right ventricular “pressure overload”, which may result in right ventricular (RV) dysfunction and failure. Current technological advances in multi-omics approaches, high-throughput sequencing, and computational methods have provided valuable tools in molecular profiling and led to the identification of numer- ous genetic variants in PAH patients. In this review, we summarized the pathogenesis, classification, and current treatments of the PAH disease. Additionally, we outlined the latest next-generation sequencing technologies and the consequences of common genetic variants underlying PAH suscep- tibility and disease progression. Finally, we discuss the importance of molecular genetic testing for precision medicine in PAH and the future of genomic medicines, including gene-editing technologies and gene therapies, as emerging alternative approaches to overcome genetic disorders in PAH. Citation: Fazal, S.; Bisserier, M.; Hadri, L.
    [Show full text]
  • The Impact of Next Generation Sequencing Technologies on Haematological Research E a Review
    Pathogenesis 2 (2015) 9e16 Contents lists available at ScienceDirect Pathogenesis journal homepage: http://www.pathogenesisjournal.com/ Review article The impact of next generation sequencing technologies on haematological research e A review * Jessica S. Black a, Manuel Salto-Tellez a, b, Ken I. Mills a, Mark A. Catherwood a, c, a Centre for Cancer Research and Cell Biology (CCRCB), Queen's University Belfast, UK b Tissue Pathology Department, Belfast Health and Social Care Trust, UK c Haematology Department, Belfast Health and Social Care Trust, UK article info abstract Article history: Next-generation sequencing (NGS) technologies have begun to revolutionize the field of haematological Received 2 February 2015 malignancies through the assessment of a patient's genetic makeup with a minimal cost. Significant Accepted 20 May 2015 discoveries have already provided a unique insight into disease initiation, risk stratification and thera- Available online 6 June 2015 peutic intervention. Sequencing analysis will likely form part of the routine diagnostic testing in the future. However, a number of important issues need to be addressed for that to become a reality with Keywords: regard to result interpretation, laboratory workflow, data storage and ethical issues. In this review we Next generation sequencing summarize the contribution that NGS has already made to the field of haematological malignancies. Haematological malignancies Diagnostics Finally, we discuss the challenges that NGS technologies will bring in relation to data storage, ethical and legal issues and laboratory validation. Despite these challenges, we predict that high-throughput DNA sequencing will redefine haematological malignancies based on individualized genomic analysis. Copyright © 2015 Published by Elsevier Ltd on behalf of The Royal College of Pathologists.
    [Show full text]
  • WO 2014/068408 A2 8 May 2014 (08.05.2014) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/068408 A2 8 May 2014 (08.05.2014) P O P C T (51) International Patent Classification: Not classified 1249 East Spence Ave, Apt. 218, Tempe, AZ 85281 (US). SPETZLER, David; 13539 N. 95th Way, Scottsdale, AZ (21) International Application Number: 85260 (US). HORNUNG, Tassilo; 1249 East Spence Ave, PCT/IB20 13/003092 Apt. 218, Tempe, AZ 85281 (US). SCHAFER, Frank; (22) International Filing Date: Eichenwand 26, 40627 Dusseldorf (DE). XIAO, Nick; 23 October 2013 (23.10.201 3) 1371 1 Valley Oak Cir., Rockville, MD 20850 (US). (25) Filing Language: English (74) Agent: ROQUES, Sarah, Elizabeth; J.A. Kemp, 14 South Square, Gray's Inn, London WC1R 5JJ (GB). Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 61/717,566 23 October 2012 (23. 10.2012) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 61/73 1,419 29 November 2012 (29. 11.2012) US BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 61/735,915 11 December 2012 ( 11. 12.2012) u s DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 61/748,437 2 January 20 13 (02.01 .2013) u s HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 61/749,773 7 January 2013 (07.01 .2013) u s KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/750,33 1 8 January 20 13 (08.01 .2013) u s MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/754,471 18 January 2013 (18.01.2013) u s OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 61/767,13 1 20 February 2013 (20.02.2013) u s SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, 61/769,064 25 February 2013 (25.02.2013) u s TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, 61/805,365 26 March 2013 (26.03.2013) u s ZW.
    [Show full text]