University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA SI

Total Page:16

File Type:pdf, Size:1020Kb

University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA SI INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing pagels) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. You will find a good image of the page in the adjacent frame. 3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing 'from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete. 4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish fc~jQclucecl. 5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received. University Microfilms International 300 North Zeeb Road Ann Arbor, Michigan 48106 USA SI. John's Road, Tyler's Green High Wycombe, Bucks, England HP10 8HR 7820437 SARVER, DALE JERE THE ECOLOGY AND ENERGETICS OF APLYSIA JULIANA (QUav AND QAIMARD, 1832), UNIVERSITY OF HAWAII, PH.D" 1978 THE ECOLOGY AND ENERGETICS OF APLYSIA JULIANA (QUOY AND QAIMARD, 1832) A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAII IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY MAY- 1978 By DALE JERE SARVER DISSERTATION COMMITTEE Michael G. Hadfield, Chairman E. A1 ison Kay Robert A. Kinzie III Richard E. Young John Stimson ACKNOWLEDGEMENTS I would like to sincerely thank Dr. Michael Hadfield for his encouragement and support throughout the course of the study and especially for his assistance in preparing various drafts of the manuscript. Dr. William Van Heukelem spent many hours helping me design experiments and interpret the often times puzzling results; for this I am very grateful. Special thanks go to Dr. Marilyn Switzer-Dunlap for raising larvae which were necessary for many of my experiments. I must also thank Brad Peebles for his help with computer programs which made data analysis much easier... l think. iii ABSTRACT The objectives of this study were: 1) to estimate recruitment rates for Aplysia juliana on a weekly basis throughout the year at two field locations on Oahu, Hawaii; 2) to examine the interrelationships between food intake, growth rate, maximum size and fecundity; 3) to establish an energy budget; and 4) to determine the interactions between recruitment, adult density, food density and season. Recruitment occurred year-round although rates were higher in winter than in summer. Recruitment occurred in pulses which lasted from one to three days and the intensity of settlement varied between locations. Aplysia juliana larvae settle on available species of the green alga Ulva and spend about three weeks feeding on the alga and growing before migrating to the adult habitat under rocks. Mortality while on the algae is very high and fewer than 2% survive to move to the adult habitat. Maximum sizes of A. juliana attained under laboratory conditions were nearly five times larger than those seen in the field. Animals caged in the field grew rapidly until they reached sexual maturity when growth stopped. Animals raised in the laboratory continued to grow for several weeks after the onset of egg laying. This difference in growth pattern is attributed to limited access to food in the field imposed by their nocturnal habits and the activity-repressive response to heavy wave action. iv Maximum sizes of animals in the field varied both between locations and within the same location at different times of the year. These differences were attributed to variation in alga density, temperature, and possibly variations in nutritional quality of the algae. Caloric content of Q. lactuca from the Sand Island study site varied from 1850 to 3150 calories per dry gram. Figured on a caloric basis, adult A. juliana, under ad libitum feeding conditions, allocated 10.69% of its nutritional energy into reproduction, 5.45% into somatic growth, 10.65% into respiration and 27.28% into feces over a 3~ month period. About 46% of the ingested calories were unaccounted for and were apparently lost to mucus produc­ tion, excretion, and activity costs. Caloric assimilation efficiency was 72.7%, caloric net growth efficiency 22.2%, caloric gross growth efficiency 16.4% wet weight gross growth efficiency 23.6% and dry weight gross growth efficiency 10.95%. The relative allocation to reproduction decreased when animals were raised on reduced food rations unless rationing was sufficiently low to prevent growth, in which case all energy above maintenance costs went to egg production. Caloric gross growth efficiency did not significantly change with lower rations. At various field sites investigated, population numbers fluctuated greatly and frequent extinctions occurred. Aplysia juliana persists under such highly variable conditions by reaching sexual maturity early, and by producing millions of eggs over an extended reproductive life. v TABLE OF CONTENTS rage ACKNOWLEDGEMENTS iii ABSTRACT iv LIST OF TABLES viii LIST OF FIGURES ix CHAPTER I. GENERAL INTRODUCTION 1 CHAPTER II. GROWTH 4 Introduction 4 He thods 5 Resu1 ts 13 Discussion 32 CHAPTER III. RECRUITMENT 40 Introduction 40 ~~ethods 42 Results 46 Discussion 59 CHAPTER IV. DEMOGRAPHY 68 Introduction 68 Methods 69 Results 70 Discussion 83 CHAPTER V. ENERGETICS 90 Introduction 90 Methods 90 Results 94 Discussion 116 vi TABLE OF CONTENTS, continued Page CHAPTER VI. SUMMARY AND CONCLUSIONS 121 APPENDIX 126 LITERATURE CITED i 33 vii LIST OF TABLES Table Page 1 Monthly fecundity estimates for animals at Sand Island 80 2 Weekly fecundity estimates for animals in a cage.at Sand Island 81 3 Energetic constants for tissue, spawn, feces and algae 95 4 Energy budget for animals fed ad libitum 105 5 Energy budget for animals fed ad libitum to sexual maturity and then 10, 20, or 30 g of algae per 2 days 107 6 Energy allocation to spawn and growth for animals fed 75% of the ad libitum rate 108 7 Comparative energy allocation at different feeding 1evel s 109 8 Table of standard deviations for mean weight values in Figure 10 127 9 Table of ranges for mean weight values in Figure 5 130 10 Individual weight values for mean growth in Figure 7 131 11 Ranges for mean caloric content of U. lactuca from Sand Island 132 viii LIST OF FIGURES Figure Page 1 Growth of juveniles on ~. fasciata and ~. reticulata from Kewalo and U. reticulata and U. lactuca from Sand Island 14 2 Estimated field growth of juveniles compared to laboratory growth 16 3 Growth of animals grown in a cage at Sand Island 17 4 Growth and survival of spotted animals released at Sand Island 19 5 Growth with ad libitum and 75% of ad libitum feeding rate using ~. lactuca as food 20 6 Growth with ad libitum feeding on U. fasciata 21 7 Growth and feeding rate with ad libitum feeding on U. reticulata 22 8 Comparison of growth and survival in animals raised in tanks with and without current 24 9 Growth and fecundity of animals in ambient light and darkness 25 10 Growth of animals fed ad libitum to sexual maturity and then fed 10, 20 or 30 g of ~. lactuca per 2 days 27 11 Relative egg production with ad libitum and 75% ad libitum feeding rate 28 12 Growth under feeding regime of .5 g of ~. lactuca per day 29 ix LIST OF FIGURES, continued Figure Page 13 Growth under 3 different feeding regimes; ad libitum, starved 8 days and then ad libitum, and ad libitum to sexual maturity, maintenance rations of 4 g per day for 6 weeks and then return to ad libitum 31 14 Size-frequency distribution of recruits found on U. reticulata from Kewalo 4i 15 Size-frequency distribution of recruits found on U. reticulata from Sand Island 48 16 Size-frequency distribution of recruits found on U. lactuca from Sand Island 49 17 Daily percent survivorship of juveniles on U. reticulata from Kewa 10 51 18 Daily percent survivorship of juveniles on U. reticulata from Sand Island 52 19 Daily percent survivorship of juveniles on U. lactuca from Sand Island 53 20 Survivorship of juveniles on U. reticulata and U. lactuca from Sand Island and U. reticulata from Kewalo 54 21 Recruitment rates per 100 g of ~. reticulata 56 22 Algal standing crop at Sand Island and recruitment rates per square meter 58 23 Monthly estimates of fecundity and density for the Sand Island pooulation 71 24 Monthly size d~stributions at Black Point 73 x LIST OF FIGURES, continued Figure Page 25 Monthly size distributions at Ala Moana 74 26 Monthly size distributions at Sand Island (7/8/75 - 2/27/76) 75 27 Monthly size distributions at Sand Island (3/29/76 - 11/10/76) 76 28 Monthly size distributions at Sand Island (12/10/76 - 4/2/77) 77 29 Monthly estimates of caloric content of U.
Recommended publications
  • [Oceanography and Marine Biology - an Annual Review] R. N
    OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 7044_C000.fm Page ii Tuesday, April 25, 2006 1:51 PM OCEANOGRAPHY and MARINE BIOLOGY AN ANNUAL REVIEW Volume 44 Editors R.N. Gibson Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] R.J.A. Atkinson University Marine Biology Station Millport University of London Isle of Cumbrae, Scotland [email protected] J.D.M. Gordon Scottish Association for Marine Science The Dunstaffnage Marine Laboratory Oban, Argyll, Scotland [email protected] Founded by Harold Barnes Boca Raton London New York CRC is an imprint of the Taylor & Francis Group, an informa business CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742 © 2006 by R.N. Gibson, R.J.A. Atkinson and J.D.M. Gordon CRC Press is an imprint of Taylor & Francis Group, an Informa business No claim to original U.S. Government works Printed in the United States of America on acid-free paper 10 9 8 7 6 5 4 3 2 1 International Standard Book Number-10: 0-8493-7044-2 (Hardcover) International Standard Book Number-13: 978-0-8493-7044-1 (Hardcover) International Standard Serial Number: 0078-3218 This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the valid- ity of all materials or for the consequences of their use.
    [Show full text]
  • ASSESSMENT of COASTAL WATER RESOURCES and WATERSHED CONDITIONS at CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle
    National Park Service U.S. Department of the Interior Technical Report NPS/NRWRD/NRTR-2006/354 Water Resources Division Natural Resource Program Centerent of the Interior ASSESSMENT OF COASTAL WATER RESOURCES AND WATERSHED CONDITIONS AT CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle The National Park Service Water Resources Division is responsible for providing water resources management policy and guidelines, planning, technical assistance, training, and operational support to units of the National Park System. Program areas include water rights, water resources planning, marine resource management, regulatory guidance and review, hydrology, water quality, watershed management, watershed studies, and aquatic ecology. Technical Reports The National Park Service disseminates the results of biological, physical, and social research through the Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences are also disseminated through this series. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Copies of this report are available from the following: National Park Service (970) 225-3500 Water Resources Division 1201 Oak Ridge Drive, Suite 250 Fort Collins, CO 80525 National Park Service (303) 969-2130 Technical Information Center Denver Service Center P.O. Box 25287 Denver, CO 80225-0287 Cover photos: Top Left: Santa Cruz, Kristen Keteles Top Right: Brown Pelican, NPS photo Bottom Left: Red Abalone, NPS photo Bottom Left: Santa Rosa, Kristen Keteles Bottom Middle: Anacapa, Kristen Keteles Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California Dr. Diana L.
    [Show full text]
  • An Overview of the Fossil Record of Pteropoda (Mollusca, Gastropoda, Heterobranchia)
    Cainozoic Research, 17(1), pp. 3-10 June 2017 3 An overview of the fossil record of Pteropoda (Mollusca, Gastropoda, Heterobranchia) Arie W. Janssen1 & Katja T.C.A. Peijnenburg2, 3 1 Naturalis Biodiversity Center, Marine Biodiversity, Fossil Mollusca, P.O. Box 9517, 2300 RA Leiden, The Nether­ lands; [email protected] 2 Naturalis Biodiversity Center, Marine Biodiversity, P.O. Box 9517, 2300 RA Leiden, The Netherlands; Katja.Peijnen­ [email protected] 3 Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94248, 1090 GE Am­ sterdam, The Netherlands. Manuscript received 23 January 2017, revised version accepted 14 March 2017 Based on the literature and on a massive collection of material, the fossil record of the Pteropoda, an important group of heterobranch marine, holoplanktic gastropods occurring from the late Cretaceous onwards, is broadly outlined. The vertical distribution of genera is illustrated in a range chart. KEY WORDS: Pteropoda, Euthecosomata, Pseudothecosomata, Gymnosomata, fossil record Introduction Thecosomata Mesozoic Much current research focusses on holoplanktic gastro- pods, in particular on the shelled pteropods since they The sister group of pteropods is now considered to belong are proposed as potential bioindicators of the effects of to Anaspidea, a group of heterobranch gastropods, based ocean acidification e.g.( Bednaršek et al., 2016). This on molecular evidence (Klussmann-Kolb & Dinapoli, has also led to increased interest in delimiting spe- 2006; Zapata et al., 2014). The first known species of cies boundaries and distribution patterns of pteropods pteropods in the fossil record belong to the Limacinidae, (e.g. Maas et al., 2013; Burridge et al., 2015; 2016a) and are characterised by sinistrally coiled, aragonitic and resolving their evolutionary history using molecu- shells.
    [Show full text]
  • The Biology of Seashores - Image Bank Guide All Images and Text ©2006 Biomedia ASSOCIATES
    The Biology of Seashores - Image Bank Guide All Images And Text ©2006 BioMEDIA ASSOCIATES Shore Types Low tide, sandy beach, clam diggers. Knowing the Low tide, rocky shore, sandstone shelves ,The time and extent of low tides is important for people amount of beach exposed at low tide depends both on who collect intertidal organisms for food. the level the tide will reach, and on the gradient of the beach. Low tide, Salt Point, CA, mixed sandstone and hard Low tide, granite boulders, The geology of intertidal rock boulders. A rocky beach at low tide. Rocks in the areas varies widely. Here, vertical faces of exposure background are about 15 ft. (4 meters) high. are mixed with gentle slopes, providing much variation in rocky intertidal habitat. Split frame, showing low tide and high tide from same view, Salt Point, California. Identical views Low tide, muddy bay, Bodega Bay, California. of a rocky intertidal area at a moderate low tide (left) Bays protected from winds, currents, and waves tend and moderate high tide (right). Tidal variation between to be shallow and muddy as sediments from rivers these two times was about 9 feet (2.7 m). accumulate in the basin. The receding tide leaves mudflats. High tide, Salt Point, mixed sandstone and hard rock boulders. Same beach as previous two slides, Low tide, muddy bay. In some bays, low tides expose note the absence of exposed algae on the rocks. vast areas of mudflats. The sea may recede several kilometers from the shoreline of high tide Tides Low tide, sandy beach.
    [Show full text]
  • Kelp Forest Monitoring Handbook — Volume 1: Sampling Protocol
    KELP FOREST MONITORING HANDBOOK VOLUME 1: SAMPLING PROTOCOL CHANNEL ISLANDS NATIONAL PARK KELP FOREST MONITORING HANDBOOK VOLUME 1: SAMPLING PROTOCOL Channel Islands National Park Gary E. Davis David J. Kushner Jennifer M. Mondragon Jeff E. Mondragon Derek Lerma Daniel V. Richards National Park Service Channel Islands National Park 1901 Spinnaker Drive Ventura, California 93001 November 1997 TABLE OF CONTENTS INTRODUCTION .....................................................................................................1 MONITORING DESIGN CONSIDERATIONS ......................................................... Species Selection ...........................................................................................2 Site Selection .................................................................................................3 Sampling Technique Selection .......................................................................3 SAMPLING METHOD PROTOCOL......................................................................... General Information .......................................................................................8 1 m Quadrats ..................................................................................................9 5 m Quadrats ..................................................................................................11 Band Transects ...............................................................................................13 Random Point Contacts ..................................................................................15
    [Show full text]
  • Intertidal Organisms of Point Reyes National Seashore
    Intertidal Organisms of Point Reyes National Seashore PORIFERA: sea sponges. CRUSTACEANS: barnacles, shrimp, crabs, and allies. CNIDERIANS: sea anemones and allies. MOLLUSKS : abalones, limpets, snails, BRYOZOANS: moss animals. clams, nudibranchs, chitons, and octopi. ECHINODERMS: sea stars, sea cucumbers, MARINE WORMS: flatworms, ribbon brittle stars, sea urchins. worms, peanut worms, segmented worms. UROCHORDATES: tunicates. Genus/Species Common Name Porifera Prosuberites spp. Cork sponge Leucosolenia eleanor Calcareous sponge Leucilla nuttingi Little white sponge Aplysilla glacialis Karatose sponge Lissodendoryx spp. Skunk sponge Ophlitaspongia pennata Red star sponge Haliclona spp. Purple haliclona Leuconia heathi Sharp-spined leuconia Cliona celata Yellow-boring sponge Plocarnia karykina Red encrusting sponge Hymeniacidon spp. Yellow nipple sponge Polymastia pachymastia Polymastia Cniderians Tubularia marina Tubularia hydroid Garveia annulata Orange-colored hydroid Ovelia spp. Obelia Sertularia spp. Sertularia Abientinaria greenii Green's bushy hydroid Aglaophenia struthionides Giant ostrich-plume hydroid Aglaophenia latirostris Dainty ostrich-plume hydroid Plumularia spp. Plumularia Pleurobrachia bachei Cat's eye Polyorchis spp. Bell-shaped jellyfish Chrysaora melanaster Striped jellyfish Velella velella By-the-wind-sailor Aurelia auria Moon jelly Epiactus prolifera Proliferating anemone Anthopleura xanthogrammica Giant green anemone Anthopleura artemissia Aggregated anemone Anthopleura elegantissima Burrowing anemone Tealia lofotensis
    [Show full text]
  • Utility of H3-Genesequences for Phylogenetic Reconstruction – a Case Study of Heterobranch Gastropoda –*
    Bonner zoologische Beiträge Band 55 (2006) Heft 3/4 Seiten 191–202 Bonn, November 2007 Utility of H3-Genesequences for phylogenetic reconstruction – a case study of heterobranch Gastropoda –* Angela DINAPOLI1), Ceyhun TAMER1), Susanne FRANSSEN1), Lisha NADUVILEZHATH1) & Annette KLUSSMANN-KOLB1) 1)Department of Ecology, Evolution and Diversity – Phylogeny and Systematics, J. W. Goethe-University, Frankfurt am Main, Germany *Paper presented to the 2nd International Workshop on Opisthobranchia, ZFMK, Bonn, Germany, September 20th to 22nd, 2006 Abstract. In the present study we assessed the utility of H3-Genesequences for phylogenetic reconstruction of the He- terobranchia (Mollusca, Gastropoda). Therefore histone H3 data were collected for 49 species including most of the ma- jor groups. The sequence alignment provided a total of 246 sites of which 105 were variable and 96 parsimony informa- tive. Twenty-four (of 82) first base positions were variable as were 78 of the third base positions but only 3 of the se- cond base positions. H3 analyses showed a high codon usage bias. The consistency index was low (0,210) and a substitution saturation was observed in the 3r d codon position. The alignment with the translation of the H3 DNA sequences to amino-acid sequences had no sites that were parsimony-informative within the Heterobranchia. Phylogenetic trees were reconstructed using maximum parsimony, maximum likelihood and Bayesian methodologies. Nodilittorina unifasciata was used as outgroup. The resolution of the deeper nodes was limited in this molecular study. The data themselves were not sufficient to clar- ify phylogenetic relationships within Heterobranchia. Neither the monophyly of the Euthyneura nor a step-by-step evo- lution by the “basal” groups was supported.
    [Show full text]
  • Long-Lived Larvae of the Gastropod Aplysia Juliana: Do They Disperse and Metamorphose Or Just Slowly Fade Away?
    MARINE ECOLOGY - PROGRESS SERIES Vol. 6: 61-65. 1981 Published September 15 Mar. Ecol. Prog. Ser. Long-Lived Larvae of the Gastropod Aplysia juliana: Do They Disperse and Metamorphose or Just Slowly Fade Away? Stephen C. Kempf Kewalo Marine Laboratory, 41 Ahui St., Honolulu, Hawaii 96813, USA ABSTRACT. The planktonic larvae of the opisthobranch Aplysia juliana stop growing about 30 d after release from the egg niass. Both tissue and shell mass remain at a plateau in excess of 200 d. During this pel-~odlarvae swim, feed dnd renlaln conlpetent to metamorphose. Mortality of larvae in long-term cultures appears to be due to envlronn~entalfactors rather than senescence. The potential duration of larval life suggests that these larvae are capable of long-d~stancedispersal by major ocean currents. INTRODUCTION hypothesis, substantial experimental proof for the existence of a metabolic steady-state during larval life It has been proposed in the past that most benthic with concomitant retention of metamorphic compe- marine invertebrates produce larvae which have a tence has not been forthcoming (Pechenik, 1980). planktonic period of relatively short duration, 3 to 6 wk Hadfield (1963) considered certain opisthobranch (Thorson, 1950, 1961; Ekman, 1953). The implication veligers to be quite plastic in the length of their plank- was that such larvae do not possess the potential for totrophic period and " able to metamorphose or trans-oceanic dispersal; transport of larvae away from continue to swim from soon after hatching to an coastal waters and into the open ocean was considered extended period". This suggestion is supported by the a large source of wastage and of little consequence in fact that many opisthobranch species are known to terms of species distribution.
    [Show full text]
  • Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California
    National Park Service U.S. Department of the Interior Technical Report NPS/NRWRD/NRTR-2006/354 Water Resources Division Natural Resource Program Center Natural Resource Program Centerent of the Interior ASSESSMENT OF COASTAL WATER RESOURCES AND WATERSHED CONDITIONS AT CHANNEL ISLANDS NATIONAL PARK, CALIFORNIA Dr. Diana L. Engle The National Park Service Water Resources Division is responsible for providing water resources management policy and guidelines, planning, technical assistance, training, and operational support to units of the National Park System. Program areas include water rights, water resources planning, marine resource management, regulatory guidance and review, hydrology, water quality, watershed management, watershed studies, and aquatic ecology. Technical Reports The National Park Service disseminates the results of biological, physical, and social research through the Natural Resources Technical Report Series. Natural resources inventories and monitoring activities, scientific literature reviews, bibliographies, and proceedings of technical workshops and conferences are also disseminated through this series. Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the National Park Service. Copies of this report are available from the following: National Park Service (970) 225-3500 Water Resources Division 1201 Oak Ridge Drive, Suite 250 Fort Collins, CO 80525 National Park Service (303) 969-2130 Technical Information Center Denver Service Center P.O. Box 25287 Denver, CO 80225-0287 Cover photos: Top Left: Santa Cruz, Kristen Keteles Top Right: Brown Pelican, NPS photo Bottom Left: Red Abalone, NPS photo Bottom Left: Santa Rosa, Kristen Keteles Bottom Middle: Anacapa, Kristen Keteles Assessment of Coastal Water Resources and Watershed Conditions at Channel Islands National Park, California Dr.
    [Show full text]
  • Species Report Bursatella Leachii (Ragged Sea Hare)
    Mediterranean invasive species factsheet www.iucn-medmis.org Species report Bursatella leachii (Ragged sea hare) AFFILIATION MOLLUSCS SCIENTIFIC NAME AND COMMON NAME REPORTS Bursatella leachii 17 Key Identifying Features This large sea slug can reach more than 10 cm in length. The body has numerous long, branching, white papillae (finger-like outgrowths) that give the animal its ragged appearance. A key distinctive feature is its grey-brown body with dark brown blotches on the white papillae and bright blue eyespots scattered over the body. The head bears four tentacles: two olfactory tentacles originating on the dorsal part of the head resembling long ears, and two oral tentacles, similar in shape, near the mouth. Adults lack an external shell. 2013-2021 © IUCN Centre for Mediterranean Cooperation. More info: www.iucn-medmis.org Pag. 1/5 Mediterranean invasive species factsheet www.iucn-medmis.org Identification and Habitat Other species that look similar This species occurs most commonly in shallow, sheltered waters, often on sandy or muddy bottoms with Caulerpa prolifera, well camouflaged in seagrass beds, and occasionally in harbour environments. If disturbed or touched it can release purple ink. Its behaviour varies with the time of day, as it is more active during the daytime and hides at night. In the early morning sea hares are found clustered together in groups of 8–12 individuals, and they disperse to feed on algal films during the day. They reassemble again at night. Reproduction Bursatella leachii is a hermaphroditic species with a very fast life cycle and continuous reproduction. When mating, one individual acts as a male and crawls onto another one to fertilize it.
    [Show full text]
  • A Historical Summary of the Distribution and Diet of Australian Sea Hares (Gastropoda: Heterobranchia: Aplysiidae) Matt J
    Zoological Studies 56: 35 (2017) doi:10.6620/ZS.2017.56-35 Open Access A Historical Summary of the Distribution and Diet of Australian Sea Hares (Gastropoda: Heterobranchia: Aplysiidae) Matt J. Nimbs1,2,*, Richard C. Willan3, and Stephen D. A. Smith1,2 1National Marine Science Centre, Southern Cross University, P.O. Box 4321, Coffs Harbour, NSW 2450, Australia 2Marine Ecology Research Centre, Southern Cross University, Lismore, NSW 2456, Australia. E-mail: [email protected] 3Museum and Art Gallery of the Northern Territory, G.P.O. Box 4646, Darwin, NT 0801, Australia. E-mail: [email protected] (Received 12 September 2017; Accepted 9 November 2017; Published 15 December 2017; Communicated by Yoko Nozawa) Matt J. Nimbs, Richard C. Willan, and Stephen D. A. Smith (2017) Recent studies have highlighted the great diversity of sea hares (Aplysiidae) in central New South Wales, but their distribution elsewhere in Australian waters has not previously been analysed. Despite the fact that they are often very abundant and occur in readily accessible coastal habitats, much of the published literature on Australian sea hares concentrates on their taxonomy. As a result, there is a paucity of information about their biology and ecology. This study, therefore, had the objective of compiling the available information on distribution and diet of aplysiids in continental Australia and its offshore island territories to identify important knowledge gaps and provide focus for future research efforts. Aplysiid diversity is highest in the subtropics on both sides of the Australian continent. Whilst animals in the genus Aplysia have the broadest diets, drawing from the three major algal groups, other aplysiids can be highly specialised, with a diet that is restricted to only one or a few species.
    [Show full text]
  • Antimicrobial Activity of the Sea Hare (Aplysia Fasciata )
    Egyptian Journal of Aquatic Biology & Fisheries Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt. ISSN 1110 – 6131 Vol. 24(4): 233–248 (2020) www.ejabf.journals.ekb.eg Antimicrobial activity of the sea hare (Aplysia fasciata) collected from the Egyptian Mediterranean Sea, Alexandria Hassan A. H. Ibrahim1, Mohamed S. Amer1*, Hamdy O. Ahmed2 and Nahed A. Hassan3 1Microbiology Department, National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt. 2Marine invertebrates Department, NIOF, Alexandria, Egypt. 3Zoology Department, Faculty of science, Mansoura University, Egypt. *Corresponding Author: [email protected] _______________________________________________________________________________________ ARTICLE INFO ABSTRACT Article History: A species of sea hare was collected from the Mediterranean Sea, Received: May 12, 2020 Alexandria, Egypt. It was identified based on general morphological and Accepted: May 30, 2020 anatomical features as Aplysia fasciata. The antibacterial and antifungal Online: June 2020 activities were investigated via the standard techniques. Data obtained _______________ revealed that the highest antibacterial activity was detected against P. aeruginosa (AU = 3.4), followed by E. coli (AU = 2.9), then by B. Keywords: subtlis (AU = 2.7). The other bacterial pathogens were not affected at all. Antimicrobial activity, Likewise, the maximum fungal suppression, via the pouring method, was Sea hare, observed against P. crustosum (50%). AUs against both F. solani and A. Aplysia fasciata, niger were 20 and 10%, respectively, while there was no activity recorded Mediterranean Sea. against the others. Also, the antifungal activity via the well-cut diffusion method conducted that the highest AU (6.8) was recorded against A. flavus, followed by AU = 4.8 against F. solani, then 1.8 against P.
    [Show full text]